

Abstract— The use of Software-Defined Networking (SDN) with
OpenFlow-enabled switches in Data Centers has received much
attention from researchers and industries. One of the major
issues in OpenFlow switch is the limited size of the flow table
resulting in evictions of flows from the flow table. From Data
Center traffic characteristics, we observe that elephant flows are
very large in size (data volume) but few in numbers when
compared to mice flows. Thus, Elephant flows are more likely to
be evicted, due to the limited size of the switch flow table causing
additional traffic to the controller. We propose a differential
flow cache framework that achieves fairness and efficient cache
maintenance with fast lookup and reduced cache miss ratio. The
framework uses a hash-based placement and localized Least
Recently Used (LRU)-based replacement mechanisms.

Keywords — Software Defined Networking, Flow cache,
Elephant flow, TCAM, Data Center

I. INTRODUCTION

D ata Centers host various kinds of applications such as

web service, e-commerce, and social networking which
generate a large number of intra-Data Center flows. Recent
studies on Data Center traffic [1] report that while 99% of the
flows carry fewer than 100 Mbytes (termed usually as mice
flows), while more than 90% of all the bytes are transported in
flows between 100 MBytes and 1 GBytes (termed usually as
elephant flows). Most of the small flows are caused by either
the application keep-alive packets (ICMP) or the TCP
acknowledgments. Further, applications such as MSSQL,
HTTP and SMB have flow characteristics more closely related
to small flows rather than large flows. In order to provide
flexible and intelligent control of Data Center network traffic,
flow-based networking has become an attractive solution.
Software-defined networking (SDN) is a key technology for
realizing Data Center network virtualization. Recently, there
has been an immense interest in using OpenFlow [2] as a
platform for flow-based software-defined networking.

OpenFlow defines a framework to perform per-flow routing
where switches maintain flow tables. Every OpenFlow switch
maintains its own table of flow entries (flow table), in which
each entry contains a set of packet fields to match, and the
corresponding action to perform, (e.g. forward, drop, modify

header). Flow tables are built out of TCAMs that support
wildcard entries and parallel lookups. The OpenFlow enabled
HP 5406zl switch hardware [3] can support up to 1500
OpenFlow rule entries (OpenFlow rule is described by 10
header fields , which total 288 bits [2]) , whereas the switch
can support up to 64000 forwarding entries for standard
Ethernet switching (Ethernet forwarding descriptor is 60
bits(48-bit MAC +12 bit VLAN id). This is too small a number
compared to the number of active flows arriving at the switch.
It is possible to increase TCAM entries, but it consumes lots of
ASIC space, power (about 15 Watt/1 Mbit)[4] and
cost(US$350 for a 1M-bit chip) .

 OpenFlow switches use per-flow timeouts to manage the
lifetime of each flow rule. There are two timeout mechanisms-
idle_ timeout and hard_ timeout- in OpenFlow [16]. An
idle_timeout causes the flow entry to be removed if no packet
matches the rule within a certain inactivity period. A
hard_timeout causes the flow entry to be removed after the
given number of seconds, regardless of how many packets it
has matched. So, the flow entries will not stay in a flow table
forever and once evicted the controller needs to reinsert the
flow information into the flow table when necessary.

As stated earlier, elephant flows are very large in size (data
volume) but few in numbers when compared to mice flows.
Mice flooding in the Data Center network traffic will cause the
elephant flows to be evicted prematurely from the flow table,
particularly when, a burst of many mice flow packets arrive at
a switch between elephant flow packet arrivals [14]. In [8]
similar observations have been made in the Internet Traffic in
the presence of small number of large Elephant flows and a
burst of short Mice flows. Flow table misses cause additional
delay, due to round-trip time to the controller and in addition
an extra packet-in event generated and sent to the controller,
incurring additional load on the controller. In order to mitigate
this problem, we proposed a flow cache layer in between the
switch and controller. For a scalable solution, caches can be
used with each flow cache storing records for a number of
switches. Thus a cache comprises of a number of flow caches
each corresponding to a flow table of a switch. When required,
a switch first consults the flow cache instead of directly
contacting the controller.

