1 Aggregators
1.1 Belief Measure Aggregation

Let p,q € [0,1] be a probability, possibility, belief measure.
e Minimum/maximum: min{p, ¢}, max{p, q}
o Lukasiewicz: Lanp(p,q) = max{p+q — 1,0}, Lor(p, q) = min{p + ¢, 1}

e Probabilistic: Pranp(p,q) =pq, Pror(p,q) =p+q — pq

Weak: W(p, q) = min{p, ¢} if max{p, ¢} = 1; 0 otherwise

Strong: S(p,q) = max{p, ¢} if min{p, ¢} = 0; 1 otherwise

e Hamacher (AND): H \ ,(p,q) 0

= Tt T 2
Hamacher (OR): H} »(p, q) = %{%,’Y >0
Yager (AND): Yy, =1 —min{1, 3/(1 - p)7 + (1 — q)7}
e Yager (OR): Yg, = min{l, y/p7 +¢7}

1.2 Ordered Weighted Averaging Operators
An OWA operator is the mapping

n
F(.’L‘l,...,xn) = Zwkak
Bl

where W = {w1, ..., w,} are weights lying in the unit interval and summing to
one and ay, is the k-th largest of the z;. Notable OWA operators are:

o Ifwy =1, w, =0,k #1, then F(xy,... ) Tn) = MaAXg=1,.. n{Z1,...,2Tn}
o [fwn =1,wx =0,k # n, then F(zy,...,z,) = ming—1, . n{z1,...,2,}
o If wy = 1 Vk, then F(zy,...,,) = Dbt (mean value)

Example: Assume W = [0.4, 0.3,0.2,0.1]. Then F(0.7,1,0.2,0.6) = 0.4 -
1+03-0.7+02-0.6+4+0.1-0.2=0.75.

A fundamental aspect of the OWA operator is the re-ordering step, in par-
ticular an aggregate x; is not associated with a particular weight w; but rather
a weight is associated with a particular ordered position of aggregate. When we
view the OWA weights as a column vector we shall find it convenient to refer to
the weights with the low indices as weights at the top and those with the higher
indices with weights at the bottom.



1.2.1 Window type OWA

A window type OWA operator takes the average of the m arguments about the
center. For this class of operators we have:

e w;, =0, ifi<k

e w, =L ifk<i<k+m

m’

e w; =0,ifi>k+m

This operator takes the arithmetic mean of all but the best and the worst scores
of an alternative.

Example: For example, let m = 3 and k = 2. Then the weights of this win-
dow type OWA operator are calculated as w; = 0, wy = ws =ws =1/3,ws = 0.

2 Probabilistic Combination of Multiple Evidence
2.1 Dempster-Shafer Theory

The Dempster-Shafer theory (DS) can be viewed as a method for reasoning
under epistemic uncertainty. Reasoning under epistemic uncertainty refers to
logically arriving at decisions based on available knowledge. The most important
part of this theory is Dempster’s rule of combination which combines evidence
from two or more sources to form inferences.

Consider k experts and a set © of subsets of evidences © = {61,62,...,0,}.
Expert 4, i.e., sensor 7, contributes its observation by assigning its beliefs over ©.
This assignment function is called the ‘probability mass function’ of the sensor
Si, denoted by m; € [0,1]. For each possible piece of evidence 6,, DS theory
gives a rule of combining sensor S; observation m; and sensor S, observation
m]-:

_ 20.00,=0,, Mi(0a)m;(6,) 0
L= Zeﬂnob=w mi(6a)m;(0y)
This combining rule can be generalized by iteration: we treat m; not as

sensor S; observation, but rather as the already combined (using DS combining
rule) observation of sensor S, and sensor .

m; @ m; (am)

2.2 Linear & Symmetric Opinion Pool

The linear opinion pool is the most common way of combining the probabilities
of different n agents/experts/sensors to produce a social probability. For a set
of probability measures {p;}?_,, say that a probability measure pg is a linear
opinion pool with respect to {p;}"_, if there exists some \ € R"™, such that
YA =1 and thus

Po=Y_ Aip; (2)
1=,



Perhaps the most commonly used linear opinion pool is the one in which
each experts probability assessment is weighted equally. Motivating this on rep-
resentational form, we would claim that there is no reason to favour one expert
over another, so that their opinions should be treated equally. A probability
measure py is a symmetric linear opinion pool with respect to {p;}1, if

Po=) %pi ()

3 Voting Algorithms

3.1 Voting on aggregation level

Consider a conjunction of n arithmetic conditions of the form z; B 6, 1 =
1,...,n and ><; is operand. Then,

f(n) = X 91 B e« T\ By Hn

We quantify the conjunction f(n) through either hard or soft quantifiers.

