
GENI Cinema: A SDN-Assisted Scalable Live Video
Streaming Service

Qing Wang, Ke Xu, Ryan Izard, Benton Kribbs,
Joseph Porter, Kuang-Ching Wang

Department of Electrical and Computer Engineering
Clemson University
Clemson, SC, USA

{qw, kxu, rizard, bkribbs, jvporte, kwang}@clemson.edu

Aditya Prakash, Parmesh Ramanathan
Department of Electrical and Computer Engineering

University of Wisconsin - Madison
Madison, WI, USA

{aprakash6, parmesh}@ece.wisc.edu

Abstract— This paper introduces GENI Cinema (GC), a
system that provides a scalable live video streaming service based
on dynamic traffic steering with software defined networking
(SDN) and demand driven instantiation of video relay servers in
NSF GENI’s distributed cloud environments. While the service
can be used to relay a multitude of video content, its initial
objective is to support live video streaming of educational content
such as lectures and seminars among university campuses. Users
on any campus would bootstrap video upload or download via a
public web portal and, for scalability, have the video delivered
seamlessly across the network over one or multiple paths selected
and dynamically controlled by GC. The architecture aims to
provide a framework for addressing several well-known
limitations of video streaming in today’s Internet, where little
control is available for controlling forwarding paths of on-
demand live video streams. GC utilizes GENI’s distributed cloud
servers to host on-demand video servers/relays and its OpenFlow
SDN to achieve seamless video upload/download and
optimization of forwarding paths in the network core. This paper
presents the architecture and an early prototype of the basic GC
framework, together with some initial performance measurement
results.

Keywords—OpenFlow; video streaming; cloud computing;
network architecture;

I. INTRODUCTION
 Skype or Google Handout already provide a live video
service in today’s world but still have the limitation on
scalability on-demand [1]. Two key challenges need to be
overcome in order to supply stable and reliable live video
streaming among different locations: (1) the video service must
provide a persistent two-way real-time interaction capability
among a possible large amount of users. If a large traffic
volume happens, the bottleneck of the video service is the fixed
network bandwidth conditions in either the Internet core or
campus local networks. This is the motivation behind
enhancing the throughput of the live video streaming
connection. Decades of research have been done to accomplish
this goal and it turns out the appropriate and effective way is to
improve the throughput with parallel transports, which means
multiple paths could be used to forward the traffic [2]. But the
wide-scale deployment of parallel data transfer technologies is
still an existing challenge. And (2) either the Internet core or

campus network must resolve the congestion problem. Assume
the campus network bandwidth is sufficient to support all
student connections on the local campus, but within the
Internet core, the quantity of video streams is much larger
when the number of campuses participating and each campus’
equally large number of students is taken into consideration.
The way to manage this tremendous number of video streams
in the Internet core and to avoid traffic congestion is an active
and unsolved problem. From both the user and the traffic
management perspective, in general, the service framework
needs to be scalable and flexible on-demand for sending each
video stream over multiple paths efficiently.

 With a traditional non-SDN solution, these challenges
above are not easy to overcome due to the limitation of the
underlying network architecture’s capabilities. A SDN-
Assisted live video streaming service is required to overcome
those limitations. SDN is a deeply programmable, strongly
abstracted, scalable, and logically centralized control network
architecture. It can influence one or multiple forwarding paths
in the network on-the-fly by interacting with control
applications and routing devices in the network. OpenFlow
controller is a centralized control point for the entire network.
This centralization of control provides scalable and flexible
capabilities where network resources can be added, removed
and updated in real-time. Due to the centralized control, the
controller can learn “global” network information rather than
the traditional routing device’s “local” network information,
which allows the controller to more efficiently forward traffic.

 The Global Environment for Network Innovations (GENI)
[3] provides an OpenFlow testbed for evaluating SDN
applications [4]. One important goal for GENI is to leverage
SDN features to create a programmable network environment.
Currently, video streaming service is one of the solicitations for
researchers to design and deploy using GENI network
infrastructure. The initial objective of the GENI Cinema (GC)
service is to provide an long-running on-line educational video
service among nationwide campuses using GENI’s network
infrastructure. Users can bootstrap video upload/download via
a public web portal. On the back-end, the service proposes a
SDN-Assisted framework for providing scalable, seamless, live
video streams service over one or multiple paths selected and
dynamically controlled by GC. GC utilizes GENI’s abundant

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.84

529

distributed cloud resources as video servers/relays. The service
overcomes the limitations of traditional live video services
using SDN features. The video quality can be improved with
OpenFlow, since OpenFlow provides more flexible and
efficient control over data forwarding among paths. Multi-path
data delivery methods with OpenFlow, such as network coding
[5], are an effective way to achieve the throughput requirement
of live video streams. And for scalability, the centralized
controller can also manage a large number of traffic flows,
which can be a benefit when mitigating network congestion.