To facilitate better sharing of cache memory, we propose a
cache architecture wherein, a cache corresponding to a switch
is organized into dynamically growing and shrinking number
of blocks (or buckets) with associated indices. The size of the
index depends on the current number of buckets. The index
value is obtained by hashing the relevant fields of a flow,

An Efficient Flow Cache algorithm with Improved
Fairness in Software-Defined Data Center Networks

Bu-Sung Lee1, Renuga Kanagavelu2, Khin Mi Mi Aung2

1EBSLEE@ntu.edu.sg , 2{renuga_k, Mi_Mi_AUNG}@dsi.a-star.edu.sg
1School of Computer Engineering, Nanyang Technological University, Singapore

2Data Storage Institute, A*STAR (Agency for Science and Technology), Singapore

18978-1-4799-0568-3/13/$31.00 c©2013 IEEE

called dynamic-index hashing. To ensure fair treatment of
elephant flows, we propose a differentiated flow cache
mechanism wherein we associate different indices for elephant
and mice flows, and also for the buckets. By organizing the
cache into multiple buckets we keep the number of entries in a
bucket that need to be searched as small as possible. We note
that, the search (or lookup) operation with fewer cache entries
helps reduce the lookup time when realized with SRAM. The
cache entry replacement strategy used in our framework is a
localized least recently used (LRU) which was shown in our
experiments to be more effective than other strategies.

Our proposed differentiated caching framework has several
attractive features. The cache architecture and hash function are
simple, thus enabling ease of implementation. The dynamically
growing/shrinking feature of the flow cache enables better
sharing of the cache memory by different flow caches. The
differentiated index approach improves fairness for elephant
flows reducing the number of their evictions. Also, our
placement, lookup, and replacement mechanisms ensure fast
flow processing with high hit rate.

The rest of the paper is organized as follows. Section II
presents the background and related work. Section III presents
the proposed cache architecture and its maintenance operations.
Section IV studies the performance of the proposed
mechanisms and discusses the simulation results. We conclude
the paper in Section V.

II. BACK GROUND AND RELATED WORK

Software-defined networking (SDN) is an approach to
networking in which control is decoupled from packet
forwarding. OpenFlow [3] is a standard, which enables users
to easily implement experimental routing protocols via
software and becoming the dominant protocol for SDN. The
key difference between the conventional router and the
OpenFlow is that the forwarding (data plane) and routing
(control plane) layers are decoupled. The entire network is
centrally managed by a dedicated controller, which
communicates with OpenFlow-compliant switches using the
OpenFlow protocol. Every OpenFlow switch maintains its
own table of flow entries (flow table), in which each entry
contains a set of packet fields to match, and the corresponding
action to perform, (e.g. forward, drop, modify header etc.). In
the event when a switch does not find a match in the flow
table, the packet is forwarded to the controller to make the
routing decisions. After deciding how to route the new flow,
the controller installs a new flow entry at the required switches
so that the desired actions can be performed for the packets of
the new flow.

One of the responsibilities of the controller is to manage the
contents of the flow table. Apart from installing new rules, it is
also responsible for removing flow rules. Flow tables can be
built with TCAMs which are power hungry and expensive.
Current switches usually support very limited number of
entries, eg.1500 [3]. So, the controller assigns a timeout period
to each inactive entry. When the timeout period expires, the
flow table inactive entry will be evicted and the switch notifies
the controller that the flow was removed.

Depending upon the lookup mechanism there can be two kinds
of flow tables - exact match table and wildcard-aware linear
table [6]. The exact match table enables fast lookup using hash
calculation, but requires maintenance of a large number of
flow entries. On the other hand, the wildcard-aware linear
table can reduce the number of the entries, but requires linear
search resulting in longer lookup time.

 Zadnik et, al. use a genetic algorithm to summarize the
feature vector of elephant flows and apply the vector for
picking up subsequent heavy-hitters [7]. This approach
claimed to achieve cache hit rate close to the optimal. But, the
training process is expensive and requires a large traffic
dataset for good performance.

Tian et, al. proposed a flow cache replacement policy based on
the statistically positive correlation between the flow length of
the packets and the flow cache evict times [8] to identify the
elephant flows and improve the cache hit rate. They proposed
Adaptive least Frequently evicted (ALFE) cache replacement
policy which gives high priority to elephant flows to keep
them in the cache, preventing them being flooded by the
massive mice flows. It divides the cache line into three
segments of different sizes and uses replacement strategies in
accordance with different flow durations. Flow records are
inserted into one of the three segments according to their evict
times when referenced. To deal with dynamic network traffic,
it adjusts the flow duration threshold values, keeping the size
of the segments fixed. Different from this work, our work
deals with dynamically growing/shrinking buckets according
to the dynamic network traffic.

