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Process in Lecture

R, ArcGIS

Own 

Example
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Problem

Lead question: how can we interpolate data points?

o Variogramm

o Interpolation methods
• Moving Window Average

• Inverse Distance Weighting

• Kriging
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Interpolation
Data points (e.g. energy consumption per household, density of 

households, etc..…) 

Goal: Calculate unknown value based on values of neighboors. 
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Moving-Window Average

Gitta, 2009

The distances between points is not included 

sufficiently in estimation
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Inverse Distance Weighting (IDW)
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di = distance between si and

s0, 

p = number of points

 = distance-decrease factor MCDA Kriging 624.10.2019
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IDW

Gitta, 2009
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IDW

Advantages of IDW-interpolation:

- Fast algorithm

- Distances between points are included in estimation 

- The intensity of the influence of the distance on the value can be 

driven by the exponent

Disadvantages of IDW-interpolation:

- distance-decreasing factor is constant for entire area

- It is not possible to consider directions in the weighting 

(relationships in space are not considered, e.g. Mountain ridge) 

- Artefacts such as „bull-eyes“ (same values around one point 

(correction via Shepard IDW). 

MCDA Kriging 824.10.2019



||

IDW

Advantages of IDW-interpolation:

- Fast algorithm

- Distances between points are included in estimation 

- The intensity of the influence of the distance on the value can be 

driven by the exponent

Disadvantages of IDW-interpolation:

- distance-decreasing factor is constant for entire area

- It is not possible to consider directions in the weighting 

(relationships in space are not considered, e.g. Mountain ridge) 

- Artefacts such as „bull-eyes“ (same values around one point 

(correction via Shepard IDW). 

MCDA Kriging 924.10.2019



||

Spatial structures

Can a single value describe space? Where do I find high and low 

values?
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Random field
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Where  (s) is the mean of the random field and e(s)  

is a spatially correlated stochastic term

Spatial pattern = synthesis of a specific process in space and 

time 

Z(s1)

Z(s2)

Z(s3)

Z(s4)

Z(sn)

Z
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Variogram
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Dissimilarity between data pairs

Variogram
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sj

si

D

h = spatial lag

h

Semi-Variogram
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Gitta, 2009

Semi-Variogram (Experimental)
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Semi-Variogram

Total variance
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Short questions

•What happens when all the points have the same value?

•Does it matter in which order the numbers are inputed into the 
equation?

•Why does the curve not start at point (0;0)

Semi-Variogram
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Gitta, 2009

Semi-Variogram (theoretics)

Linear Spherical Exponential
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Kriging

Theoretisches Variogram

Gitta, 2009
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Kriging

Various kriging methods exist with different 

level of sophistication

- Ordinary kriging

- Simple kriging

- Universal kriging
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Stationarity 

When a process is stationary, the mean value (s) is 

constant over space, in such a way that the process can 

be described by a constant stochastic value over the 

area, e(s)


random component  e(s) 

distributed around the mean

x
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Ordinary Kriging

When the mean value  (s) of the process is unknown and constant 

over the area, one can use ordinary kriging:

ei = weights of point i

Z(si) = values of point i

Based on 

semi-

variogram

l
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Ordinary kriging

Solution for e =A-1 x b

A b

P=s0, the point to be interpolated

e

e

e
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Ordinary Kriging
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The data:

Point number 1 2 3 4 5 0

X- Coordinate 2 3 9 6 5 5

Y- Coordinate 2 7 9 5 3 5

Value (Z) 3 4 2 4 6 -

The Variogram is 

assumed to be 

spherical and can 

be described by 

the following 

equation

EXAMPLE KRIGING

Z(s1)

Z(s2)

Z(s3)

Z(s4)

Z(s5)

X

y
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The distance between the points can be represented by a 

distance matrix

Point

Nr

1 2 3 4 5 0

1 0.0 5.099 9.899 5.0 3.162 4.243

2 5.099 0.0 6.325 3.606 4.472 2.828

3 9.899 6.325 0.0 5.0 7.211 5.657

4 5.0 3.606 5.0 0.0 2.236 1.0

5 3.162 4.472 7.211 2.236 0.0 2.0

Distance of the known points                  to 0

The variogram (nugget=2.5, sill= 7.5 and range= 10) is given by:

