c "OpenFlow

Software Defined Networking

nancy@di.uoa.gr

mailto:nancy@di.uoa.gr

The Internet: A Remarkable Story

Tremendous success

— From research experiment
to global infrastructure

Brilliance of under-specifying
— Network: best-effort packet delivery
— Hosts: arbitrary applications

Enables innovation in applications
— Web, P2P, VoIP, social networks, virtual worlds

But, change is easy only at the edge... ®

Inside the ‘Net: A Different Story...

* Closed equipment
— Software bundled with hardware _g7_
O/

— Vendor-specific interfaces
* Over specified !

— Slow protocol standardization _’_
* Few people can innovate

— Equipment vendors write the code
— Long delays to introduce new features

Impacts performance, security, reliability, cost...

Networks are Hard to Manage

* Operating a network is expensive $

— More than half the cost of a network
— Yet, operator error causes most outages

* Buggy software in the equipment

— Routers with 20+ million lines of code

— Cascading failures, vulnerabilities, etc.

 The network is “in the way”
— Especially a problem in data centers

— ... and home networks

Creating Foundation for Networking

A domain, not (yet?) a discipline
— Alphabet soup of protocols
— Header formats, bit twiddling
— Preoccupation with artifacts
* From practice, to principles
— Intellectual foundation for networking
— |dentify the key abstractions
— ... and support them efficiently

* To build networks worthy of society’s trust

2014 - the Milestone.......

THE WALL STREET JOURNAL. e

Home World U.S. Politics Economy Business Tech Markets Opinion Arts Life Real Estate

@ = Steep Hurdles @= Glencore Shares I @= Trial of Uber

Bl Make Criminal Cases Rize Again W =h = E.: Executives Starts in
Against Car Makers [Paris
Difficult i

ITB TOGET MORE GREAT CONTENT.

Fﬂ" ! SPECIAL REPORT

What's Holding
g Women Back in the
Workplace?

YOU ARE READING A PREVIEW OF A PAID ARTICLE. IIIEHT

AT&T Targets Flexibility, Cost Savings With New Network
Design

Move Could Cut the Company's Capital Costs by Billions of Dollars

By THOMAS GRYTA
Updated Feb. 24, 2014 12:25 p.m. ET

ATET Inc. is planning to rebuild its sprawling network with less expensive, off-the-shelf

AT&T Targets Flexibility, Cost Savings With New
Network Design

The shift will mean the second-largest U.S. carrier will buy.less specialized equipment from
icsson, Alcatel-Lucent SA and Cisco Systems Inc., and instead purchase more

generic hardware fro wider variety of producers. That equipment will be tied together with
software, making it easier and cheaper to upgrade to new technologies, roll out new services or
respond to changes in demand for connectivity.

AT&T said it is hoping the new network plan will broaden its pool of suppliers and keep it from
being locked into any one vendor at a tim 1mber of gear makers has withered.
Much of the software running the_.network will be open source, which will allow other carriers
and researchers to join the effort to advance its development.

The plan will take time to roll out, and AT&T faces hurdles in integrating the new approach with
legacy systems that remain useful. Ultimately, it could mean less spending for a gear industry
that desperately needs it.

"It does save you money," said John Donova 2ad of AT&T's technology and network
operations. "The fundament

Google Inc. and other big Internet companies made similar moves in recent years in their
massive data centers, which they filled with cheap servers as well as inexpensive "white box"
networking gear built by companies in Taiwan. The shift helped squeeze margins on servers,
making it tougher for companies in that business to compete. Last month, for

instance, International Business Machines Corp. agreed to sell its low-end server business

to Lenovo Group Ltd. for $2.3 billion, allowing IBM to focus on more profitable businesses like
software.

http://quotes.wsj.com/ERIC
http://quotes.wsj.com/ALU
http://quotes.wsj.com/CSCO
http://quotes.wsj.com/GOOG
http://quotes.wsj.com/IBM
http://quotes.wsj.com/LNVGY

AT&T Targets Flexibility, Cost Savings With New
Network Design

oftware- deflned networking and nety

g it easier to do more networkingchoreso S|mpler boxes

Networks Inc.

Telecom gear companies already are pivoting to adapt to the new reality. Alcatel-Lucent said
Sunday that it has teamed up with Intel Corp.to pursue the sorts of technologies that will be
required for AT&T's new network. Nokia Solutions and Networks also said on Sunday that it will
collaborate with Juniper to ramp up its offerings of Internet protocol routing equipment.

about $21 billion in capital spending this year. In general, about one-thir i
sp i telecom companies goes to network equipment, according to S

analyst Simon Leopold.

The carrier hasn't lowered that spending target to reflect its new network plans, but said it
expects the new program to put "a downward bias" in those costs in the next five years despite
traffic increases as the project is completed across its entire network.

High-end telecom gear now comes built for specific purposes and network technologies with
the necessary software built-in. AT&T's new plan means the company won't have to regularly rip
out its routers and switches every time it wants to upgrade its network. Instead, it would simply
update the software that governs how the gear works.

isto be able to quickly and remotely adjust network functionsm
traffic; i ity and new features.

http://quotes.wsj.com/JNPR
http://quotes.wsj.com/INTC

What's Hot In Networking: Key
Trends

Computing everywhere: the trend is not just about applications but rather
wearable systems, intelligent screens on walls and the like. Microsoft,
Google and Apple will fight over multiple aspects of this technology. You
will see more and more sensors that will generate even more data and IT
will have to know how to exploit it.

The Internet of things: Here IT will have to manage all of these devices and
develop effective business models to take advantage of them. IT needs to
get new projects going and to embrace the “maker culture” so people in
their organizations can come up with new solutions to problems.

3D Printing: Things are changing rapidly in this environment. 3D printing
has hit a tipping point in terms of the materials that can be used and price
points of machines. It enables cost reduction in many cases. Can 3D
printing drive innovation? Impact on the network??

What's Hot In Networking: Key
Trends

4. Advanced, Pervasive and Invisible Analytics: Security analytics are the heart
of next generation security models. IT needs to look at building data reservoirs
that can tie together multiple repositories which can let IT see all manner of
new information — such as data usage patterns and what is called “meaningful
anomalies” it can act on quickly.

5. Context-Rich Systems: The use of systems that utilize “situational and
environmental information about people, places and things” in order to provide
a service, is definitely on the rise. IT needs to look at creating ever more
intelligent user interfaces linking lots of different apps and data.

6. Smart Machines: This one is happening rapidly. Virtual sages, digital
assistants and other special service software agents will appear in this world.

10

What's Hot In Networking: Key
Trends

7. Cloud/Client Computing: This trend is on the need to develop native apps in
the cloud versus migrating existing apps is the current issue.

8. Software-Defined Applications and Infrastructure: In order to get to the
agility new environments demand we cannot have hard codes and predefined
networks. IT needs to be able construct dynamic relationships. Software
Defined technologies help on that scale.

9. Web-Scale IT: Web-scale IT is a pattern of global-class computing
technologies that deliver the capabilities of large cloud service providers. The
likes of Amazon, Google and others are re-inventing the way IT services can be
delivered. Still requires a cultural IT shift to be successful.

10. Risk-Based Security and Self-protection: All roads to the digital future
success lead through security. Trends here include building applications that are
self-protecting.

11

What's Hot In Networking: Key
Trends

Software-defined networking, is making inroads into the enterprise. A survey
of 153 midsize and large North American enterprises by Infonetics Research,
found that 79% have SDN in live production in their data centers in 2017.

Along with SDN, there's a lot of talk about open standards, open protocols
and open systems. One aspect of the open networking movement continues
to gain momentum as the number of alternatives to proprietary switches
with tightly integrated software and hardware grow.

The white-box switch trend is expected to make big strides over the next few
years as more companies seek the agility and flexibility demonstrated by
Internet giants like Facebook and Google.

