
© Peter R. Egli 2015
1/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

Peter R. Egli
INDIGOO.COM

MQTT
MQ TELEMETRY TRANSPORT

AN INTRODUCTION TO MQTT, A PROTOCOL FOR
M2M AND IoT APPLICATIONS

© Peter R. Egli 2015
2/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

Contents
1. What is MQTT?

2. MQTT characteristics

3. Origins and future of MQTT standard

4. MQTT model

5. MQTT message format

6. MQTT QoS

7. CONNECT and SUBSCRIBE message sequence

8. PUBLISH message flows

9. Keep alive timer, breath of live with PINGREQ

10. MQTT will message

11. Topic wildcards

12. MQTT-S

© Peter R. Egli 2015
3/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

1. What is MQTT?
MQTT is a lightweight message queueing and transport protocol.

MQTT, as its name implies, is suited for the transport of telemetry data (sensor and actor data).

MQTT is very lightweight and thus suited for M2M (Mobile to Mobile), WSN (Wireless Sensor

Networks) and ultimately IoT (Internet of Things) scenarios where sensor and actor nodes

communicate with applications through the MQTT message broker.

Example:

Light sensor continuously sends

sensor data to the broker.

Building control application

receives sensor data

from the broker and

decides to activate

the blinds.

Application sends a blind

activation message to

the blind actor node

through the broker.

TCP/IP based

network (wired, wireless)

App MQTT

Broker
App

App

Sensor

Node

App

Actor

Node

Application

© Peter R. Egli 2015
4/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

2. MQTT characteristics
MQTT Key features:

• Lightweight message queueing and transport protocol

• Asynchronous communication model with messages (events)

• Low overhead (2 bytes header) for low network bandwidth applications

• Publish / Subscribe (PubSub) model

• Decoupling of data producer (publisher) and data consumer (subscriber) through topics

(message queues)

• Simple protocol, aimed at low complexity, low power and low footprint implementations (e.g.

WSN - Wireless Sensor Networks)

• Runs on connection-oriented transport (TCP). To be used in conjunction with 6LoWPAN

(TCP header compression)

• MQTT caters for (wireless) network disruptions

Publisher
Broker

Topic

Subscriber

Topic

Topic

Publisher

Subscriber

Subscriber

1

2

1

1

3
3

2

2

4
4

© Peter R. Egli 2015
5/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

3. Origins and future of MQTT standard
The past, present and future of MQTT:

MQTT was developed by IBM and Eurotech.

The current version 3.1 is available from http://mqtt.org/.

Eventually, MQTT version 3.1 is to be adopted and published as an official standard by OASIS

(process ongoing).

As such, OASIS becomes the new home for the development of MQTT.

The OASIS TC (Technical Committee) tasked with the further development of MQTT commits to

the following:

• Backward compatibility of forthcoming OASIS MQTT standard with MQTT V3.1

• Changes restricted to the CONNECT messsage

• Clarification of existing version V3.1 (mostly editorial changes)

MQTT

V3.1

http://mqtt.org/
http://mqtt.org/

© Peter R. Egli 2015
6/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

4. MQTT model (1/3)
The core elements of MQTT are clients, servers (=brokers), sessions, subscriptions and topics.

MQTT

Client

(=publisher,

Subscriber)

MQTT

Server (= broker)

TCP Connection TCP/IP TCP/IP

Topic

A

Topic

B

Topic

C

Application

(e.g. temp.

sensors)

MQTT Session
Client

Subscriptions

TCP/IP

Network

Message Message

© Peter R. Egli 2015
7/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

4. MQTT model (2/3)
MQTT client (=publisher, subscriber):

Clients subscribe to topics to publish and receive messages.

Thus subscriber and publisher are special roles of a client.

MQTT server (=broker):

Servers run topics, i.e. receive subscriptions from clients on topics, receive messages from

clients and forward these, based on client’s subscriptions, to interested clients.

Topic:

Technically, topics are message queues. Topics support the publish/subscribe pattern for

clients.

Logically, topics allow clients to exchange information with defined semantics.

Example topic: Temperature sensor data of a building.

Publisher Subscriber Topic

Client

Subscriber Publisher

© Peter R. Egli 2015
8/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

4. MQTT model (3/3)
Session:

A session identifies a (possibly temporary) attachment of a client to a server. All

communication between client and server takes place as part of a session.