Recently, researchers have proposed a few approaches for
reducing TCAM power consumption. Zane et al. proposed a
bit selection and Trie-based architecture [9] in which the first
level TCAM is an index to the partitions in the second level
TCAM. This architecture has the drawback of complex route
update. Ravikumar et al. propose a two-level pipelined
architecture that reduces power consumption through prefix
compaction and partitioning [10]. The size of the largest page
defines the worst power consumption. So, if the largest page
has a high access frequency, power consumption increases
quickly. This architecture is unsuitable for bursty access
patterns. Wu et al, propose an algorithm that exactly partitions
the routing table and a architecture with two stages, Index-
TCAM and Sub-TCAM [11] to increase the lookup
throughput and reduce the power consumption.

Extendible Hashing [12] is a dynamically updateable disk-
based index structure which implements a hashing scheme
utilizing a directory. However, it uses the concept of global
depth and local depth and can possibly use keys of different
size for different blocks resulting in uneven block size and
variable search speed.

DIFANE [13] presents an approach to improve flow-based
networks’ control plane performance. It reduces the load of
the controller by exploiting a special type of switch, called
authority switch that is responsible for caching some portion
of the flow table. It processes all packets in the forwarding

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 19

plane. However, DIFANE does not address the issue of global
visibility of flow states and statistics and also requires
switches to have enough CPU resources to realize the extra
control plane functionalities.

III. CACHING ARCHITECTURE AND MAINTENANCE

In this section, we describe our proposed flow cache
architecture and various maintenance operations. The cache is
used by more than one switch and as a result the cache is
comprised of a number of flow caches. A switch is mapped to
only one cache which avoids the need for coordination
between the cache modules in a large network. A flow cache
is organized as a set of fixed-size buckets. To facilitate better
sharing of cache memory, the number of buckets assigned to a
flow cache is dynamically chosen (subject to a predefined
maximum value) depending on the requirement by the
corresponding switch. For simplicity, we will only use one
flow cache in our discussion in the following sections.

Figure 1. Interactions between the controller, cache and flow table

Figure 1 shows the interactions between OpenFlow switch,
cache and the controller. An entry in the flow table may be
evicted because of lack of space or based on timeout
mechanism. Such entries will be stored in the associated flow
cache. When a packet arrives at an OpenFlow-enabled switch,
a lookup is performed first on the OpenFlow switch’s flow
table.

The Lookup operation is detailed in the pseudo code as shown
in Figure 2. A flow table miss will result in the lookup of the
flow cache; if there is a match in the flow cache, the
associated action for packet forwarding will be executed;
otherwise a packet_in event is sent to the controller leading to

an insertion of an entry in the flow table. If a cache bucket is
full and the maximum number of buckets has already been
used up, new flow entries cause a cache miss leading to the
eviction of an existing flows.

In a dynamic network environment, where the controller
performs dynamic re-routing based on the real-time traffic
load, the controller could change the path of the big flow to
avoid congestion [17]. In that scenario, the controller will send
flow modification messages to both flow cache as well as
switch to update them.

The insertion of the flow cache layer in the architecture results
in the exchange of few messages like flow_mod , packet_in
messages between cache layer and the controller .

Algorithm for LOOKUP OPERATION at Flow Cache

Read Packet arrives at the OpenFlow switch ,
Check the OpenFlow switch’s flow table for matched entry
If (found) then

Perform action for packet forwarding
else check the flow cache.

If (cache_hit) then
Perform action for packet Forwarding

else
Send packet_in message to controller

endif
endif

Figure 2: Pseudo code for Lookup operation

The following sections describe the main components of our frame
work.

A. Elephant flow detection

In our design we added two components, Monitor and Packet-in
Tracker to the NOX controller. The purpose of the Monitor
component is to query, consolidate and store the statistics from all
OpenFlow switches. The statistics is collected from each OpenFlow
switch by polling them at fixed intervals. The per-table, per-flow and
per port statistics are gathered from all the connected OpenFlow
switches and stored in memory as a snapshot object. Each snapshot is
identified by a sequence number, which increments by 1 after each
interval.

We use the flow statistics mechanism to identify the Elephant flows.
Each flow is monitored at the first switch traversed by the flow. The
statistics are collected from switches by the controller at a fixed
interval of p seconds and used to classify the large flows. It is
computed as follows:

�t = (bt – bt-p)/p

Where �t is the estimated flow size at time t, and bt is the total bytes
of the flow received by the switch at time t. In our implementation, p
is set to 5 seconds. We classify flows as elephant flow if the flow size
is equal or greater than 100KB. We follow the similar approach in
Mahout [12] to use the virtual LAN priority code bit (PCB) bits (set

20 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

as 001 for elephant and 000 for Mice) to indicate the elephant flows
as shown in Figure 3 .