While a lot of conversations in networking revolve around open networking,
SDN and network automation, networking professionals are delving into
many other areas. Enterprises are migrating to the 802.11ac WiFi standard
and the transition to IPv6 continues to loom.

12

http://www.networkcomputing.com/networking/white-box-switches-are-you-ready/a/d-id/1297576

Rethinking the “Division of Labor”

Traditional Computer Networks

K_
Data plane: ——

Packet o
streaming

Forward, filter, buffer, mark,
rate-limit, and measure packets

Traditional Computer Networks:
the connections

AVATAR?2...

Traditional Computer Networks:
the failure

Traditional Computer Networks:
rerouting based on local information

C
-
1

==

=

4
7

Traditional Computer Networks:
rerouting based on local information

A G\
Delay due to
y—="

reconnecting,
Rerouting

Low QOE for
the user

Not capable of pre-assessing whether the D
reestablished connections are balanced in
terms of load or capacity etc.

IP Protocol Stack

Application HTTP FTP DNS
layer

Transport
ayer

Internet .
ayer TS
Phys. Network Eth ATM DEC
layer thernet net

Routing vs. forwarding

* Routing (algorithm):
A successive exchange of connectivity
information between routers. Each router

builds its own routing table based on
collected information.

* Forwarding (process):

A switch- or router-local process which
forwards packets towards the destination
using the information given in the local
routing table.

20

Routing algorithm

* Adistributed algorithm executed among the routers which builds the
routing tables. Path selection can be based on different metrics:

— Quantative: #hops, bandwidth, available capacity, delay, delay jitter,...
— Others: Policy, utilization, revenue maximization, politics,...

* Design and evaluation criteria:

— Scalability of algorithm. How will route information packets (i.e. overhead)
scale with an increased number of routers? Computational complexity?

— Time to a common converged state.
— Stability and robustness against errors and partial information
 Two important classes of routing algorithms

— Distance Vector (also called Bellman-Ford or Ford-Fulkerson)
— Link State

Richard Bellman: On Routing Problem, iQOstggerly of Applied Mathematics, 16(1), pp.87-

Lestor R. Ford jr., D. R. Fulkerson: Flows in Networks, Princeton University Pregs, 1962.

Motivation for hierarchical
routing

e Scalability

— Both algorithms (DV, LS) have poor scalability
properties (memory and computational
complexity).

— DV also has some problem with number and size of
routing updates.

* Administration may need more facilities, e.g.
— Local routing policies
— Specific metrics (hops, delay, traffic load, cost, ...)
— Medium-term traffic management

— Different levels of trust (own routers / foreign
routers)

Hierarchical routing domains, AS

Interior Gateway
Protocols (IGP),
OSPF, RIP, ...

Autonomous Systems (AS):
« Managed by one entity.
* Unique AS number.

Exterior Gateway
Protocols (EGP),

BGP
254

‘ AS Speaker
‘Border Router

Current computer networking —
router architecture

E— losed e.g., JUNOS,
) CISCO IOS

Operating

il —

P

Specialized Packet :
Forwarding Hardware Operating
System

Specialized Packet
Forwarding Hardware

SEREETERIERIIR T S I T

Operating
System i . , —
Aap App App
Specialized Packet Z
Forwarding Hardware £ Operating
- System

Specialized Packet
Forwarding Hardware

Operating
System

Specialized Packet
Forwarding Hardware

24

The Networking Industry (2007)

—— \ Million of 5400 RFCs Barrier to entry

Operating lines
System of source
/ code
\

Specialized Packet . Billions of Complex Power Hungry
gates

Forwarding Hardware

~

Closed, vertically integrated, boated, complex, proprietary
Many complex functions baked into the infrastructure

OSPF, BGP, multicast, differentiated services,
Traffic Engineering, NAT, firewalls, MPLS, redundant layers, ...

Little ability for non-telco network operators to get what they want
Functionality defined by standards, put in hardware, deployed on nodes25

From Vertically Integrated to ...

Feature ' Feature

Operating
System

Feature Feature
Specialized Packet

Forwarding Hardware Operating

System

Feature Feature Specialized Packet
Forwarding Hardware

Operating

System —— - a
Feature Feature

Specialized Packet

Forwarding Hardware Operating
System

Specialized Packet
Feature Feature Forwarding Hardware

Operating
System

Specialized Packet
Forwarding Hardware

Software Defined Network

Well-defined open API Constructs a logical map
N J } J of the network

Open vendor agnostic protocol

OpenFlow

Simple Packet

Forwarding
Hardware Simple Packet

Forwarding
Hardware

Simple Packet

. Forwarding
Simple Packet Hardware

Forwarding
Hardware

Simple Packet
Forwarding
Hardware

Network OS

Network OS: distributed system that creates a
consistent, up-to-date network view

— Runs on servers (controllers) in the network

Uses an open protocol to:
— Get state information from forwarding elements
— Give control directives to forwarding elements

OpenFlow

 OpenFlow

— is a protocol for remotely controlling the forwarding
table of a switch or router

— is one element of SDN

Traditional Computer Networks

Control plane:
Distributed algorithms

—
- o
L

Track topology changes, compute
routes, install forwarding rules

Traditional Computer Networks

Management plane:
Human time scale

Collect measurements and
configure the equipment

Death to the Control Planell

Simpler management

— No need to “invert” control-plane operations
Faster pace of innovation

— Less dependence on vendors and standards

Easier interoperability

— Compatibility only in “wire” protocolsh

Simpler, cheaper equipment
— Minimal software ’
]

Software Defined Networking (SDN)

Logically-centralized control

API to the data plane
~~._ (e.g., OpenFlow)

-~

Software Defined Networking (SDN)

Routing, access control
etc.

glca/\ucentrallzed control

slow ~._ API to the data plane

"~ ~(e.g., OpenFlow)

Data
(forwarding)
plane

SDN concepts: Access Control

User A doesn’t want any of his

A packets be routed through user B
==
== d
y———="
= o
=
]
Policy should be g
embedded to all —’
routers:
Complex, prone %7

to mistakes

35

36

SDN concepts: Access Control —
Abstract network view

=

Simple policy enforcement by the Network
operating system and the control plane

SDN layers for the Network Control

| Developers
ommunit

Abstract network view

Global network view

/

y—""
]

SDN Breakthrough

2012 Google announces the implementation
and operation of the 15t real implementation of
SDN-enabled network.

— G-Scale-The Google network interconnecting their
Data Centers (worldwide)

* SDN picks up from an academic concept to a
real large scale implementation

e and with no existing SDN Vendors!!!!

38

The Google paradigm

* The problems:
— Overprovisioning

— All flows were managed the same (even flows for
backup)

— Unable to determine the delay for recovering after a
link failure

— Unable to predict the network setup after recovery

— Unable to operate the network the same way as
their servers, which were managed by sophisticated
tools and became part of the collective google
consciousness “fabric”.

Google’s WAN

Two backbones
— Internet facing (user traffic)

— Datacenter traffic (internal)

Widely varying requirements: loss sensitivity,
availability, topology, etc.