Subscription:

Unlike sessions, a subscription logically attaches a client to a topic. When subscribed to a

topic, a client can exchange messages with a topic.

Subscriptions can be «transient» or «durable», depending on the clean session flag in the

CONNECT message:

Message:

Messages are the units of data exchange between topic clients.

MQTT is agnostic to the internal structure of messages.

«Transient» subscription ends with session:

Messages M3 and M4 are not received by the client

«Durable» subscription:

Messages M2, M4 and M5 are not lost but will be received by

the client as soon as it creates / opens a new session.

M1 M2 M3 M4 M5 M6

Subscription
Create Close

Subscription
Create Close

Session
Create Close

Session
Create Close

M1 M2 M3 M4 M5 M6

Subscription
Create Close

Session
Create Close

Session
Create Close

Session
Create Close

© Peter R. Egli 2015
9/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (1/14)
Message format:

MQTT messages contain a mandatory fixed-length header (2 bytes) and an optional message-

specific variable length header and message payload.

Optional fields usually complicate protocol processing.

However, MQTT is optimized for bandwidth constrained and unreliable networks (typically

wireless networks), so optional fields are used to reduce data transmissions as much as

possible.

MQTT uses network byte and bit ordering.

Field length

(bits)

RETAIN Message Type DUP QoS Level

Remaining Length (1 – 4 bytes)

0 1 2 3 4 5 6 7

Optional: Variable Length Header

Optional: Variable Length Message Payload

MQTT fixed

header
Byte 1

Byte 2

Byte 3

Byte n

Byte n+1

Byte m

© Peter R. Egli 2015
10/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (2/14)
Overview of fixed header fields:

Message fixed header field Description / Values

Message Type 0: Reserved 8: SUBSCRIBE

1: CONNECT 9: SUBACK

2: CONNACK 10: UNSUBSCRIBE

3: PUBLISH 11: UNSUBACK

4: PUBACK 12: PINGREQ

5: PUBREC 13: PINGRESP

6: PUBREL 14: DISCONNECT

7: PUBCOMP 15: Reserved

DUP Duplicate message flag. Indicates to the receiver that this message may have already been received.

1: Client or server (broker) re-delivers a PUBLISH, PUBREL, SUBSCRIBE or UNSUBSCRIBE message

(duplicate message).

QoS Level Indicates the level of delivery assurance of a PUBLISH message.

0: At-most-once delivery, no guarantees, «Fire and Forget».

1: At-least-once delivery, acknowledged delivery.

2: Exactly-once delivery.

Further details see MQTT QoS.

RETAIN 1: Instructs the server to retain the last received PUBLISH message and deliver it as a first message to new

subscriptions.

Further details see RETAIN (keep last message).

Remaining Length Indicates the number of remaining bytes in the message, i.e. the length of the (optional) variable length header

and (optional) payload.

Further details see Remaining length (RL).

© Peter R. Egli 2015
11/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (3/14)
RETAIN (keep last message):

RETAIN=1 in a PUBLISH message instructs the server to keep the message for this topic.

When a new client subscribes to the topic, the server sends the retained message.

Typical application scenarios:

Clients publish only changes in data, so subscribers receive the last known good value.

Example:

Subscribers receive last known temperature value from the temperature data topic.

RETAIN=1 indicates to subscriber B that the message may have been published some time ago.

PUBLISH, RETAIN=1

Data= 78ºC
1

PUBLISH, RETAIN=1

Data= 78ºC
2

SUBSCRIBE 3

SUBACK 4

PUBLISH, RETAIN=1

Data= 78ºC
5

Topic

Temp.

Publisher Server Subscriber A Subscriber B

© Peter R. Egli 2015
12/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (4/14)
Remaining length (RL):

The remaining length field encodes the sum of the lengths of:

a. (Optional) variable length header

b. (Optional) payload

To save bits, remaining length is a variable length field with 1…4 bytes.

The most significant bit of a length field byte has the meaning «continuation bit» (CB). If more

bytes follow, it is set to 1.