 At this point, the GC service as a whole has not been
completed. This paper presents a prototype conceptual
experiment that demonstrates the GC framework development.
The remainder of this paper is structured as follows: Section II
explains the proposed video streaming service architecture and
the main components. Section III introduces the experiment
design using the GENI testbed, as well as the details of video
streaming uploading/downloading procedures. Section IV
provides a conclusion and details future work.

II. GC SDN-ASSISTED VIDEO STREAMING SERVICE
This section first gives an overview of the architecture of

the GC SDN-Assisted video streaming service. It then
introduces the main components of this architecture and the
function of each.

A. Service Architecture Overview

Fig. 1 Service Architecture Overview

The overall system architecture is illustrated as shown in
Fig. 1. The architecture consists of the following components:
(1) a local video upload server, (2) multiple GC gateways, (3)
an OpenFlow controller, (4) multiple video relays, (5) multiple
video servers, and (6) a public web proxy server. A typical
workflow in this architecture could be decoupled as four parts:
(1) gateway selection, (2) video upload, (3) video download,
and (4) the forwarding of packets of each video stream over
one or multiple paths. Overall, a video producer/consumer
inside a campus first accesses the public web proxy server to
select an appropriate gateway/video server. After that, the
video upload/download process is redirected to that
appropriate gateway. For the uploading procedure, videos are
first uploaded onto a GC gateway from the video source. After
that, the OpenFlow controller executes the forwarding
decision between the gateway and the video server(s). For the
download procedure, a video request from a client is initially
sent to the GC gateway and automatically transmitted to the
selected video server by the gateway. After the video server

responds to the request, the video is downloaded from the
appropriate video server through the GC gateway and is
finally sent to the client. The forwarding path decision is still
determined by the OpenFlow controller.

 The GC architecture could be decoupled as two core
subsystems: (1) end-to-end video streaming and (2) the optimal
control of efficient data forwarding in the network. The first
subsystem consists of an open-source live media streaming
server and client framework for video production and
consumption. The second subsystem focuses on forwarding
traffic under optimal control over GENI network. The
centralized SDN controller provides the feasibility and
flexibility to control the flow traffic, which greatly increases
the scalability of the service. GC service also decouples the
traffic forwarding inside the GENI network from user. From
the user’s perspective, he/she only communicates with the
public interface of the gateway and the public web server.
Inside the GENI network, one centralized OpenFlow controller
can dynamically change the forwarding path based on traffic
load or based on network coding efficiency.

B. Functionality of Main Components
This section will mainly describe the functionality of the

GC gateway, the public web proxy server, and the video server.

1) Public Web Proxy Server

A public web proxy server is a regular public web server
that interacts with video users to convey gateway and video
server status information. Since GC gateways and video
servers are all across the country, it is necessary for a video
user to select the appropriate gateway or video server (e.g. an
available and nearby one) in order to decrease the
upload/download time and improve the video streaming
performance. The gateway or video server status information
depends on a few network traffic indicators, such as
gateway/video server availability, packet delay between the
user and gateway, and the streaming rate in bits per second.

2) Gateway

GC gateways are physical or virtual machines running in
multiple geographically distributed GENI racks. They played
a key role in GC service architecture. A gateway provides a
public interface that interacts with video producers/consumers,
and a private interface that interacts with video servers. One
main function achieved here is the capability to modify packet
headers using OpenFlow so that the video streams can be
automatically forwarded to multiple video servers. In the real
world, campuses are either OpenFlow-enabled or not
OpenFlow-enabled. To satisfy all campuses, regardless of
OpenFlow deployments, GC users can simply interact with the
nearby GC gateway as the GC gateway has a public interface.

There are three key software components in GC gateway,
as shown in Fig. 2. They are: (1) a frontend connect & select
(C&S) server, (2) a backend streaming relaying (SR) server,
and (3) an OVS bridge. The C&S server acts as public
interface. It authenticates, establishes, and terminates the
connection between the GC gateway and the video server, for

530

both video upload and video download tasks. It communicates
the user information, (e.g. transport protocols, user’s IP
address and receiving port number). The SR server is
responsible for enabling optimal control of efficient video
forwarding from the incoming video source to all video
servers over one or multiple paths using OpenFlow. Lastly,
the OVS bridge supports controlled traffic forwarding.