Widely varying traffic characteristics:
smooth/diurnal vs. bursty/bulk
Therefore: built two separate logical networks

— |-Scale (bulletproof)
— G-Scale (possible to experiment)

40

oogle’s G-Scale — SDN enabled
WAN

41

Backbone Scale Google

“If Google were an ISP, as of this month it would rank as

the second largest carrier on the planet.”
[ATLAS 2010 Traffic Report, Arbor Networks

P

U
a0
)
S
=
c
T
o
@
a.
-
U
-
)
o

Google as a Percentage
of All Internet Traffic

43

WAN Economics Google

e Cost per bit/sec delivered should go down with
additional scale, not up
o Consider analogies with compute and storage

e However, cost/bit doesn't naturally decrease with size

o Quadratic complexity in pairwise interactions and
broadcast overhead of all-to-all communication
requires more expensive equipment

o Manual management and configuration of individual
elements

o Complexity of automated configuration to deal with
non-standard vendor configuration APIs

44

Solution: WAN Fabrics Google

e Goal: manage the WAN as a fabric not as a collection of

iIndividual boxes
e Current equipment and protocols don't allow this

O

O
O
O

Internet protocols are box centric, not fabric centric
Little support for monitoring and operations
Optimized for “eventual consistency” in routing
Little baseline support for low latency routing and
fast failover

45

Why Software Defined WAN Google

e Separate hardware from software
o Choose hardware based on necessary features
o Choose software based on protocol requirements
e Logically centralized network control
o More deterministic
o More efficient
o More fault tolerant
e Separate monitoring, management, and operation from
individual boxes
e Flexibility and Innovation

Result: A WAN that is higher performance, more fault
tolerant, and cheaper

46

Deployment History Google

e Phase 1 (Spring 2010):
o Introduce OpenFlow-controlled switches but make
them look like regular routers
m No change from perspective of non-OpenFlow
switches
m BGP/ISIS/IOSPF now interfaces with OpenFlow
controller to program switch state
e Pre-deploy gear at one site, take down 50% of site
bandwidth, perform upgrade, bring up with OpenFlow,
test, repeat for other 50%
e Repeat at other sites

Border Gateway Protocol: exchange routing and reachability information among autonomous systems (AS) on the Internet.

Intermediate System - Intermediate System: a link-state routing protocol, which means that the routers exchange topology information with their nearest neighbors. The
topology information is flooded throughout the AS, main disadvantage of a link state routing protocol is that it does not scale well as more routers are added to the routing
domain. Increasing the number of routers increases the size and frequency of the topology updates, and also the length of time it takes to calculate end-to-end routes.
Open Shortest Path First : a link state routing (LSR) algorithm and falls into the group of interior routing protocols

47

Deployment History Google

Phase 2 (until mid-2011): ramp-up
Activate simple SDN (no TE)
Move more and more traffic to test new network

Test transparent roll-out of controller updates

TE=Traffic Engineering

48

Deployment History Google

Phase 3 (early 2012): full production at one site
All datacenter backbone traffic carried by new network

Rolled out centralized TE

o Optimized routing based on application-level
priorities (currently 7)

o Globally optimized placement of flows

External copy scheduler interacts with OpenFlow
controller to implement deadline scheduling for large
data copies

G-Scale WAN Usage

49

Google

, Exit testing SDN
= "opt in" rollout
= network

—_—

SDN fully
Deployed

vl

Central TE
Deployed

Jan/2010 Jul/2010 Jan/2011

Jul/2011 Jan/2012

The Google paradigm

e The solution:

— Introduction of a sophisticated “Centralised Traffic
Engineering”

* Global network view — Better Network utilization

Optimal solutions for each event (e.g.,failure), faster
convergence

Sophisticated SW in the CTE “server”
Allows more control and specifying intent

— Deterministic behavior simplifies planning vs. overprovisioning for
worst case variability

Can mirror production event streams for testing
— Supports innovation and robust SW development

Controller uses modern server hardware
— 50x (!) better performance

Current Network Vs OpenFlow
Network Vs SDN Network

i
Specialized
Fewuues

Specuallzed g
Control

Control Control i
Plane o Plane

- Open Interface ——

Plane

Merchant
Specualnzed Switching Chips

Hardware

Horizontal
Vertically integrated Open interfaces
Closed, proprietary Rapid innovation

Slow innovation

51

52

What is SDN?

SDN Definition SDN Benefits

Centralization of control of the Efficiency: optimize existing
network via the applications, services, and
infrastructure

Separation of control logic to off-

device compute, that : .
Scale: rapidly grow existing

' 2 applications and services
Enables automation and orchestration

of network services via

Innovation: create and deliver new
types of applications and services and
business models

Open programmatic interfaces

Need for SDN

* Network Virtualization (Data Center & Cloud)- Use network
resource without worrying about where it is physically located,
how much it is, how it is organized, etc.

* Orchestration (Cloud) - Automated arrangement, coordination,
and management of complex computer systems, middleware,

and services.

* Programmable (Enterprise) - Should be able to change behavior
on the fly.

* Dynamic Scaling (Cloud) - Should be able to change size, quantity

= Automation - To lower OpEx minimize manual involvement
Troubleshooting
Reduce downtime
Policy enforcement
Provisioning /Re-provisioning /Segmentation of resources

53

Need for SDN (Contd..)

= Visibility - Monitor resources, connectivity.

* Performance - Optimize network device utilization
Traffic engineering/Bandwidth management
Capacity optimization
Load balancing
High utilization
* Multi-tenancy (Data Center / Cloud)- Tenants need complete
control over their addresses, topology, and routing, security

* Service Integration (Enterprise)- Load balancers, firewalls,
Intrusion Detection Systems (IDS), provisioned on demand and
placed appropriately on the traffic path

54

SDN Innovation & Components

55

SDN Approach

FROM TO
Hardware/Appliances | (Open) Software
Custom ASICs/FPGAs l Merchant Silicon

Distributed Control Plane | (Logically) Cg?;aeﬁzed Control
Protocols s APls
Function-Specific Features | P°"°Y'bsaem :gps and

Vendor-controlled Releases | Rapid Innovation Cycles

Soute: Adopted rom ONS 12 Pessartation by Dan Ae

56

Server Abstraction Vs SDN Abstraction

Data Web Virtual Load
Base Server PP Overlay || Balancer APP
OS API Network OS API
Server Network Operating System
Operating System (SDN Controller)
CPU Instruction Set OpenFlow Instruction Set
And, Of, »Or, A0d sub. mudt, load, move Ma ' ¥ e Fowand, Dm0
Server Hardware OpenFlow-enabled Device

B Aammdivwn RS TR grmn e 0y N wt e T N Ay aea i e e

Southbound API: decouples the switch hardware from

SDN Stack

Applications

Controller (Network O.S.)

outhbound
API

_

Switch Operating System

Switch Hardware

~N

— SDN

J

control function
— Data plane from control plane

Switch Operating System: exposes switch hardware

primitives

MNorthbound
APlIs

Protocol
Plug-ins

Southbound

Protocols

Network
Elements

SDN Controller Functions

IRESTi"uI API

I 050 Frameork

Network Service Functions Network Orchestration Management
Slicing Topology Host Function Function
Manager | Manager Tracker

Controller API (Java, REST) |
Controller
Service Abstraction Layer (SAL)
PCEP SMTP XMPP BGP OpenFlow || OpenFlow OpenFlow
V1.0 Vil V14

- [] - - -

w w L 2 L 3 L 2

Metwork Element

1|

Metwork Element Metwork Element

1l |

11

1l |

Overlay Tunnels (VxLAN, NVGRE, ...)

Path Computation Element (PCE)
Communication Protocol (PCEP)

Simple Mail Transfer Protocol (SMTP)
Border Gateway Protocol (BGP)

Extensible Messaging and Presence Protocol
(XMPP)

59

OSGi Framework

The OSGi Alliance, formerly the Open Services Gateway initiative, is an open standards
organization founded in 1999 that originally specified and continues to maintain the OSGi
standard:

Modules layer

The unit of deployment in OSGi is a bundle. The modules layer is where the OSGi Framework
processes the modular aspects of a bundle. The metadata that enables the OSGi Framework to
do this processing is provided in a bundle manifest file.