Remaining length is encoded as a * 1280 + b * 1281 + c * 1282 + d * 1283 and placed into the RL

field bytes as follows:

Example 1: RL = 364 = 108*1280+2*1281  a=108, CB0=1, b=2, CB1=0, c=0, d=0, CB2=0

Example 2: RL = 25’897 = 41*1280 + 74*1281 + 1*1282  a=41, CB0=1, b=74, CB1=1, c=1, CB2=0, d=0

a CB0

b CB1

c CB2

d 0

Byte 0 = LSB (a * 1280, CB0=1 if b > 0)

Byte 1 (b * 1281, CB1=1 if c > 0)

Byte 2 (c * 1282, CB2=1 if d > 0)

Byte 3 = MSB (d * 1283)

Key:

LSB: Least Significant Byte

MSB: Most Significant Byte

© Peter R. Egli 2015
13/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (5/14)
CONNECT message format:

The CONNECT message contains many session-related information as optional header fields.

- Message Type = 1 - -

Remaining Length

Protocol name UTF-8 encoded (e.g. «Light_Protocol»),

prefixed with 2 bytes string length (MSB first)

Protocol version (value 0x03 for MQTT version 3)

Reserved
Will

Retain

Will

QoS

Clean

Session

Will

Flag

Password

Flag

Username

Flag

Keep Alive Timer MSB

Keep Alive Timer LSB

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte n

Byte n+1

Byte n+2

Byte n+3

Byte n+4

Byte m

MQTT fixed

header

0 1 2 3 4 5 6 7

Optional

payload

Client Identifier

Will Topic

Will Message

Username

Password

MQTT variable

header

© Peter R. Egli 2015
14/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (6/14)
Overview CONNECT message fields:

CONNECT message field Description / Values

Protocol Name UTF-8 encoded protocol name string.

Example: «Light_Protocol»

Protocol Version Value 3 for MQTT V3.

Username Flag If set to 1 indicates that payload contains a username.

Password Flag If set to 1 indicates that payload contains a password.

If username flag is set, password flag and password must be set as well.

Will Retain If set to 1 indicates to server that it should retain a Will message for the client which is published in case the

client disconnects unexpectedly.

Will QoS Specifies the QoS level for a Will message.

Will Flag Indicates that the message contains a Will message in the payload along with Will retain and Will QoS flags.

More details see MQTT will message.

Clean Session If set to 1, the server discards any previous information about the (re)-connecting client (clean new session).

If set to 0, the server keeps the subscriptions of a disconnecting client including storing QoS level 1 and 2

messages for this client. When the client reconnects, the server publishes the stored messages to the client.

Keep Alive Timer Used by the server to detect broken connections to the client.

More details see Keepalive timer.

Client Identifier The client identifier (between 1 and 23 characters)uniquely identifies the client to the server. The client

identifier must be unique across all clients connecting to a server.

Will Topic Will topic to which a will message is published if the will flag is set.

Will Message Will message to be puslished if will flag is set.

Username and Password Username and password if the corresponding flags are set.

© Peter R. Egli 2015
15/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (7/14)
CONNACK message format:

- Message Type = 2 - -

Remaining Length = 2

Reserved (not used)

Connect Return Code

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte 4

MQTT fixed

header

0 1 2 3 4 5 6 7

CONNACK message field Description / Values

Reserved Reserved field for future use.

Connect Return Code 0: Connection Accepted

1: Connection Refused, reason = unacceptable protocol version

2: Connection Refused, reason = identifier rejected

3: Connection Refused, reason = server unavailable

4: Connection Refused, reason = bad user name or password

5: Connection Refused, reason = not authorized

6-255: Reserved for future use

MQTT variable

header

© Peter R. Egli 2015
16/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (8/14)
PUBLISH message format:

RETAIN Message Type = 3 DUP QoS Level

Remaining Length

Topic Name

Field length

(bits)

Byte 1

Byte 2

Byte 3

MQTT fixed

header

0 1 2 3 4 5 6 7

Byte 5

Byte n

Topic Name String Length (MSB)

Topic Name String Length (LSB) Byte 4

Byte n+1

Byte n+2

Publish Message

MQTT variable

header

Payload

Message ID (MSB)

Message ID (LSB)

Byte n+3

Byte m

PUBLISH message field Description / Values

Topic Name with Topic Name

String Length

Name of topic to which the message is published. The first 2 bytes of the topic name field indicate the topic

name string length.

Message ID A message ID is present if QoS is 1 (At-least-once delivery, acknowledged delivery) or 2 (Exactly-once

delivery).

Publish Message Message as an array of bytes. The structure of the publish message is application-specific.

© Peter R. Egli 2015
17/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (9/14)
PUBACK message format:

PUBREC message format:

PUBREC message field Description / Values

Message ID The message ID of the PUBLISH message to be acknowledged.