Fig. 2 GENI Cinema Gateway Diagram

3) Video Servers

Video servers are GENI racks as well. The key software
components’ functionalities, as shown in Fig. 3, are very
similar to the GC gateway: (1) a VideoLAN (VLC) server, (2)
a SR server and (3) an OVS bridge. Instead of a C&S server in
gateway, a VLC server is set up to listen for the request. The
SR server is responsible for optimal forwarding, path control.
OVS bridge allows for controlled video traffic forwarding.

Fig. 3 GENI Cinema Video Server Diagram

III. EXPERIMENTS USING GENI TESTBED
This section first introduces the details of the experiment

design using the GENI testbed. It then shows the details of the
video upload/download implementation and its results.

A. Experiment Design Using GENI Testbed

Fig. 4 Demo Experiment Scenario

The experiment scenario implements the base framework
of the GC service solution. Within a limited time, an initial
prototype with certain simplifications has been designed with
GENI networks as shown in Fig. 4. This prototype mainly
demonstrates the core concepts for the two subsystems of the
GC service: (1) end-to-end video uploading/downloading and
(2) OpenFlow forwarding and path control. An IP camera and
a wireless router are used in addition to the resources of the
testbed. The IP camera can either get a public campus network
IP or obtain a private IP from a router. Local video upload
server is needed because almost every campus has an active

firewall, and GENI racks are usually deployed outside campus
firewalls. GC gateway has its own firewall rules with port
30000+ [6] allowed. So video streams cannot be directly
fetched from the GC gateway. Local video upload server acts
as a video relay that initiates the connection from inside
campus firewall to relay the video streams on behalf of the
camera to the GC gateway. After that, the video goes into the
GENI network. In GENI’s network, three InstaGENI
aggregates communicate with each other. Their locations are:
(1) a GC gateway VM at Boston, (2) an OpenFlow VM at
Wisconsin, and (3) a VLC video server VM at Stanford. Since
a video stream contains a large amount of data to be
transferred, a customized layer 2 network is required to ensure
the sufficient bandwidth. Thus, the network topology is
configured with GENI Stitcher [7] using an Rspec file.

Between the GC gateway and the video server, the video
needs to be automatically forwarded over multiple paths. A
programmed OpenFlow scheme is able to accomplish this but
requires complex custom code to fully implement it. To prove
the key concept as a first step, Linux Network Address
Translation (NAT) is configured on both VM to automatically
forward video streams from one to another. The OpenFlow-
based NAT will be implemented latter. The OpenFlow VM is
the place to prove the concept of optimal forwarding path
control with OpenFlow. On this VM, there are three OVS
bridges connected each other and a local OpenFlow controller
installed. The OpenFlow Floodlight controller is chosen. It
statically pushes flows with its REST API onto the OVS
bridges to select a path: one is the “long path” where traffic
goes through three OVS bridges and the other is the “short
path” where traffic goes through only two OVS bridges.

B. UDP Video Uploading Procedure

On local video upload server, RTSP video streaming is
fetched from IP camera on port 554. It then uses VLC to send
incoming video to the IP address of GC gateway with port
number 34567 over UDP. Each UDP packet has the source IP
address with local server and destination IP address with GC
gateway. GC Gateway automatically relays the video stream
towards the VLC video HTTP servers via NAT. NAT changes
the packet headers’ destination IP at the GC to the VLC
server. So from the video producer’s point of view, the video
is just uploaded onto the GC gateway. OF controller executes
the routing decision by REST API on whether “long path” or
“short path” flows are inserted. The video is on VLC HTTP
server at Stanford. On VLC server, a VLC HTTP server is
running to listen to the interface with port number 34568.

C. TCP Video Downloading Procedure

Client uses VLC to send a video request to GC gateway
with port number 34568. TCP video request packet has the
source IP of the client and destination IP of the GC gateway.
GC gateway automatically sends video request to the

531

appropriate video server. NAT changes TCP packet header
destination IP from the GC gateway to the VLC server. OF
controller executes “long path” or “short path” decision. VLC
server receives the video request and sends the video response
packet back to the GC gateway. After that the VLC server
sends the video to the GC gateway. NAT changes the TCP
packet header for both processes. GC gateway receives both
the request and video packet from the VLC server and changes
the TCP packet header source IP from the video server to the
GC gateway. The client receives the TCP video packets from
the GC gateway. So from the video consumer’s point of view,
the video is originating from the GC Gateway.