3.2 Hard Conjunction Quantifier

In this case, the conjunction f(n) € {0,1}. Specifically, f(n) = 0 iff there is
a condition 4,1 < ¢,< n, such that the term z; 54; 6; holds true. Once all n
conditional terms in f(n) hold true, i.e., z; >; 6;, Vi, then f(n) = 1.

Example f(2) =21 > 10A 2z < 2. If 2; = 12 and 29 = 1 then f@)=1. If
1 =10 and w3 = 1 then the first terms does not hold true, thus, F(2) =0.

3.3 Soft Conjunction Quantifier

In this case, we can quantify each conditional term with a number in {0}U[z, 1],
with z € (0,1). The z parameter is the base of the decision between holds-
true and holds-false. In our case we can simple assume that z = 0.5, thus,
a quantification f(n) < z indicates f(n) = 0. We present how to quantify a
quantification f(n) > z. Specifically, consider the term z; >; ;. The soft
quantification of this term is the weighted support of the distance of z; from
the corresponding threshold 6; w.r.t. z. Hence, in case where z = 0.5 we have
that the soft quantification of the considered term is

g(viv 61)

fi=z+z2 b,

where v; is the current value of the ; variable and the function g(u,v) = u — v
if b;€ {>,>} or else g(u,v) = v —u. The g function denotes a linear soft
quantification. Hence, if £ = min{f;, fo,..., fa}, then

fn)=20,if >z

or
fn)=0, iff <z



Example f(2) = 2; > 10Nz, < 2. If 27 = 12 and 29 = 1 then, f; =
0.5+ 05252 = 0.5+ 0.1 = 0.6 and f; = 0.5+ 05252 = 0.5 + 0.33 = 0.88.
Hence, ¢ = min{0.6,0.88} = 0.6 and then we obtain f(2) = 0.6.

Now if ; = 1 and 2o = 1 then f; = 0.5 + 0.51—;(}9 =0.5-09= -0.4 and
fo=0.5+ 0.515—1 = 0.5+ 0.33 = 0.88. Hence, ¢ = min{-0.4, 0.88} = —0.4 and
then we obtain f(2) = 0.

3.4 Voting on detection level

Consider that we have a set of f(n;) € {0} U [z,1] C [0,1],4 = 1,...,m hard
or soft quantifications each with n; terms. The simple voting F(m)of such
quantifications w.r.t. base z is

F(m) =1if %ZZ::f(nl) >z
or .
F(m) =Oif%;f(ni) L2

In our case we can have z = 0.5 for a consensus.

4 Missing Value Substitution Algorithm

The problem

Let time ¢ a value x; is missing for a Streamer. Let assume that the Streamer
maintains a sliding-window of the last m values x;_p,,...,2;. The problem is
to estimate the z; missing value w.r.t. reservoir m — 1 values. It is worth noting
that an estimated missing value z; is stored in the m reservoir for further imple-
mentations of the missing value events. This obviously increases the unknown
error in data accuracy.

4.1 Naive Missing Value Algorithm
The value at ¢, x, is the immediate previous value, i.e.,
Ty = Ty—1
and for any time k£ > ¢, in which any value is missing, p = x;_1 until m values

are substituted in the future.

4.2 Current Mean Value Missing Value Algorithm

The value at ¢, 2, is the mean value of the most recent m stored values, i.e.,

t—1
1
Ty = E Tk
m—1

k=t—m

and for any time & > ¢, in which any value is missing, the zj, value is estimated
by the previous estimated missing values through the mean value of the last m
measurements.



4.3 Polynomial Extrapolation Missing Value Algorithm

We adopt the Lagrange Polynomial method. We assume the series of 1+ 1 map-
pings (2o, to), (£1,t1), - .., (2n, t,) and search for a polynomial passing through
all n + 1 mappings. The polynomial of Lagrange is the nth degree and has the
form:

NOESIAGE
=0

with .
fety
a0 =1l 7=

i=0g#i
The ¢;(t) is a weighting function that includes a product of n—1 terms with terms
of j = 7 omitted. In our case we have n = m—2, i.e., m—1 known mappings and
search for the m-th mapping (z;,t) with (29,t0) = (zi_m41,t—m+ 1), (z1,t1) =

(Tt—mya t —m + 2)s 0y (@nstn) = (@e—1,t — 1). Hence,

Ty = fm~2(t)

5 Novelty Detection Algorithm

The problem

In this problem a series of values are coming and try to determine which
value at ¢, x4, is candidate to be novel or outlier. This implies that the system
is on-lined trained and forms a set of clusters C. A value that is not classified to
any of the up-to-now clusters then it is candidate for outlier. If a cluster ¢ € C
has a significant number of hits then it is a novel cluster. A cluster with a low
number of hits and any value got classified in such cluster then it is a candidate
outlier.