One key advantage of OSGi is its class loader model, which uses the metadata in the manifest
file. There is no global class path in OSGi. When bundles are installed into the OSGi Framework,
their metadata is processed by the module layer and their declared external dependencies are
reconciled against the versioned exports declared by other installed modules. The OSGi
Framework works out all the dependencies, and calculates the independent required class path
for each bundle. This approach resolves the shortcomings of plain Java class loading by ensuring
that the following requirements are met:

Each bundle provides visibility only to Java packages that it explicitly exports.
Each bundle declares its package dependencies explicitly.

Packages can be exported at specific versions, and imported at specific versions or from a
specific range of versions.

Multiple versions of a package can be available concurrently to different clients.

OSGi Framework

Lifecycle layer

The bundle lifecycle management layer in OSGi enables bundles to be dynamically installed,
started, stopped, and uninstalled, independent from the lifecycle of the application server. The
lifecycle layer ensures that bundles are started only if all their dependencies are resolved,
reducing the occurrence of ClassNotFoundException exceptions at run time. If there are
unresolved dependencies, the OSGi Framework reports them and does not start the bundle.

Each bundle can provide a bundle activator class, which is identified in the bundle manifest, that
the framework calls on start and stop events.

Services layer

The services layer in OSGi intrinsically supports a service-oriented architecture through its non-
durable service registry component. Bundles publish services to the service registry, and other
bundles can discover these services from the service registry.

These services are the primary means of collaboration between bundles.

The reason we needed the service model is because Java shows how hard it is to write
collaborative model with only class sharing. The standard solution in Java is to use factoriesthat
use dynamic class loading and statics. For example, if you want a DocumentBuilderFactory, you
call the static factory method DocumentBuilderFactory.newlnstance(). Behind that facade, the
newlnstance methods tries every class loader trick in the book to create an instance of an
implementation subclass of the DocumentBuilderFactory class. Trying to influence what
implementation is used is non-trivial (services model, properties, conventions in class name),
and usually global for the VM. Also it is a passive model. The implementation code can not do
anything to advertise its availability, nor can the user list the possible implementations and pick
the most suitable implementation. It is also not dynamic.

OSGi Framework

Q Intially, Open Services Gateway initiative

O A set of specifications for dynamic application composition
using reusable Java components called bundles

O Bundles publish their services with OSGi services registry and
can find/use services of other bundles

62

Services

Bundles 7
Life Cycle g
Modul 2

odules Bundle Register | Service GEE Bundle

Execution Environment A Registry B
Listen
Java VM
Native Operating System

63

OSGi

Bundles can be installed, started, stopped, updated or
uninstalled using a lifecycle API

Modules defines how a bundle can import/export code
Security layer handles security

Execution environment defines what methods and classes are
available 1n a specific platform

A bundle can get a service or it can listen for a service to
appear or disappear.

Each service has properties that allow others to select among
multiple bundles offering the same service

Services are dynamic. A bundle can decide to withdraw its
service. Other bundles should stop using it
—> Bundles can be installed and uninstalled on the fly.

[Hy

C O

OpenDaylight SDN Controller h
platform

Multi-company collaboration under Linux foundation
Many projects including OpenDaylight Controller

NO-OpenFlow (Not Only OpenFlow): Supports multiple
southbound protocols via plug-ins including OpenFlow

Dynamically linked in to a Service Abstraction Layer (SAL)
Abstraction = SAL figures out how to fulfill the service
requested by higher layers irrespective of the southbound

protocol
Modular design using OSGI framework

A rich set of North-bound APIs via RESTful services for
loosely coupled applications and OSGI services for co-located
applications using the same address space

N 2

APPLICATION LAYER

m\(ﬁH)‘ Network Functions | | l—

Busness Applications
t

Open Northbound Network Function i
n DDE.HST.E] ck AP Virtualization (NFV) A AF A

|

COMTROL LAYER

world Closs Sfondards

OPEM Control Layer
Componentization

INFRASTHUCTURE
LAYER

ONF NVF RoadMap

SDN — Game changer?

Complete removal of control plane may be
harmful. Exact division of control plane between
centralized controller and distributed forwarders
is yet to be worked out.

SDN is easy if control plane is centralized but not
necessary. Distributed solutions may be
required for legacy equipment and for fail-safe
operation.

66

Key Attributes for SDN Success

= Architecture for a Networked Operating
System with a service/application oriented
namespace

= Resource virtualization, elasticity and
aggregation (pooling to achieve scaling)

= Appropriate abstractions to foster
simplification

= Decouple topology, traffic and inter-layer
dependencies

= Dynamic multi-layer networking

67

OpenFlow

Problems

* Closed Systems with no or very minimal abstractions
in the network design.

* Hardware centric — usage of custom ASICs with
Vendor Specific Software.

= Difficult to perform real world experiments on large
scale production networks.

* No standard abstractions towards north bound and
south bound interfaces, even though we have
standard abstractions in the east / west bound
interface with peer routers / switches.

69

Need for OpenFlow

* Facilitate Innovation in Network
* Layered architecture with Standard Open Interfaces
* Independent innovation at each layer

* More accessibility since software can be easily developed by
more vendors

* Speed-to-market — no hardware fabrication cycles

* More flexibility with programmability and ease of customization
and integration with other software applications

* Fast upgrades
* Program a network vs Configure a network

70

What is Open Flow

* OpenFlow is like an x86 instruction set for the network nodes.

* Provides open interface to “black box” networking node (ie.
Routers, L2/L3 switch) to enable visibility and openness in
network

= Separation of control plane and data plane.

= The datapath of an OpenFlow Switch consists of a Flow Table, and an
action associated with each flow entry

= The control path consists of a controller which programs the flow entry
in the flow table

71

Traditional Switch Forwarding

Packet In—» e ./'/‘

L2 table + ACL+ QoS port grou
_VLAN -2 VRF Context

Switch/Router

* Fixed function
* Often expose implementation details
* Non-standard/non-existent state management APls

Virtual routing and forwarding (VRF) is a technology included in IP (Internet Protocol) network routers that allows multiple instances of a
routing table to exist in a router and work simultaneously. This increases functionality by allowing network paths to be segmented without
using multiple devices.

ACL: Access control list

73

Traditional QoS Model

All switches and routers that access the Internet rely on the class information to
provide the same forwarding treatment to packets with the same class information
and different treatment to packets with different class information.

The class information in the packet can be assigned by end hosts or by switches or
routers along the way, based on a configured policy, detailed examination of the
packet, or both. Detailed examination of the packet is expected to happen closer to
the edge of the network so that the core switches and routers are not overloaded.

Switches and routers along the path can use the class information to limit the
amount of resources allocated per traffic class. The behavior of an individual device
when handling traffic in the DiffServ architecture is called per-hop behavior. If all
devices along a path provide a consistent per-hop behavior, you can construct an
end-to-end QoS solution.

Implementing QoS in your network can be a simple or complex task and depends on
the QoS features offered by your internetworking devices, the traffic types and
patterns in your network, and the granularity of control that you need over incoming
and outgoing traffic.

Traditional QoS Model

Classifying distinguishes one kind of traffic from another.

74

Policing determines whether a packet is in or out of profile according to the configured policer, and the
policer limits the bandwidth consumed by a flow of traffic. The result of this determination is passed to the

marker.

Marking evaluates the policer and configuration information for the action to be taken when a packet is out
of profile and decides what to do with the packet (pass through a packet without modification, mark down
the DSCP value in the packet, or drop the packet).

Actions at the egress interface include queueing and scheduling

Actions at ingress

=i

Actions at egress

>

Classification

Classifies the packst
based on the ACL.

3 Policing

In profile or

out of profile
3

Determines if the
packet is in profile or
out of profile based
on the policer
associated with the
filter.

Mark

Based on whether
the packet is inor
out of profile and the
configured
parameters,
determines whether
to pass through,
mar k down, or drop
the packet. The
DSCP and CoS are
mar ked or changed
accordingly.