Figure 3. Using VLAN PCB bits to classify flows.

Packet-in Tracker processes the packet_in messages that are
generated by the flow cache miss, and then inserts a flow entry
in the flow table.

B. Flow cache and Dynamic-index hashing

The flow cache is organized into separate buckets for mice
flows and elephant flows. While the maximum number of
buckets in a flow cache is constrained, the number of buckets
used by the elephant flows and mice flows are dynamically
determined based on the requirement. We use dynamic-index
hashing to map a flow to a bucket. The k-bit index associated
with a flow is dynamic and the value of k depends on the
number of buckets currently used for that type of flow (mice
or elephant). Associated with each bucket there is an index
which stores the flows (either mice or elephant, but not both)
with the same index. We use the popular SHA hashing
method [15] and extracting x bits (for forming the index) from
the random hash value is more likely to keep the buckets
balanced. Since SHA is a strong hashing method, it is highly
likely that equal number of flows will be mapped to different
buckets.

We use a directory to store the index values and the pointer to
the corresponding bucket. The index directory is in the form of
an array with at most 2b entries for the indices with each entry
storing a bucket address. The variable ‘b’ is called the
maximum depth of the directory corresponding to the
maximum permissible number of buckets. The index
directory and 1-bit index buckets for mice and elephant flows
are shown in Figure 1. Initially, the cache line has only two
buckets termed as Bucket A with the index ‘0’ for storing mice
flows and Bucket B with the index ‘1’ for storing elephant
flows.

The placement of the flows into the flow cache is carried out
in the following steps which are shown in Figure 4.

1. When a packet arrives, the hash value for the packet
is calculated from its flow identifying fields using a
base hash function secure hash algorithm SHA-1[13].
The advantage of using SHA hashing is that it
randomly maps the hashed key values to a space of
160-bit binary numbers. The first k-1 bits (k=1,2..)
will be extracted and a 1-bit prefix is added with bit
'0' used for mice flows and bit '1' for elephant flows
to form a k-bit index.

2. By using the index constructed as above, the pointer
to the bucket is obtained from the index directory.

3. Lookup for the matched entry in the chosen bucket is

carried out using the full 160-bit hashed value.

4. If there is no match in step-3, a new entry is made in
the bucket, subject to space availability. If there is
space constraint, a new bucket will be created using
the bucket expansion mechanism as explained in the
next section.

Figure 4. Illustration of buckets and Index tables

C. Overflow handling- Bucket Expansion

If a bucket overflows, the buckets size are doubled with the
new index using one extra bit. For example, if an 1-bit index is
used originally, after expansion 2-bit index will be used. As a
result, the entries in an original bucket (say, with the index 0)
will be distributed among two buckets (with index 00 and
index 01). The index directory will also be doubled, i.e., if it
originally contains 2k index values, it will now contain 2k+1

entries, implying that the depth increases to k+1. We note that
these k+1 bits are formed from the random hash value. As a
result, it is likely that the new buckets are more balanced. If
the 0-indexed mice bucket exceeds its capacity (1024 for
example), it will be expanded into 2-bit indexed buckets: ‘00’
and ‘01’ thus increasing its maximum capacity to 2048. If
there is a need for further expansion, it will be expanded to 3-
bit indexed buckets: ‘000’, ‘001’, ‘010’, and ‘011’. A similar
procedure is used for elephant buckets with the prefix ‘1’.

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 21

We note that the number of index bits for mice flows and
elephant flows need not be the same. Since the number of
mice flows is much more when compared to the number of
elephant flows, it is highly likely that the index size is larger
for mice flows than elephant flows.

Bucket expansion example is illustrated in Figure 5. Here we
assume a bucket size of 5. When the sixth mice flow arrives,
bucket A overflows and a new bucket A’ is used and the six
entries (including the new one) are distributed over the
buckets A and A’ each of which now uses a 2-bit index.

Figure 5. Illustration of Bucket Expansion

D. Cache Replacement strategy

Usually the cache size is small when compared to the total
number of concurrent flows due to the memory cost and high
sharing efficiency; and therefore replacement policy is needed.
In our replacement strategy a new mice flow can evict only a
mice flow and an elephant flow can evict only an elephant
flow. We use localized least recently used (LRU) policy
wherein, the least recently used flow in the local bucket is
evicted. By doing so, we preserve the mapping of a flow to the
bucket and ensure fast processing. The least recently used
flow entry will be evicted in the event of a cache miss and
permissible numbers of buckets have been used up. We note
that although we use localized replacement, the hit ratio is
likely to be high as evident from our performance study
presented in Section IV.

