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Problem
Lead guestion: how can we interpolate data points?

Point data [* L

UC Davis (soil ressources), 2007

- Variogramm

- Interpolation methods

« Moving Window Average
« Inverse Distance Weighting
« Kriging
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Interpolation

Data points (e.g. energy consumption per household, density of
households, etc.....)

Goal: Calculate unknown value based on values of neighboors.
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Moving-Window Average

18
35
34
10
26
o7
46
12

Ol & Wh =

Prinzip der 'Maoving Windows Statistik’

45
43
46
44
45
44
46
47

No. Count Mean StdDev

2.8
1.7
3.1
4.8
2.7
1.6
2.2
3.6

The distances between points is not included

sufficiently in estimation

Gitta, 2009
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Inverse Distance Weighting (IDW)

P 7 (s
ey
Z(Sp)igw = I:1|o I

d; = distance between s; and
So»

P = number of points

PLUS a = distance-decrease factor WCOA Kiging | 24102010 | 6



IDW
00000OS

IDW-Exponent: 10

L2

PLL pf
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IDW

Advantages of IDW-interpolation:

- Fast algorithm
- Distances between points are included in estimation

- The intensity of the influence of the distance on the value can be
driven by the exponent

Disadvantages of IDW-interpolation:
- distance-decreasing factor is constant for entire area

- It is not possible to consider directions in the weighting
(relationships in space are not considered, e.g. Mountain ridge)

- Artefacts such as ,bull-eyes” (same values around one point
(correction via Shepard IDW).
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Random field

Spatial pattern = synthesis of a specific process in space and
time

Z(S) =[Z(8)rvrenZ(5,)] = pa(5) +e(5)

Where u (s) is the mean of the random field and e(s)
Is a spatially correlated stochastic term
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Variogram
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Variogram

PLUS

=) Dissimilarity between data pairs
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Semi-Variogram

h = spatial lag

y(h) = s Z{zm Z(s; + W)Y’

ZN(h)
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Semi-Variogram (Experimental)
Ny (hi)
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Semi-Variogram
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Semi-Variogram

Short questions

e What happens when all the points have the same value?

e Does it matter in which order the numbers are inputed into the
equation?

e Why does the curve not start at point (0;0)
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Semi-Variogram (theoretics)

Linear Spherical Exponential
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Kriging
1.5 T . . .
interpolation
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Kriging

Various kriging methods exist with different
level of sophistication

- Ordinary kriging

- Simple kriging
- Universal kriging
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Stationarity

When a process is stationary, the mean value u(s) Is
constant over space, in such a way that the process can
be described by a constant stochastic value over the

area, e(s)
\ random component e(s)
7, / distributed around the mean
* o ® o o o 0 40 ° o
o ° °
. o 0 ° o o o 0
X
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Ordinary Kriging

When the mean value p (s) of the process is unknown and constant
over the area, one can use ordinary kriging:

2(s0) = DJeZ(s)

Based on
semi-
variogram

Measured Walue

e; = weights of point i
Z(s;) = values of point i

R-Coordinate
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Ordinary kriging

yih,) vl v, 1
vy vl vl 1

Solution fore =A1xDb

P=s, the point to be interpolated
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Ordinary Kriging

ey (h,)+e,r(h,)+e3dy(h,)+4=y(h,)
e,y (h,)+e,7(hy,) +e;7(hy) + A =y(h,)

ey (hs)+e,7(hy,) +e57(hgs) + 4 = y(hy)
e, +6e, +e, =1

y(h;) = semi-variance at h

Z(Sy) =€,Z(S,)+€,2(S,) +€,Z(S;)
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EXAMPLE KRIGING

Z(s5)
y ()
The data: Z(sy)
Z(s,)
®
: Z(s,)
Pointnumber |1 |2 |3 |4 |5 0 1‘ Z(ss’
X-Coordinate |2 |3 |9 |6 |5 5 ‘
Y- Coordinate |2 {7 [9 |5 |3 |5 X
Value (2) 3|4 |2 |46 |-
The Variogram is
assumed to be 3 h hiy 3
spherical and can ‘ ’}-‘{h:'l —c+b- {E - = — ﬂ.ﬁ(—) }
(L il

be described by

the following

equation
,PLUS
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EXAMPLE KRIGING

The distance between the points can be represented by a
distance matrix

Point 1 2 3 4 5 0

Nr

1 0.0 |5.099 9899 | 5.0 | 3.162 4,243

2 5.099 ( 0.0 | 6.325 | 3.606 | 4.472 2.828

3 9.899 [ 6.325 | 0.0 5.0 | 7.211 5.657

4 5.0 | 3.606 | 5.0 0.0 | 2.236 1.0

5 3.162 | 4472 | 7.211 | 2.236 | 0.0 2.0
Distance of the known points > to0

The variogram (nugget=2.5, sill= 7.5 and range= 10) is given by:

3 h h

v(h) =25+ T’.E.{E —- U.E(ﬁ)ﬂ}

And thus for h=5.0 | (5.0) = 7.656
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EXAMPLE KRIGING

From the distances of the points the y; (semivariances) are
calculated and inserted into the matrix A

1 2 3 4 b 6 0
112500 7.739 9.999 7656 5.939 | 1.000 7.151
27656 2500 8667 6381 7.196 | 1.000 5.597
319999 8667 2500 7.656 9.206 | 1.000 8.815
4 17656 6381 7656 2500 4.936 | 1.000 3.621
515939 7.196 9206 4.936 2.500 | 1.000 4.720
611.000 1.000 1.000 1.000 1.000 [ 0.000 1.000