Quevuing and
scheduling

Based on the CoS,
determines into
which of the egress
queues to place the
packet, then
services the queues
according to the
configured weights.

[Ce]-]

Open Flow Switch Forwarding

Packet In—»

75

76

Open Flow lllustration

SDN & OPENFLOW

Application

Network OS

OpenFlow

Decouple SDN
Control Logic

Source: ONF Forum

77

Components of OpenFlow Network

Controller
OpenFlow Switch specification

Secure
hanne

Flow
Table

78

OpenFlow Controller

* Manages one or more switch via OpenFlow channels.

* Uses OpenFlow protocol to communicate with a OpenFlow
aware switch.

= Acts similar to control plane of traditional switch.

* Provides a network wide abstraction for the applications on
north bound.

» Responsible for programming various tables in the OpenFlow
Switch.

* Single switch can be managed by more than one controller for
load balancing or redundancy purpose. In this case the
controller can take any one of the following roles.

Master.
Slave.
Equal.

79

OpenFlow Switch

= Consists of one or more flow tables, group table and meter
table.

= Asingle switch can be managed by one or more controllers.

* The flow tables and group table are used during the lookup or
forwarding phase in order to forward the packet to appropriate
port.

* Meter table is used to perform simple QOS operations like
rate-limiting to complex QOS operations like DiffServ etc

80

Open Flow

= General Myth
SDN is Open Flow

= Reality

OpenFlow is an open API that provides a standard
interface for programming the data plane switches

81

Ethernet Switch

Control Path (Software)

Data Path (Hardware)

OpenFlow Controller

OpenFlow Protocol (SSL/TCP)¢

Control Path || OpenFlow

Data Path (Hardware)

OpenFlow Example
Controller

r N
S 2e |
Software . &*° .*
OpenFlow Client
Layer
........................... A A T
MAC | MAC IP IP TCP | TCP Action
src dst Src Dst | sport | dport
Hardware
* * * 5.6.7.8 * * port 1
Layer
\ y,
port 1 port 2 port 3 port 4

85

OpenFlow

u I Applications I

Controller (N. 0.S.)

OpenFlow Southbound
OpenFlow S— API

Initiation of a flow: Packet FW to SDNC to identify
policy rules for the openflow flow tables

\\
co |5
NS
Packet-IN

Buffer ID = 250

SYN (port 80)
SYN (port 80) ethl - 4 .i |
e ~ eth2/ eth3
p ////

e eth0

eth0

H4

ethO

H1 H2

SDNC determines the ACTION for the packet/flow

ethO

H1

CO

Packet-IN

Buffer ID = 250
SYN (port 80)

SYN (port 80)

Packet-OUT

OR BufferID = 250

SYN (port 80)
Action = Forward port 4

88

Alternatively, SDNC may provide a synthetic rule for the
flow entry

CO

| Match & Mask

| Buffer ID = 250

| Flow-MOD Idle Timeout = 20
|

|

Packet-IN

Buffer ID = 250
SYN (port 80)

Hard Timeout = 60
Action = Forward port 4
Priority = 5000

Flow-ENTRY (H1->H4 Port 80)

/ etk
/ < Wort 80)
N\
> 8 \\
/ S X
/
7
ethO ethO ethO
H1 H2 H4

90

ACK packet FW to SDNC as the 15 packet of the flow
from H4>H1

Match & Mask

BufferID = 251
Flow-MOD Idle Timeout =20

Hard Timeout = 60

Action = Forward port 1

Priority = 5000

Packet-IN
BufferID = 251

SYN/ACK

Flow-ENTRY (Ha->H1Reply) S1 Flow-ENTRY (H1->H4 Port 80)

ethO ethO

H1 H2

The rest of the packets flow through the switch S1
following the flow table rules set out by SDNC

CO

91

The rest of the packets flow through the switch S1
following the flow table rules set out by SDNC

CO

I
I
I
I
I

Flow-ENTRY (H4->H1Reply) S1 Flow-ENTRY (H1->H4 Port 80)

HTTP Reply V. HTTP Reply

OpenFlow: Anatomy of a Flow Table
Entry

Match Action Counter Priority Time-out

When to delete the entry

What order to process the rule

‘ # of Packet/Bytes processed by the rule

1. Forward packet to zero or more ports
2. Encapsulate and forward to controller
3. Send to normal processing pipeline
4. Modify Fields

Switch | vLAN | VLAN| MAC | mAC | Eth IP IP P | IP L4 L4
Port | D pcp | src | dst | type | Src | Dst | ToS [Prot | sport | dport

Examples

Switching
Switch| MAC | MAC | Eth |[VLAN| IP IP IP TCP | TCP Action
Port | src dst | type ID Src Dst | Prot | sport | dport
% * 00:1f:__ * * % * * * * port6
Flow Switching
Switch| MAC | MAC | Eth |[VLAN| IP IP IP TCP | TCP Action
Port | src dst | type ID Src Dst | Prot | sport | dport
port3 00:20.. 00:1f..0800 vlanl 1.2.3.4 5.6.7.8 4 17264 80 port6
Firewall
Switch| MAC | MAC | Eth |[VLAN| IP IP IP TCP | TCP .
Action
Port | src dst | type ID Src Dst | Prot | sport | dport
* * * * * * * * * 22 drop

OpenFlow: Types of Messages

Asynchronous (Controller-to-Switch)

. Send-packet: to send packet out of a specific port on a switch
] Flow-mod: to add/delete/modify flows in the flow table

Asynchronous (initiated by the Controller)

= Read-state: to collect statistics about flow table, ports and individual flows
= Features: sent by controller when a switch connects to find out the features supported by a switch
= Configuration: to set and query configuration parameters in the switch

Asynchronous (initiated by the switch)

Packet-in: for all packets that do not have a matching rule, this event is sent to controller
= Flow-removed: whenever a flow rule expires, the controller is sent a flow-removed message
= Port-status: whenever a port configuration or state changes, a message is sent to controller
= Error: error messages

Symmetric (can be sent in either direction without
solicitation)

= Hello: at connection startup
= Echo: to indicate latency, bandwidth or liveliness of a controller-switch connection
= Vendor: for extensions (that can be included in later OpenFlow versions)

OpenFlow: Types of Messages

Controller-to-Switch

Features: O Controller otéAvel €va privupa oto switch Znto’uvraq TIANPOodOopLES yLa TNV TAUTOTNTA KOLL TLG
Sduvatotntég tou (features request), kat TLEPLUEVEL Ao ekelvo pia oxetikn anavtnon (features reply). Auto
ouvnBwg ocupPaivel pe tnv eykatdotaon tou OpenFlow channel.

Configuration: O Controller unopsL va napaustponomoauq pueutostc Tou switch mou EAEVXEL N va
Zntnost n}\r]pocbopteq yla QUTEG. ZTNV IepimTwon autn to switch ival umoxpewUEVO va ATTAVTACEL e
OXETLKO UAVU QL.

Modify-State: Ta unvuuata auTtd xpnotlpomnolouvtal amnod tov Controller KUprC, yla npooenkn,

KaTapynon, r TpOmonoincn Tov flow/group katayxwprioewv otoug OpenFlow mivakeg mou UTAPXOUV 0TO
switch, i yla va puBuioet tig 1dLotnTEC TWV ports tou.

Read-State: Xpnotpomnolouvtatl ano tov Controller yia va paléd el mAnpodopleg OXETIKA E OTATLOTIKA,
TpEXouoa SLapopdpwon Kol LKAOVOTNTEG.

Send-Packet: Ta pnvupata send-packet xpnowuevouv wote va unodei&etl o Controller oto switch péow
TIOLOU CUYKEKPLUEVOU port va TpowBnoeL £va TTAKETO.