E. Bucket Shrinking

Flows with long inactive period will be deleted from the cache
and it might cause a bucket to become empty. In that case, a
check is made for possible bucket shrinking wherein the
bucket index shrinks by 1 bit and the number of buckets is
halved and flow entries are shuffled accordingly. Since there
are multiple Elephant flows in one bucket, it is unlikely for all
of them to stay inactive for long period of time. Further,
bucket shrinking occurs only if the number entries fall below
the half of the bucket size which is less likely to occur
frequently.

IV. PERFORMANCE EVALUATION

In this section, we present the results of our performance study
carried out using software implementation of the cache. We
compare the performance of our proposed method with the
OpenFlow based wildcard-aware linear search table [6] as
described in section II with different flow cache replacement
policies such as Random and First-In-First-Out(FIFO). While
Random method selects the flow to evict from the cache at
random, FIFO evicts the flow which arrived first. Following
the finding in [1], we generated the Data Center bursty traffic
pattern which is a mix of 80% mice flows and 20% elephant
flows using Ostinato Traffic generator [18].

A. Performance in terms of Cache Hit Rate

Figure 6 shows the cache hit rate achieved by the 4 cache
replacement strategies: LRU, Wild-card linear, Random and
FIFO with differential buckets for mice and elephant flows.
We can observe that our proposed LRU method performs
better than OpenFlow wildcard-aware linear table [6]
replacement, Random replacement and FIFO replacement
method. Also note that although the numbers of mice flows are
large, the performance of elephant flows is not affected due to
different buckets used for mice and elephant flows.

Figure 6. Comparison of cache Hit Rate

22 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

B. Impact of Cache bucket size

We next look at the impact of cache bucket size of 1k, 2k, 4k
and 8k flow entries on the performance in terms of look-up
time. Figure 7 shows the effect of the cache size on the look
up time with wildcard-aware linear flow table and our
proposed dynamic index hashing on the new architecture. We
can observe that the lookup time increases with increasing
bucket size. Further, by organizing the cache into different
buckets, our method achieves significant performance
improvement in terms of look up time when compared to
wildcard-aware linear flow table. We set the cache bucket size
as 8k which can store up to 8k flow states. Our experiment
results suggest further increasing the bucket size will in turn
increase the look up time beyond 3ms.

Figure 7. Impact of cache bucket size

C. Performance in terms of Lookup Time

We compare the performance of our method with wildcard-
aware linear table in terms of lookup time. We measure the
look up time based on simulation PC with custom
implementation. The look up time includes the time taken to
carry out hashing and the corresponding bucket look up time.
Whereas in the Wild card method, the look up time refers the
time for linear table – walk time. In Figures 8, 9 and 10, we
show the CDF lookup time comparisons for 25th, 50th, 75th,
and 100th percentile. From the graphs, we can observe that the
lookup time by our method for both mice and elephant flows
are considerably smaller than that by the wildcard-aware
linear method. The performance improvement is more
significant for higher percentiles (i.e. 75 and 100 percentile).

With the wildcard-aware linear method, there is no
differentiation between the mice and elephant flows, and it is
highly likely that the elephant flows are in the higher
percentile region resulting in unfairness for elephant flows.
This unfairness problem is reduced in our method. Also, we
can observe that the lookup time for mice flows in higher than

that for elephant flows. This is because there are more entries
inside a mice bucket than an elephant bucket.

Figure 8 . Lookup Time for Wild-card linear

Figure 9. Lookup time for Mice

Figure 10 . Lookup time for Elephant

�

�

�

�

�

�

�

�	 �	 �	
	

��
��

��
��
�	

��

�

�������������
	��

���������
������ �������
	�����

��
�������������

������������
������������

!
�"���#�
�������������
������

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 23

D. Bucket expansion overhead

 In this section, we study the overhead due to bucket
expansion. We assume the number of the flows in the bucket
is 1000 and the mice and elephant flows are in the proportion
80:20. When the bucket expands, some of the entries in the
original bucket will be moved to a new bucket incurring the
overhead whose values are plotted for three different values of
the number of flows in Figure 11.