5.1 On-line Clustering Novelty Detection Algorithm

Consider at time ¢ an incoming value ;. Consider also a knowledge base C with
a set of clusters (defined below). This algorithm has a parameter, say vigilance
r € [0,1]. Through this parameter, we construct a cluster ¢ with all values
which belong to the interval [z(1 — r),z(1 + r)]. For each new value zy, if z;
can be classified to one cluster

oM s 1 — .
¢ = arg rcnelé1|c T

ie, if |¢* — x| < re* (¢* is the cluster head, then z; belongs to ¢*. Then a
counter, f(c*) increases (a hit). Otherwise, a new cluster is constructed with
cluster head as x; and the corresponding counter is f (z¢) = 1. This implies that
G=ClL {.Et}
This algorithm returns the probability of x; being ‘outlier’. This probability
is defines as follows:
ZCECf(c)

EceCf(c) +1

The outlier detection gives feedback to the Voting algorithms for take into con-
sideration the z; value for voting or not.

P(z¢) =




5.2 The CUMSUM Detection Algorithm

This algorithm attempts to detect a change on the distribution of a time series
zy € R wr.t. a target value. The detection is reported for one-side and two-
side detection. In the one-side detection, the time series z; is detected when it
deviates above the target h*, while in the two-side detection the x is detected
whether it deviates above h™ and below h~.

The input parameters for the CUMSUM algorithm are:

e the target value p € R

the above-tolerance value k+

e the below-tolerance value k~

e the above-threshold value h*

e the below-threshold value h~

The output parameters for the CUMSUM algorithm are:
e the above-detection signal s* € {0,1}

o the bellow-detection signal s~ € {0,1}

The algorithm detects a change and (i) sets the st = 1 if the time series
deviates above the target value or (ii) sets the s~ = 1 if the time series deviates
below the target value. The algorithm has as follows:

Algorithm
R<0
Q<0
t—1
while(true) Ve

gt =0 & 3\00'
s~ =0 e
R =max(0,z; — (u+ k%) + R)
Q=min(0,z; — (u— k™) + Q)
if(R > h)
Ft=—=1
end-if
if(Q < —h)
s =1
end-if
end-while
End

5.3 Shewhart Controller

In the Shewhart control chart, a variable z}, is detected to deviate at time k from
its normality denoted by two control limits: the Upper Control Limit (UCL)
and Lower Control Limit (LCL). The control limits are defined as the distance
from the current mean value of the process z1, ... , T, which is:

e T + aoy for UCL, and



® ) - aoy for LCL

That is, zy is detected to fire an alarm if zy > UCLy or z, < LCLy,.
The UCLy, and the LCL; values are defined as follows (through incremental
methods):

_ _ Tk — Tk
Tk = Tp—1 + = ——

and

ok = 2 (0 = Dof_y + {2k — 50) (@1 - 71-1))

The controller returns +1 if x; > UCLy, -1 if 2, < LCLy, and normality,
Le., 0if x, € (LCL,UCL). The parameter a is defined to be a = 3.

6 Crisp Value Bayesian Network

In this version, the Bayesian Network Contextor (BNC) has input n crisp ev-
idences ey,...,e, and output a vector of m crisp hypotheses hq,...,h,,. The
BCN needs the conditional probability matrix M,,«,, and the hypothesis vector
mel-

The output P = [Pl,Pg,...,Pm]T is the probabilities of the hypotheses
w.r.t. pieces of evidences. The output can also be calculated in a sequential
way. The type of the probabilities vectors P = [Py Ps.oiis Pm]-r is as follows:
The probability of the k-th hypothesis, k= 1,...,m is:

_ = __ Plea]hi)P(eg|hg) - - - P(ey|hy)
Pk = P(hk|€17. . ,en) = Z:n=1 P(el|hi)P(€2|hi) ; "P(en|hi) (4)

The matrix Myxm = [awx],i = 1,...,m,k = 1,...,m such that A =
P(ei|hx) and the vector Hyx1 = [P(h1), P(ha), ..., P(hy)]T.

Obviously, one can calculate the P(hgle;), then the P(hgler,es), then the
P(hile1, ez, e3) and so on, in a sequential way. The evidence with the highest
probability is the winner of the BCN, i.e., most probable hypothesis is hjy« =
arg max{ Py }k=1,....m.