Barrier: Ta pnvupata Barrier request/reply xpnowpomnototvtal wote va enipeBatwvel o Controller ott
LoXUOUV OL IPOUTIOOECELG yLaL KATIOLO CUYKEKPLUEVO UNVUMO. AKOUN XPNOLULOTIOLOUVTOL YLO VAl
nAnpogopnOei o Controller yia tnv oAokApwon kamotag Slepyaoiog.

Role-Request: Ta pnvupata auvtd xpnotuonowuvrat arno tov controller yla va pueuLcouv TO pOAO TOU
SoU tou OpenFlow channel) va pwtricouv yla to poAo. Auto eival mpwTioTwe XpAoLUo otav to switch
ouvdéetal o moAAou¢ controllers.

Asynchronous- Conflguratlon To pRvupa Asynchronous Conf|gurat|on XpnoLuomnoleitat anod tov controller
yla va pueutost Eval ETUITAEOV d)L)\rpo oTa acuyxpova pnvupata nmou ermbu et va AdBeL oto OpenFlow
channel. Auto eival mpwtiotwg xprolpo otav to switch cuvdéetal o moAAoU¢ controllers.

OpenFlow: Types of Messages

Acuyxpova (asynchronous)

Ta acUyxpova pnvopata otéAvovtol anod to switch, xwpic mtpwta va €XeL UTLAPEEL OXETIKO altnpa ano
tov Controller. Zkomog Toug eival va Tov evnepwoouyV yla adifelg makEtwy, yio aAAayEg otnv
Katdotaon tou switch, f§ yia kamnowo opaApa nov £xeL mpokUPeL. OL TECOEPLG PAOLKEG UTTOKOATNYOPLEG
QLoUYXPOVWV HNVUHATWY Eivadt:

— Packet-in: KaOe véo makEto mou eloépyetal oto switch kat dgv avtiotolyiletal pe Kapio ano tig
unapyovoeg eyypadég flow, mpokaAei tnv dnpovpyia kat anootoAn evog pnvopatog Packet-in mpog tov
Controller (packet-in event). Av to switch £xeL apketr) taBéoipun pvipn wote va anodnkeloeL TpoocwpLva
(buffer) To makéto auto, Tote To prjvupa nov Ba otalAel Oa mepthapBavel 128 bytes e TIg anapaitnteg
nAnpodopieg nou xperaletal o Controller. O nAnpodopieg autég adopouv Tig TLHES TV KePaAidwv Tou
TLOKETOU ToU €L0NAOE, KaBw¢ ko pia TR avayvwplong (buffer ID) Tou makétou autou. e nepintwon
Tov 1o switch v untootnpileL TNV mpoowpvr) anoOnKevon NMAKETWV, | SV EXEL ApKeTH Sltabfoun
HVAKN, TOTE TO prjvupa ntou Oa anootalet otov Controller Oa neptAapBavel oAGKANPO TO APXLKO TIOKETO.

— Flow-removed: Otav pia eyypadn flow npootedei oto switch anod tov Controller péow evdg flow-modify
HNVUHOTOG, UTtayopEeVETAL OTO switch HeTA oo mAoo Xpovo adpavelag npEneL va oBnoeL thv eyypadn
oUTH. AKOHN UTTOYOPEVETOL TO TIOTE TIPETEL VAL TNV OBNOEL YEVIKWGE, AVEEAPTATWGE TNG SpAOTNPLOTNTOG TTOU
oxetileTal LLE TNV CUYKEKPLUEVN gyypadn. Tautdxpova urnayopevetal oto switch av Oa npénel va
evnuepwoel tov Controller peta ano pia tétowa dtaypadn, mpdaypa To onoio yivetat pe Eva HRVUHQ
tonou flow-removed.

— Port-status: To switch xpnoylomnolel autd ta pNVOATa 0 MEPUTTWOELG AAAAYNG TG KOTAOTAONG EVOG
port, Omw¢ yLa MapAadeLypa o€ MEPLMTWON IOV £vag XPROTNG Tou switch anevepyonolnoel Eva
OUYKEKPLUEVO port. EMUMPooB£Tw , XPNOLLOTOLEITAL KOl OE TIEPLTTWOELG AAAAYNG TNG KATAOTAONG EVOG
port onw¢ avth opiletat anod to npwtokoAAo 802.1D.

— Error: Mg ta pnpvopata avtd, to switch pnopei va evnuepwoet tov Controller yia mpofAjpata, n
opaApata Tov Unopel va tpokuyouv.

OpenFlow: Types of Messages

e JUMMETPLKA (Ssymmetric)

* TOl CUMMETPLKA LLNVUHOTOL UITOPEL VAL artooTEAAOVTAL ELTE ATTO
gva switch, ette ano evav Controller, xwpic n dAAN MAgupa va
EXEL {NTNOEL pLOL TETOLO EVEPYELQ, Kol Slaxwpilovtal OTLC
TIOPOLKATW TPELC KATNYOPLEC:

— Hello: Mnvupata autol tou TUmou avtaAAdooovtal LeTall Tou switch kot

tou Controller kata tnVv gkkivnon tng cuvdeong Touc.

— Echo: MnvUpuata tou tumnou echo request/reply pmopet va amooteiAel
ortoladnmote amno ti¢ SU0 MAEUPEC KAl XPNOLLOTIOLELTAL VLA LETPOELG
kaBuotépnong (latency) n ebpouc lwvng (bandwidth). Akoun, xpnotpomoLeital
yla va emiBePawBel av n petagl toug ouvdeon eival evepyn.

— Experimenter: O okomOC AUTWV TWV UNVUUATWY ELVOL VO TIPEXOUV TIEPALTEPW
AELTOUPYLKOTNTA, 000V adopd Toug TUToUC Twv OpenFlow pnvupdtwv.
YAomotnBnkav Kupiwg yla otolxeia peAAovtikwyv ekdooswv tou OpenFlow.

OpenFlow: Message Formats

- 32 bits - - 32 bits >
" header : wildcards
] I
P e : in_port
match . di src
cookie
dl dst
dl vian
command idle timeout
dl pcp pad dl type
hard timeout priority nw_tos | nw_prot pad
buffer id nw src
out_port flags nw dst
____________ actionfj | tp_src tp_dst

e Controller encapsulates message into an object
— Accessor functions to different fields
— No need to worry about crafting network packets

OpenFlow Actions (Partial list from OpenFlow 1.0 spec)

Output to switch port (Physical ports & virtual ports). Virtual ports include the
following:

= ALL (all standard ports excluding the ingress port) - flood
" CONTROLLER (encapsulate and send the packet to controller) — PACKET _IN message
= LOCAL (switch’s stack) — go through the IP layer, etc (mostly used for vSwitches)

= NORMAL (process the packet using traditional non-OpenFlow pipeline of the switch)
— traditional L2 forwarding, L3 routing

Drop

Set fields (packet modification/header rewriting)
= Ethernet Source address

= Ethernet Dest address

= |P source & dest addresses, IP ToS (type of service), IP ECN (Explicit Congestion
Notification), IP TTL (Time to Live), VLAN

= TCP/UDP source and destination ports

Strip (pop) the outer VLAN tag

Set queue ID when outputting to a port (Enqueue)
New in OpenFlow 1.1+

= Support for matching across mulitple tables

= Support for tunneling
= Support for Push/Pop mulitple VLAN/MPLS/PBB tags

Secure Channel (SC)

SC is the Interface that connects each OpenFlow switch to
controller

A controller configures and manages the switch, receives
events from the switch, and send packets out the switch via
this interface

SC establishes and terminates the connection between
OpenFlow Switch and the controller using Connection Setup
and Connection Interruption procedures

The SC connection is a TLS connection. Switch and controller
mutually authenticate by exchanging certificates signed by a
site-specific private key

102

Dimension of SDN Applications:
Rule installation

Proactive Rules Reactive Rules
u I Applications | I u I Applications : i

Controller (N. O.S.) Controller (N. 0.S.)