- Message Type = 4 - -

Remaining Length = 2

Message ID (MSB)

Message ID (LSB)

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte 4

MQTT fixed

header

0 1 2 3 4 5 6 7

MQTT variable

header

- Message Type = 5 - -

Remaining Length = 2

Message ID (MSB)

Message ID (LSB)

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte 4

MQTT fixed

header

0 1 2 3 4 5 6 7

MQTT variable

header

PUBACK message field Description / Values

Message ID The message ID of the PUBLISH message to be acknowledged.

© Peter R. Egli 2015
18/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (10/14)
PUBREL message format:

PUBCOMP message format:

PUBCOMP message field Description / Values

Message ID The message ID of the PUBLISH message to be acknowledged.

- Message Type = 6 DUP QoS Level

Remaining Length = 2

Message ID (MSB)

Message ID (LSB)

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte 4

MQTT fixed

header

0 1 2 3 4 5 6 7

MQTT variable

header

- Message Type = 7 - -

Remaining Length = 2

Message ID (MSB)

Message ID (LSB)

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte 4

MQTT fixed

header

0 1 2 3 4 5 6 7

MQTT variable

header

PUBREL message field Description / Values

Message ID The message ID of the PUBLISH message to be acknowledged.

© Peter R. Egli 2015
19/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (11/14)
SUBSCRIBE message format:

- Message Type = 8 DUP QoS Level

Remaining Length

Field length

(bits)

Byte 1

Byte 2

Byte 3

MQTT fixed

header

0 1 2 3 4 5 6 7

Byte 5

Message ID (MSB)

Message ID (LSB) Byte 4

MQTT variable

header

List of topics

SUBSCRIBE message field Description / Values

Message ID The message ID field is used for acknowledgment of the SUBSCRIBE message since these have a QoS level of

1.

Topic Name with Topic Name

String Length

Name of topic to which the client subscribes. The first 2 bytes of the topic name field indicate the topic name

string length.

Topic name strings can contain wildcard characters as explained under Topic wildcards.

Multiple topic names along with their requested QoS level may appear in a SUBSCRIBE message.

QoS Level QoS level at which the clients wants to receive messages from the given topic.

Topic Name String Length (MSB)

Topic Name String Length (LSB)

Topic Name

Byte 6

Byte 7

Byte n

Reserved (not used) QoS Level

© Peter R. Egli 2015
20/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (12/14)
SUBACK message format:

- Message Type = 9 - -

Remaining Length

Field length

(bits)

Byte 1

Byte 2

Byte 3

MQTT fixed

header

0 1 2 3 4 5 6 7

Byte 5

Message ID (MSB)

Message ID (LSB) Byte 4

MQTT variable

header

List of granted

topic QoS

levels

SUBACK message field Description / Values

Message ID Message ID of the SUBSCRIBE message to be acknowledged.

Granted QoS Level for Topic List of granted QoS levels for the topics list from the SUBSCRIBE message.

Byte 6

Byte 7

Byte n

Reserved (not used)
Granted QoS Level

Topic 1

Reserved (not used)
Granted QoS Level

Topic 2

Reserved (not used)
Granted QoS Level

Topic m

© Peter R. Egli 2015
21/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (13/14)
UNSUBSCRIBE message format:

UNSUBSCRIBE message

field

Description / Values

Message ID The message ID field is used for acknowledgment of the UNSUBSCRIBE message (UNSUBSCRIBE messages

have a QoS level of 1).

Topic Name with Topic Name

String Length

Name of topic from which the client wants to unsubscribe. The first 2 bytes of the topic name field indicate the

topic name string length.

Topic name strings can contain wildcard characters as explained under Topic wildcards.

Multiple topic names may appear in an UNSUBSCRIBE message.

- Message Type = 10 DUP QoS Level

Remaining Length

Field length

(bits)

Byte 1

Byte 2

Byte 3

MQTT fixed

header

0 1 2 3 4 5 6 7

Byte 5

Message ID (MSB)

Message ID (LSB) Byte 4

MQTT variable

header

List of topics

Topic Name String Length (MSB)

Topic Name String Length (LSB)

Topic Name

Byte 6

Byte 7

Byte n

© Peter R. Egli 2015
22/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

5. MQTT message format (14/14)
UNSUBACK message format:

DISCONNECT, PINGREQ, PINGRESP message formats:

UNSUBACK message field Description / Values

Message ID The message ID of the UNSUBSCRIBE message to be acknowledged.