We note that when the number of flows exceeds 1024, we
need a 2-bit index and when it exceeds 2048 we need a 3-bit
index. As such, for the case of 5000 entries (total), the mice
flow buckets need to be expanded from 1-bit to 2-bit index
then to 3-bit index; and for elephant flow buckets to expand
from 1-bit to 2-bit index. For the case of 3000 entries (total)
the mice flow bucket needs to expand from 1-bit to 2-bit index
and then to 3-bit index. For the case of 1500 entries (total) the
mice flow bucket needs to expand from 1-bit to 2-bit index.
We can observe that the overhead is small but it increases with
the increasing number of index bits. At the same time, we note
that such an expansion occurs less frequently compared to the
lookup operation.

Figure 11. Bucket Expansion Overhead

V. CONCLUSION

In this paper, we addressed the problem of improving fairness
for elephant flows in a data center as they suffer from frequent
eviction because of the flooding of mice flows. We adopted a
differentiated approach and proposed flow cache architecture
with dynamic-index hashing for placing the flow records onto
various buckets. We also proposed a localized LRU-based
replacement strategy, which gives the best performance
Overall the differential flow cache architecture provides a
simple and effective means to address the overload on the
controller due to flow table exhaustion at the OpenFlow
switch.

REFERENCES

[1] T. Benson, A. Akella, D.A. Maltz, “Network traffic

characteristics of data centers in the wild”, in: Proc. ACM IMC
(Melbourne, 2010), pp. 267–280.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L.Peterson,J. Rexford, S. Shenker, and J. Turner. ,“OpenFlow:
enabling innovation in campus networks”, SIGCOMM Comput.
Commun. Rev., 38(2):69–74, 2008.

[3] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R.
Curtis, and S. Banerjee. Devoflow: Cost-effective flow
management for high performance enterprise networks. In ACM
SIGCOMM Hot-Nets Workshop, Monterey, CA.

[4] Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.: A
power benchmarking framework for network devices. In:
Proceedings of the 8th International IFIP-TC 6 Networking
Conference. NETWORKING ’09 (2009)

[5] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying
NOX to Data center”, In Proc. of 8th ACM Workshop on Hot
Topics in Networks, 2009.

[6] OpenFlow Reference System, http://www.openflowswitch.org/

[7] Martin Zadnik, Marco Canini. “Evolution of cache replacement
policies to track heavy-hitter flows,” in Proc. of PAM'11, 2011.

[8] T.Pan,X.Guo,C.Zhang,W.Meng,B.Liu, “ AlTF: A Replacement
Policy to cache Elephant Flows in th Presence of Mice Flooding”,
in Proc. of ICC’12.

[9] F. Zane, G. Narlikar, and A. Basu, “CoolCAMs: Power-Efficient
TCAMs for Forwarding Engines,” In Proc. 22th Ann. IEEE
Infocom (Infocom 03), IEEE Press, 2003, pp. 42-52.

[10] V.C. Ravikumar and R.N. Mahapatra, “TCAM Architecture for IP
Lookup Using Prefixes Properties,” IEEE Micro, vol. 24, no. 2,
Mar.- Apr. 2004, pp. 60-69.

[11] w.wu,D.zi,y.Lan,T.wu,”Power aware TCAMS for routing table
Look up “, In Proc. of IEEE GreenCom 2010.

[12] FAGIN, R., NIEVERGELT, J., PIPPENGER, N., AND
STRONG, R. , “Extendible hashing: A fast access method for
dynamic files.”, ACM Trans. Database Syst. 1979.

[13] M. Yu, J. Rexford, M. J. Freedman, and J. Wang.,” Scalable
flow-based networking with DIFANE”, In Proc. of ACM
SIGCOMM 2010.

[14] A.R.Curtis, “Mahout:Low overhead datacenter traffic
Management using end-host based elephant detection,” In. Proc.
of IEEE INFOCOMM 2011

[15] FIPS 180-1 Secure Hash Standard, Apr 1995.

[16] OpenFlow Sswitch Specification –Ver.1.3.0, The Open
Networking Foundation, 2012.

[17] Renuga Kanagavelu, Luke Ng Mingjie, Khin Mi Mi, Francis Bu-
Sung Lee, Heryandi,”OpenFlow based control for re-routing with
differentiated flows in Data Center Networks”, ICON 2012.

[18] “Ostinato – Packet/traffic Genarator and Analyzer”,
http://code.google.com/p/ostinato/

�

�

�

�

�

��$�#�%����& ��$�#�%�
�"���#& ��$�#�%����&

��
��

�

	�
��
��
��
��

��
��	

��

�

�������	����

�����
	�����������

����

����

����

24 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