L L
ST

Dimension of SDN Applications:
Rule installation

Proactive Rules

e Controller pre-installs flow
table entries
— Zero flow setup time

e Requires installation of rules
for all possible traffic patterns

— Requires use of aggregate rules
(Wildcards)

— Require foreknowledge of
traffic patterns

— Waste flow table entries

Reactive Rules

* First packet of each flow
triggers rule insertion by the
controller

— Each flow incurs flow setup
time

— Controller is bottleneck

— Efficient use of flow tables

106

All flows are not created equal!

[Ti——" O MacroFlows (Coarse Flows)

1Psourci Appr NN \ \ LY / Allow, DI'Op,

Reroute,
Multicast

—geomsteorr (Essentially PBR)
|_TCPSOURCE PORT__ Virtuai L2 Traffic Engineering

-

@ MicroFlows (Granular Flows) EncvbL

Compression,
Acceleration,
Buffering,
Watermarking,
Custom

(Rich Action-set
Missing)

Dimensions of SDN Applications:
Granularity of Rules

Microflow WildCards (aggregated rules)
u I Applications - | —u_“pplicatiom; i
Controller (N. 0.S.) Controller (N. 0.S.)

Dimensions of SDN Applications:
Granularity of Rules

Microflow

One flow table matches one
flow

Uses CAM/hash-table
— 10-20K per physical switch
Allows precisions

— Monitoring: gives counters for
individual flows

— Access-Control: allow/deny
individual flows

WildCards (aggregated rules)

One flow table entry
matches a group of flows

Uses TCAM (Ternary
Content Addressable
Memory)

— 5000~4K per physical switch
Allows scale

— Minimizes overhead by
grouping flows

Dimensions of SDN Applications:
Granularity of Rules

Distributed Controller Centralized Controller
Applications | Applications
Controller (N. 0.S.) | Controller (N. 0.S.)

u Applications u I Applications [m [
Controller (N. O.S.) Controller (N. O.S.) ‘ m M

| (R
B | EEER

110

Packet Matching

Packet In
Start at Flow table 0

;

Update Counters
; YeS Execute Instruction Set
¥aabt|(‘:3h0|2 — « Update action set —> Teﬁ)(l)eur)\’?
g » Update packet/match set fields '
* Update metadata

L [o

Based on table configuration, do

one Execute Action Set
« Send to controller

 Drop

« Continue to next table

* Figure From OpenFlow Switch Specification

111

Packet Flow in OpenFlow Switch

Ingress Port
Packet H“.;ﬂ
™ M

Opeaflow Swiech

112

Pipeline Processing

(a) Packets are matched against multiple tables in the pipeline

@ Find highest-priority matching flow entry

MilkchBens: § _.... @ Match fieids @ Apply instructions:
':.::".’ . Flow "~ "'°""°'°".’ I. Modify packet & update match fields
pAt havs P e (apply actions instruction)
Table il. Update action set (clear actions and/or
Acton set Action set @ write actions instructions)
@ > . Update metadata

& Send match data and action set to
next table

(b) Pertable packet processing

113

Instructions and Action set

» Each flow entry contains a set of instructions that are
executed when a packet matches the entry

* [nstructions contain either a set of actions to add to the
action set, contains a list of actions to apply immediately
to the packet, or modifies pipeline processing.

» An Action set is associated with each packet. lts empty by
default

» Action set is carried between flow tables

= A flow entry modifies action set using Write-Action or
Clear-Action instruction

* Processing stops when the instruction does not contain
Goto-Table and the actions in the set are executed.

Instructions and Action set

List of Instructions to modify action set
* Apply Actions
* Apply the specified actions immediately

» Clear Actions
* Clear all the actions in the set immediately

» Write Actions
* Merge the specified actions to the current set

» Write Metadata

= Write the meta data field with the specified value

= Goto-Table

* |Indicated the next table in the processing pipeline

114

115

Actions

List of Actions

* Required Actions
* Qutput — Forward a packet to the specified port
* Drop
= Group

= Optional Actions
» Set-Queue
* Push/Pop Tag
« Set-Field

Flow Table Entry

Matching Rules Statistics Instructions
Packet + byte counters
1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
In Src | Dst | Eth | VIAN e P P P ;Crp LCSP MPLS
port | MAC | mac | type | 10 D oroto | sre | Dt = 1255 | tabel
Port | Port

116

Flow/Switch Routing

Layer 2 Switching Layer 3
(MAC/VLAN) Routing
TCP
In Sr¢ Dst Eth VIAN IPToS P iP IP];Cr: Di' MPLS
Port | MAC | MAC | Type ID Proto | Src Dst " | Label
Port | Port

Fields to match against flows

Wild Card Filters

Wild Card Matching:
» Aggregated MAC-subnet: MAC-src: A.*,
MAC-dst: B.*

IN Port * TCP/UDP Src * Aggregated IP-subnet: IP-src:
VLAN ID Port 192.168.*/24, IP-dst: 200.12.*/24
VLAN Priority « TCP/UDP Dst

Ether Frame Type Port

IP Type of Service VLAN Priority

P FTokco MPLS Label

IP Type of Service
IP Src Address

117

Load Balancing

Current methods use uniform distribution of traffic

Not based on network congestion and server load

More adaptive algorithms can be implemented by using OpenFlow
Monitor the network traffic

Program flows based on demand and server capacity

—— Collect
S Statistics/O
Lol bserve load

_ patterns
Data Forwarding Data Forwarding
(OpenFlow Switch) (OpenFlow Switch)

Dynamic load balancing using OpenFlow

118

Basic OpenFlow Recap

SDN Concept: OpenFlow:
Management plang\Pplication Plane), ¢, 541t different applications: routing, load
balancers, monitoring, security, etc.

| * Programmable: Modify and interact with the
NetApp o' NetApp ¥ network model in control Plane.

... * Global view of the entire network (the network model).
Control plane * Centralized per flow based control.
* Distributed system that creates a consistent, up-to-date

%Q network view (real time).

‘, * Runs on servers (controllers) in the network.
* Uses an open protocol to:
* Get state information from switch.

... * Give control directives to switch.
Data p|ane Data and Control plane communicate via

Ch A) . .
. Paclfgctuff)rvggrrﬂmg according to instruction stored
m in flow Tables.
* Provide statistic on network traffic to controller.

* Hardware: (Dump) Switches.

OpenFlow: More Details

SDN Concept Different layers in OpenFlow Discussed

Management planesoicaionrane) - Network Applicationsouting, load balancers, security, etc

Programming Languages

NetApp ~ NetApp . o s
)’ &) Language-based Virtualization

Northbound Interface]

‘ ! %g : Network Operating SystemM%ke decisions and instructions
=< Network Hypervisor

Southbound Interface Firmware handling

/ instructions from control plane

(e.g Open Vswitch) via flow

Network Infrastructure Hardware (swiatiess)

Network Hypervisor (Virtualization)

Hide complexity (Dump it down)
— Present only the necessary information and avoid too many details.

Network operators “Delegate” control of subsets of network

Management plane Network Applications) hardware and/or traffic to other network operators or users

Multiple controllers can talk to the same set of switches.
Allow experiments to be run on the network in isolation of each other

Programming Languages) and production traffic.

Virtualized network model (topology, routing, etc.).

Net App y Net App /

Control p
ontro plane Northbound Interface

Ejggg | Network Operating System J Multiple Controllers scenario is

possible

A N

Network Hypervisor

Data plane ‘
Southbound Interface

m Network Infrastructure }

Controlle
rl

Network Hypervisor (software):

FlowVisor

* A network hypervisor developed by Stanford.

* A software proxy between the forwarding and
control planes of network devices.

* Allow resources to be sliced (shared) according
to defined policies.