To obtain the matrix A, the distance matrix was additionally modified
(column / row). The next step is to invert this matrix, what means,
Al must be calculated
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EXAMPLE KRIGING

The inverse matrix Is:

(0172 0050 0.022 0026 0126 0273 )

0050 —0.167 0.032 0.077 0.007  0.207
0022 0.032 —0.111 0.066 —0.010 0.357
—0.026 0077 0066 —0.307 0.190  0.030
0.126  0.007 —0.010 0.190 —0.313  0.134
\ 0273 0207 0357 0003 0134 —6873 )

0.0175 '\
0.2281
—0.0801
0.6437
0.1998
\  0.1182 )

And the product is: A'lb=e=
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EXAMPLE KRIGING

Note that the sum of the first components of the resulting
vector is: B

ZE;‘ =1

i=1

since this is the A;, which should sum 1.
The value at the point x, can be calculated as:

f(rn} =0.0175-3+0.2281-4 - 0.0891 - 24 0.6437-4 4 0.1998 - 6 = 4.560

And the correspondig variance is:

02 =0.0175- 7.151 +0.2281 - 5.597 — 0.0891 - 8.815 +
0.6437 - 3.621 4 0.1998 - 4.720 + 0.1182 = 4.008
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IDW-Kriging
WITH IDW
WITH Kriging
PLUS




Simple Kriging

If you know the mean value pu (S) and it is constant over the
area, one can use simple kriging.
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Non-stationarity

Processes

w
Environmental factor; predpj(aﬁoK Environmental factor and
Ecological process: tree growth ﬁ?&ms change
; ity/heigh I
U5 Rpe SRRl ; across continental divide
Sampling

Scene (e.g. Landsat 30m)

Data along a west-east transect:

change in mean
change in variance

Data values
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Non-Stationarity

Digital elevation model:
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Universal Kriging

Semi-variogram of a digital elevation
_model
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Universal Kriging

Empirical semi-variogram when trend of digital elevation
model has been removed (third-order polynomial)

semivariance

0 100 200 300 400

distance
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WMeasured vWalue

Universal Kriging for non-stationarity

If the mean value changes over space u (S), one uses
universal kriging

random component e(s)
H distributed around the mean

0 5 10 14 Zl 25 ) X
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Validation

Interpolated data vs. observed data

The smaller

P — P(hat) = error,
the better the
interpolation

Training subset: P(hat) Validation subset: (P)

PLUS
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Validation

The performance of interpolation methods can also be evaluated
through the root mean squared error (RMSE):

RMSE = 1Z(valueVS_ —value, )’
N |

where n is the number of observations in the validation set, value,
IS the value in the validation set at location i, and value,; is the
value of the corresponding interpolated variable at location i.

Note that the term (value - value,,) corresponds to the error of
the interpolation method.

PLUS
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Sample questions

Sample questions after 5th lecture:
1. Which spatial process leads to a flat variogram?

2. What are the differences between the 3 types of interpolation
methods (advantages and disadvantages

3. Small exercise....

PLUS
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On 24 April 2013 youread the followingarticle in the NZZ:

NZZ.CH ZURICH

Rene Jiivcher Jeitung

Kantonale Schulraumstrategie

Regierung plant zwei bis drei neue Kantonsschulen

Im Kanton Ziirich steigt die Zahl der Mittelschiiler bis 2027 um 3000 an. Der Bau neuer
und die Instandsetzung bestehender Gymnasien erfordert geméiss kantonaler
Schulraumstrategie Investitionen von weit iiber einer Milliarde Franken.

Because of your expertise in GIS and MCDA the Cantonal authorities ask youto propose suitable
locations for these two new schools.

Youdecide to start withthe collection of data that is relevant for this problem. It may be
important to build the school in an area where there are many potential students (so that
students don’t have to travel that far), so you want to have a raster map indicating the average
grades of primary school pupils in Zurich (i.e. only pupils with a high average grade can go to the
gymnasium). To a large number of random homes in Canton Zurich yousend out a questionnaire
asking the parents to disclose the average primary school grades of their children. After 5000
questionnaires were returned you want to interpolate the average school grades over the whole
Canton. For the interpolation you decide to use ordinary kriging (OK). For OK a semivariogram
needs to be created. Below is a table with some of the average school grades and coordinates of
the pupil’s houses.

Pupil X-coordinate Y-coordinate Average
grade

A 693579 239785 4.5

B 694079 239785 5.7

C 693829 240218 49
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1) For each of the distances (h, rounded to 0 decimals) between pupil’s
houses, calculate the semivariance (¥(h)) from the average grade.
Write down all the calculation steps. Hint: start with calculating the
distances (h).

2) What shape could the empirical semivariogram that results from the
dataset of average school grades have?

Plot the empirical semivariogram and describe why you would expect it to
have that certain shape.

Is the ‘nugget’ in the origin (point 0,0) of your semivariogram? Explain
why this is or is not the case.
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CRITERIA SELECTION (Step 2)
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«Homework»

2. Step: Determine the criteria

(factors/constraints)

- how much details
are needed in the
analysis affects the
set of criteria to be
used

- Criteria should be
measurable

- If not determinable,
use proxies i.e.
slope stability can be
represented by

PLUSlope gradient

1. Problem

definition
|. PROBLEM . ,
2.Evaluation 2. Constraints
criteria
| 3. Standardization
4. Decision 5.Decision-makers’s
1. ALTERNATIVES rules Preferences
(weighting)
N
Alternatives
6. Sensitivity
11l. DECISION Analysis
v

Recommendation
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