And thus for h= 5.0

EXAMPLE KRIGING
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From the distances of the points the ij (semivariances) are 

calculated and inserted into the matrix A

To obtain the matrix A, the distance matrix was additionally modified 
(column / row). The next step is to invert this matrix, what means,  
A-1 must be calculated

EXAMPLE KRIGING

MCDA Kriging 2724.10.2019



||

The inverse matrix is: 

And the product is:

EXAMPLE KRIGING
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Note that the sum of the first components of the resulting 
vector is:

since this is the i, which should sum 1. 

The value at the point x0 can be calculated as:

And the correspondig variance is:

EXAMPLE KRIGING
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IDW-Kriging

WITH IDW

WITH Kriging

Gitta, 2009
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Simple Kriging

If you know the mean value  (s) and it is constant over the 

area, one can use simple kriging.
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Non-stationarity
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Digital elevation model:

Non-Stationarity
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Universal Kriging
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Universal Kriging
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Empirical semi-variogram when trend of digital elevation 

model has been removed (third-order polynomial)
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Universal Kriging for non-stationarity

If the mean value changes over space  (s), one uses 

universal kriging

l
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Validation

Interpolated data vs. observed data

Training subset: P(hat) Validation subset: (P)

The smaller

P – P(hat) = error, 

the better the 

interpolation
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The performance of interpolation methods can also be evaluated 

through the root mean squared error (RMSE):
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where n is the number of observations in the validation set, valuevsi

is the value in the validation set at location i, and valuenti is the

value of the corresponding interpolated variable at location i.

Note that the term (valuevsi - valueinti ) corresponds to the error of

the interpolation method.

Validation
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Sample questions after 5th lecture:

1. Which spatial process leads to a flat variogram? 

2. What are the differences between the 3 types of interpolation 

methods (advantages and disadvantages

3. Small exercise....

Sample questions
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On 24 April 2013 you read the following article in the NZZ: 

 

 

 

Because of your expertise in GIS and MCDA the Cantonal authorities ask you to propose suitable 

locations for these two new schools.  

You decide to start with the collection of data that is relevant for this problem. It may be 

important to build the school in an area where there are many potential students (so that 

students don’t have to travel that far), so you want to have a raster map indicating the average 

grades of primary school pupils in Zurich (i.e. only pupils with a high average grade can go to the 

gymnasium). To a large number of random homes in Canton Zurich you send out a questionnaire 

asking the parents to disclose the average primary school grades of their children. After 5000 

questionnaires were returned you want to interpolate the average school grades over the whole 

Canton. For the interpolation you decide to use ordinary kriging (OK). For OK a semivariogram 

needs to be created. Below is a table with some of the average school grades and coordinates of 

the pupil’s houses. 

Pupil X-coordinate Y-coordinate Average 
grade 

A 693579 239785 4.5 

B 694079 239785 5.7 
C 693829 240218 4.9 
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1) For each of the distances (ℎ, rounded to 0 decimals) between pupil’s 

houses, calculate the semivariance (ො𝛾(ℎ)) from the average grade. 

Write down all the calculation steps. Hint: start with calculating the 

distances (ℎ).

2) What shape could the empirical semivariogram that results from the 

dataset of average school grades have? 

Plot the empirical semivariogram and describe why you would expect it to 

have that certain shape.

Is the ‘nugget’ in the origin (point 0,0) of your semivariogram? Explain 

why this is or is not the case.
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CRITERIA SELECTION (Step 2)
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«Homework»

2. Step: Determine the criteria 

(factors/constraints) 

- how much details 

are needed in the 

analysis affects the 

set of criteria to be 

used 

- Criteria should be 

measurable

- If not determinable, 

use proxies i.e. 

slope stability can be 

represented by 

slope gradient MCDA Kriging 4324.10.2019