- Message Type = 11 - -

Remaining Length = 2

Message ID (MSB)

Message ID (LSB)

Field length

(bits)

Byte 1

Byte 2

Byte 3

Byte 4

MQTT fixed

header

0 1 2 3 4 5 6 7

MQTT variable

header

- Message Type - -

Remaining Length = 0

Field length

(bits)

Byte 1

Byte 2

MQTT fixed

header

0 1 2 3 4 5 6 7

© Peter R. Egli 2015
23/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

6. MQTT QoS (1/2)
MQTT provides the typical delivery quality of service (QoS) levels of message oriented

middleware.

Even though TCP/IP provides guaranteed data delivery, data loss can still occur if a TCP

connection breaks down and messages in transit are lost.

Therefore MQTT adds 3 quality of service levels on top of TCP.

QoS level 0:

At-most-once delivery («best effort»).

Messages are delivered according to the delivery guarantees of the underlying network

(TCP/IP).

Example application: Temperature sensor data which is regularly published. Loss of an

individual value is not critical since applications (consumers of the data) will anyway integrate

the values over time and loss of individual samples is not relevant.

QoS level of

network (TCP/IP)

QoS level 0

QoS level 1

QoS level 2

Best effort

At-most-once delivery (=best effort)

At-least-once delivery

Exactly-once delivery

Increasing level

of QoS

© Peter R. Egli 2015
24/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

6. MQTT QoS (2/2)
QoS level 1:

At-lest-once delivery. Messages are guaranteed to arrive, but there may be duplicates.

Example application: A door sensor senses the door state. It is important that door state

changes (closedopen, openclosed) are published losslessly to subscribers (e.g. alarming

function). Applications simply discard duplicate messages by evaluating the message ID field.

QoS level 2:

Exactly-once delivery.

This is the highest level that also incurs most overhead in terms of control messages and the

need for locally storing the messages.

Exactly-once is a combination of at-least-once and at-most-once delivery guarantee.

Example application: Applications where duplicate events could lead to incorrect actions, e.g.

sounding an alarm as a reaction to an event received by a message.

© Peter R. Egli 2015
25/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

7. CONNECT and SUBSCRIBE message sequence (1/2)
Case 1: Session and subscription setup with clean session flag = 1 («transient» subscription)

TCP connection setup 1

CONNECT, clean session = 1 2

Client Server

CONNACK 3

SUBSCRIBE, topic=XYZ 4

SUBACK 5

PUBLISH, receive messages

to / from topic
6

UNSUBSCRIBE, topic=XYZ 7

UNSUBACK 8

DISCONNECT 9

Session lifetime

Subscription lifetime

Subscription ends

with UNSUBSCRIBE

Session is created with

CONNECT message

DISCONNECT terminates

the session

© Peter R. Egli 2015
26/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

7. CONNECT and SUBSCRIBE message sequence (2/2)
Case 2: Session and subscription setup with clean session flag = 0 («durable» subscription)

TCP connection setup 1

CONNECT, clean session = 0 2

Client Server

CONNACK 3

PUBLISH, receive messages

to / from topic
4

DISCONNECT 5

Session lifetime

Subscription lifetime

Subscription was

established before.

With the new session,

the client starts to

receive messages

for the subscription

DISCONNECT

terminates the session

but not the subscription

© Peter R. Egli 2015
27/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

8. PUBLISH message flows (1/2)
QoS level 0:

With QoS level 0, a message is delivered with at-most-once delivery semantics («fire-and-

forget»).

QoS level 1:

QoS level 1 affords at-least-once delivery semantics. If the client does not receive the PUBACK

in time, it re-sends the message.

PUBLISH, QoS=0 1

Client Server

PUBLISH, QoS=1 2

Client Server Subscriber

PUBACK 6

PUBLISH to subscribers 4

Store the message. 3

Delete the message. 5

Delete the

message.
3

Store the

message.
1

Delete the

message.
7

Subscriber

PUBLISH 2

© Peter R. Egli 2015
28/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

8. PUBLISH message flows (2/2)
QoS level 2:

QoS level 2 affords the highest quality delivery semantics exactly-once, but comes with the

cost of additional control messages.