D. Experiment Results
Couple key service performances and capabilities are

evaluated in this section. The lower-bound channel bandwidth
requirement of the service is evaluated under a fixed high
video resolution condition. A basic video resolution
requirement is also found under a fixed bandwidth. A flow
entry control structure is lastly shown in order to show the
service capability of network traffic control.

A live video snapshot (Fig. 5) with high-quality, persistent,
and stable video quality demonstrates the GC service
addressed the end-to-end video streaming requirement. The
link bandwidth is 300Mbps, and the video resolution is 1080p
(1920 x 1080). The left image in Fig. 5 is the video producer
and the right one is the video consumer. The delay is about 5
seconds. An on-demand link bandwidth test is then evaluated
to show the basic bandwidth requirement of the service. The
1080p video starts to degrade in quality if the channel
bandwidth decreases to 2Mbps. With 3Mbps or above, video
quality is stable and reliable. It turns out the service does not
consume a large link bandwidth, and does potentially have a
scalable space to handle a larger number of users. A series of
video resolution tests are also evaluated with a 1Mbps channel
bandwidth to show the basic video resolution requirement. For
this resolution test, the 1080p video frame size is too large for
the channel bandwidth. The resolution of 800 x 450 is the
highest that could reproduce the video on client end, but with
freezing and distortion in video frames (Fig. 6 (a)-(b)). The
resolution 176 x 144 is the only one that guarantees good
video quality on a 1Mbps link, as shown in Fig. 6 (c)-(d).

The flow control structure of one switch (Fig. 7) shows
that an OpenFlow controller can easily manipulate the
network traffic flows by changing related fields in this
structure. In “short path” or “long path” cases, one switch only
needs to install four flow rules in total. For dynamic control,
one only needs to customize an OpenFlow controller
application to interact with the data plane traffic in–time. This
dynamic and feasible traffic control is a critical benefit for GC
service since this on-demand network traffic management
alleviates the congestion problem in the Internet core.

Fig.7 One Switch Flow entry control structure

IV. CONCLUSIONS AND FUTURE WORK
This paper presents a proposed SDN-Assisted GC service

architecture. GC service is a scalable live video streaming
service without requiring a high link bandwidth. It deeply
leverages SDN features and the abundant resources in the
GENI infrastructure. An early prototype conceptual video
streaming experiment has been implemented in order to prove
the key concepts of the architecture. The live video is
successfully uploaded to the gateway and automatically
forwarded to the video server. Clients can download the live
video from the server via the gateway. The download video
quality is stable and reliable. Future work will be conducted
on the GENI testbed to further develop, evaluate, and test GC
service. First, we need to implement all the functionalities of
the GC gateway. Second, video streaming over multiple paths
via OpenFlow will be implemented.

REFERENCES
[1] De Cicco, Luca, Saverio Mascolo, and Vittorio Palmisano. "Skype

Video congestion control: An experimental investigation." Elsevier
Comput. Netw., vol. 55, no.3, pp. 558-571, 2011

[2] T. J. Hacker, B. D. Noble, and B. D. Athey, “Improving throughput and
maintaining fairness using parallel TCP,” in Proc. IEEE INFOCOM
2004, Hongkong, China, 2004, pp. 1-10.

[3] GENI. [online]. 2014, http://www.geni.net/ (Accessed: 15 July 2014)
[4] R. Izard, A. Hodges, J. Liu, J. Martin, K.-C. Wang and K. Xu, ‘”An

OpenFlow testbed for the evaluation of vertical handover decision
algorithms in heterogeneous wireless networks,” in Proc. EAI
TRIDENTCOM 2014, GuangZhou, China, 2014, pp. 1-10.

[5] K. Xu, S. Sampathkumar, K.-C. Wang and P. Ramanathan, "Network
coding for efficient broadband data delivery in infrastructure-based
vehicular networks with OpenFlow," in Proc. Second GREE 2013, Salt
Lake City, UT, USA, pp. 56-60, 2013.

[6] CheckList-ProtoGeni. [online]. 2014,
http://www.protogeni.net/wiki/InstaGENI/checklist (Accessed: 15 July
2014)

[7] GENI Stitching. [online]. 2014,
http://groups.geni.net/geni/wiki/GeniNetworkStitching (Accessed: 15
July 2014

Fig. 5 Resolution 1920 x 1080

 (a) (b) (c) (d)

Fig. 6 (a)(b) Resolution 800 x 450 with distortion;
 (c)(d) Resolution 176 x 144 without distortion.

532