— The policy language specifies the slice’s resource
limits, flowspace, and controller’s location in terms
of IP and TCP port-pair.

— FlowVisor enforces transparency and isolation
between slices by inspecting, rewriting, and policing
OpenFlow messages as they pass.

Network Hypervisor: Slicing
Resources (FlowVisor)

Assigns hardware resources to “Slices” http

Topolo .
Pology _ Multicast Load-balancer
Network Device or Openflow Broadcast

Instance (DPID)
Physical Ports.
Bandwidth

Each slice can be assigned a per port
gueue with a fraction of the total

bandwidth.
dl_dst=FFFFFFFEFFFF OpenFlow tp_src=80, or
CPU Protocol . P-dst=80
Employs Course Rate Limiting
techniques to keep new flow events
from one slice from overrgmmi OpenFIow

CPU.
Forwarding Tables

Each slice has a finite quota
forwarding rules per devicg.

lowVisor & Policy Control

OpenFlow
Protocol

Northbound Interface

Management plane

NetApp + NetApp s

Network Applications

Programming Languages

Language-based Virtualization

Control plane

g

 Network Operating System

Network Hypervisor

Data plane

Yaa

Southbound Interface

Network Infrastructure

* API (interface) to

management plane or
applications.

* Open issue.
* No Standardization.
* Software based ecosystem.

* Considered new theme in

SDN as 2015.

Language-based Virtualization

Management plane

NetApp ' NetApp ¥

Network Applications

Programming Languages

Language-based Virtualization €—

Northhound Interface

\

 Network Operating System

Network Hypervisor

Data plane

Yaa

Southbound Interface

Network Infrastructure

The capability of expressing
modularity.

Allowing different levels of
abstractions while still
guaranteeing desired properties
such as protection.

Application developers do not
need to think about the sequence
of switches where forwarding
rules, but rather see the network
as a simple “big switch.”

Programming Language

Management plane

Net App I NetApp

| —

Network Applications

Programming Languages <

Control plane

=

r

\

Northhound Interface

Network Operating System

Network Hypervisor

Data plane

Yaa

Southhound Interface

Network Infrastructure

Programing language,
abstraction, and interfaces to
implement SDN.

Ensure multiple tasks of a
single application do not
interfere with others.

Checking conflicted rules.

Provide higher level
programming interface to
avoid low level instructions
and configuration.

Special abstraction for
management requirements
(e.g monitoring).

Regular expressions.

Etc.

Network Applications: Software
for Data Center Networking

Management plane Network Applications =

Programming Languages

NetApp /' Nethwp ¥ B
o) ot Language-based Virtualzation

o Northbound Inerface
E QEQ Network OperatingSystem 1
i Network Hyperisor

Data plang

~ Soutnbound ntefae |
m | Network nfrastucture

\

Big Data Apps: Optimize network
Utilization.

CloudNaaS: Networking primitives for
cloud apps, NOX controller.

FlowComb: Predict Apps workload, uses
NOX.

FlowDiff: Detects Operational Problems,
FlowVisor Controller.

LIME: Live Network migration, FloodLight
Controller.

NetGraph: Graph Queries for network
management, uses its own controller.

OpenTCP: Dynamic and programmable
TCP adaptation, uses its own controller.

All of them employ OpenFlow to
communicate with switches, except
OpenTCP.

More Applications for Data Center
Networking

e Vello Systems:

— Allow overriding layer 2 and layer 3. Live VM
migration within and across DCNs.

— Provide view and global cloud for WAN.

— Provide network automation for LAN and WAN
connectivity and provisioning.

 Mininet (Stanford Univ.)

— Realistic (Realtime) virtual network, running real
kernel, switch and application code, on a single

Research Problems

e Scalability:
— Control plane bottleneck.
* Single controller is not sufficient to manage large scale network.

— How many controllers are needed to support large scale
network?

— When to scale down?
e Multi Controllers.
— Each controller is responsible to a subset of the network.

— Concern with synchronization and communication
between controllers.

— How to slice the resources among controllers?
e Latency between controllers and switches.
— Less accurate decision?

Research Problems

* Slicing Resources (CPU, bandwidth, etc).

— How to allocate resources to different controllers
and users?

— Formulated to optimization and fairness problems.

* Using SDN to achieve more green DCN.
— No substantial works in this area.

— As 2015, few publications on this subject are
published in IEEE ICC and IEEEE Globecom.

— Some software may provide measurement on

Data-Plane: Simple Packet Handling

* Simple packet-handling rules @ ngnﬂ,_,w
— Pattern: match packet header bits “

— Actions: drop, forward, modify, send to controller
— Priority: disambiguate overlapping patterns

— Counters: #bytes and #packets

=

1. src=1.2.*.*, dest=3.4.5.* 2 drop
2. src=**** dest=3.4.%*.* 2 forward(2)
3. src=10.1.2.3, dest=*.*.*.* = send to controller

Unifies Different Kinds of Boxes

* Router * Firewall
— Match: longest — Match: IP addresses and
destination IP prefix TCP/UDP port numbers
— Action: forward out a — Action: permit or deny
link e NAT
* Switch — Match: IP address and
— Match: destination MAC port
address — Action: rewrite address

— Action: forward or flood and port

135

Controller: Programmability

4 h

Controller Application

_ /

Events from switches Commands to switches
Topology changes, (Un)install rules,
Traffic statistics, Query statistics,

Arriving packets Send packets

Example OpenFlow Applications

Dynamic access control

Seamless mobility/migration

Server load balancing

Network virtualization

Using multiple wireless access points
Energy-efficient networking
Adaptive traffic monitoring
Denial-of-Service attack detection

See http:/www.openflow.org/videos/

E.g.: Dynamic Access Control

* |nspect first packet of a connection

e Consult the access control policy
. e |nstall rules to block or route traffic

E.g.: Seamless Mobility/Migration

e See host send traffic at new location

 Modify rules to reroute the traffic

139

E.g.: Server Load Balancing

* Pre-install load-balancing policy
. e Split traffic based on source IP

140

E.g.: Network Virtualization

Controller #1 Controller #2 Controller #3

Partition the space of packet headers

OpenFlow in the Wild

Open Networking Foundation

— Google, Facebook, Microsoft, Yahoo, Verizon, Deutsche
Telekom, and many other companies

Commercial OpenFlow switches

— HP, NEC, Quanta, Dell, IBM, Juniper, ...

Network operating systems

— NOX, Beacon, Floodlight, Nettle, ONIX, POX, Frenetic

Network deployments
— Eight campuses, and two research backbone networks
— Commercial deployments (e.g., Google backbone)

Challenges

Heterogeneous Switches

Number of packet-handling rules

Range of matches and actions

Multi-stage pipeline of packet processing
Offload some control-plane functionality (?)

| access

control

146

147

Controller Delay and Overhead

* Controller is much slower than the switch
* Processing packets leads to delay and overhead
* Need to keep most packets in the “fast path”

HE N
packets -7

148

Distributed Controller

(\ For scalability (\
Controller and reliability Controller
Application Application
Partition and replicate state

| Network 05 J&

. Y —
T
-

=

—— 4

< /

149

Testing and Debugging

* OpenFlow makes programming possible
— Network-wide view at controller
— Direct control over data plane

* Plenty of room for bugs

— Still a complex, distributed system

* Need for testing techniques
— Controller applications
— Controller and switches
— Rules installed in the switches

150

Programming Abstractions

e Controller APIs are low-level

— Thin veneer on the underlying hardware

* Need better languages Controller
— Composition of modules D]I
. H’
— Managing concurrency —
— Querying network state N
— Network-wide abstractlons 4 | \

Switches

151

Conclusion

* Rethinking networking

— Open interfaces to the data plane

— Separation of control and data

— Leveraging techniques from distributed systems
e Significant momentum

— In both research and industry