PUBLISH, QoS=2 2

Client Server Subscriber

PUBREC 5
PUBLISH to subscribers 4

Store the message. 3

Store the

message.
1

Delete the

message.
9

PUBREL 6

Delete the message. 7

PUBCOMP 8

© Peter R. Egli 2015
29/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

9. Keep alive timer, breath of live with PINGREQ
The keep alive timer defines the maximum allowable time interval between client messages.

The timer is used by the server to check client’s connection status.

After 1.5 * keepalive-time is elapsed, the server disconnects the client (client is granted a grace

period of an additional 0.5 keepalive-time).

In the absence of data to be sent, the client sends a PINGREQ message instead.

Typical value for keepalive timer are a couple of minutes.

No data to publish, client

sends PINGREQ instead
3

Client Server

PINGRESP 4

PUBLISH 1 Re-arm timer

PUBLISH 2

Keep alive

interval
Timer stopped

and re-armed

Timer stopped

and re-armed

PUBLISH 5 Timer stopped

and re-armed

© Peter R. Egli 2015
30/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

10. MQTT will message
Problem:

In case of an unexpected client disconnect, depending applications (subscribers) do not

receive any notification of the client’s demise.

MQTT solution:

Client can specify a will message along with a will QoS and will retain flag in the CONNECT

message payload.

If the client unexpectedly disconnects, the server sends the will message on behalf of the client

to all subscribers («last will»).

CONNECT

Will flag = 1, Will QoS = {1,2,3}

Will retain = {0,1} 1

Client Server Subscriber

PUBLISH, receive messages

to / from subscribers
4

Store the will message. 2

CONNACK 3

PUBLISH, receive messages

to / from topic
4

Client unexpectedly

disconnects (e.g. keepalive

timer timeout)

PUBLISH will message to

subscribers
6

5

© Peter R. Egli 2015
31/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

11. Topic wildcards
Problem:

Subscribers are often interested in a great number of topics.

Individually subscribing to each named topic is time- and resource-consuming.

MQTT solution:

Topics can be hierarchically organized through wildcards with path-type topic strings and the

wildcard characters ‘+’ and ‘#’.

Subscribers can subscribe for an entire sub-tree of topics thus receiving messages published

to any of the sub-tree’s nodes.

Topic string

special

character

Description

/ Topic level separator.

Example:

building / floor-1 / sensors / temperature

+ Single level wildcard. Matches one topic level.

Examples:

building / floor-1 / + (matches building / floor-1 / blinds and building /

floor-1 / sensors)

building / + / sensors (matches building / floor-1 / sensors and building

/ floor-2 / sensors)

Multi level wildcard. Matches multiple topic levels.

Examples:

building / floor-1 / # (matches all nodes under building / floor-1)

building / # / sensors (invalid, ‘#’ must be last character in topic string)

building

floor-1

blinds sensors

temperature light

floor-2

Example topic tree:

© Peter R. Egli 2015
32/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

12. MQTT-S (1/2)
WSNs (Wireless Sensor Networks) usually do not have TCP/IP as transport layer. They have

their own protocol stack such as ZigBee on top of IEEE 802.15.4 MAC layer. Thus, MQTT which

is based on TCP/IP cannot be directly run on WSNs.

WSNs are connected to traditional TCP/IP networks through gateway devices.

MQTT-S is an extension of MQTT for WSNs.

MQTT-S is aimed at constrained low-end devices, usually running on a batttery, such as ZigBee

devices.

WSN1

WSN2

TCP/IP based

network

App

MQTT

Broker
App

App

Sensor

Node

© Peter R. Egli 2015
33/33

Rev. 1.80

MQTT – MQ Telemetry Transport indigoo.com

12. MQTT-S (2/2)
MQTT-S is a largely based on MQTT, but implements some important optimizations for wireless

networks:

• Topic string replaced by a topic ID (fewer bytes necessary)

• Predefined topic IDs that do not require a registration

• Discovery procedure for clients to find brokers (no need to statically configure broker

addresses)

• Persistent will message (in addition to persistent subscriptions)

• Off-line keepalive supporting sleeping clients (will receive buffered messages from the

server once they wake up)

MQTT-S gateways (transparent or aggregating) connect MQTT-S domains (WSNs) with MQTT

domains (traditional TCP/IP based networks).

WSN

MQTT-S

TCP/IP

based

network

MQTT

Broker

MQTT

Broker

Transparent gateway:

 1 connection to broker per client

MQTT

Broker

Aggregating gateway:

 only 1 connection to the broker

