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Abstract— This paper introduces GENI Cinema (GC), a 
system that provides a scalable live video streaming service based 
on dynamic traffic steering with software defined networking 
(SDN) and demand driven instantiation of video relay servers in 
NSF GENI’s distributed cloud environments. While the service 
can be used to relay a multitude of video content, its initial 
objective is to support live video streaming of educational content 
such as lectures and seminars among university campuses. Users 
on any campus would bootstrap video upload or download via a 
public web portal and, for scalability, have the video delivered 
seamlessly across the network over one or multiple paths selected 
and dynamically controlled by GC. The architecture aims to 
provide a framework for addressing several well-known 
limitations of video streaming in today’s Internet, where little 
control is available for controlling forwarding paths of on-
demand live video streams. GC utilizes GENI’s distributed cloud 
servers to host on-demand video servers/relays and its OpenFlow 
SDN to achieve seamless video upload/download and 
optimization of forwarding paths in the network core. This paper 
presents the architecture and an early prototype of the basic GC 
framework, together with some initial performance measurement 
results. 

Keywords—OpenFlow; video streaming; cloud computing; 
network architecture;   

I. INTRODUCTION   
 Skype or Google Handout already provide a live video 
service in today’s world but still have the limitation on 
scalability on-demand [1]. Two key challenges need to be 
overcome in order to supply stable and reliable live video 
streaming among different locations: (1) the video service must 
provide a persistent two-way real-time interaction capability 
among a possible large amount of users. If a large traffic 
volume happens, the bottleneck of the video service is the fixed 
network bandwidth conditions in either the Internet core or 
campus local networks. This is the motivation behind 
enhancing the throughput of the live video streaming 
connection. Decades of research have been done to accomplish 
this goal and it turns out the appropriate and effective way is to 
improve the throughput with parallel transports, which means 
multiple paths could be used to forward the traffic [2]. But the 
wide-scale deployment of parallel data transfer technologies is 
still an existing challenge. And (2) either the Internet core or 

campus network must resolve the congestion problem. Assume 
the campus network bandwidth is sufficient to support all 
student connections on the local campus, but within the 
Internet core, the quantity of video streams is much larger 
when the number of campuses participating and each campus’ 
equally large number of students is taken into consideration. 
The way to manage this tremendous number of video streams 
in the Internet core and to avoid traffic congestion is an active 
and unsolved problem. From both the user and the traffic 
management perspective, in general, the service framework 
needs to be scalable and flexible on-demand for sending each 
video stream over multiple paths efficiently. 

 With a traditional non-SDN solution, these challenges 
above are not easy to overcome due to the limitation of the 
underlying network architecture’s capabilities. A SDN-
Assisted live video streaming service is required to overcome 
those limitations. SDN is a deeply programmable, strongly 
abstracted, scalable, and logically centralized control network 
architecture. It can influence one or multiple forwarding paths 
in the network on-the-fly by interacting with control 
applications and routing devices in the network. OpenFlow 
controller is a centralized control point for the entire network. 
This centralization of control provides scalable and flexible 
capabilities where network resources can be added, removed 
and updated in real-time. Due to the centralized control, the 
controller can learn “global” network information rather than 
the traditional routing device’s “local” network information, 
which allows the controller to more efficiently forward traffic. 

 The Global Environment for Network Innovations (GENI) 
[3] provides an OpenFlow testbed for evaluating SDN 
applications [4]. One important goal for GENI is to leverage 
SDN features to create a programmable network environment. 
Currently, video streaming service is one of the solicitations for 
researchers to design and deploy using GENI network 
infrastructure. The initial objective of the GENI Cinema (GC) 
service is to provide an long-running on-line educational video 
service among nationwide campuses using GENI’s network 
infrastructure. Users can bootstrap video upload/download via 
a public web portal. On the back-end, the service proposes a 
SDN-Assisted framework for providing scalable, seamless, live 
video streams service over one or multiple paths selected and 
dynamically controlled by GC. GC utilizes GENI’s abundant 
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distributed cloud resources as video servers/relays. The service 
overcomes the limitations of traditional live video services 
using SDN features. The video quality can be improved with 
OpenFlow, since OpenFlow provides more flexible and 
efficient control over data forwarding among paths. Multi-path 
data delivery methods with OpenFlow, such as network coding 
[5], are an effective way to achieve the throughput requirement 
of live video streams. And for scalability, the centralized 
controller can also manage a large number of traffic flows, 
which can be a benefit when mitigating network congestion.  

 At this point, the GC service as a whole has not been 
completed. This paper presents a prototype conceptual 
experiment that demonstrates the GC framework development. 
The remainder of this paper is structured as follows:  Section II 
explains the proposed video streaming service architecture and 
the main components. Section III introduces the experiment 
design using the GENI testbed, as well as the details of video 
streaming uploading/downloading procedures. Section IV 
provides a conclusion and details future work. 

II. GC SDN-ASSISTED VIDEO STREAMING SERVICE 
This section first gives an overview of the architecture of 

the GC SDN-Assisted video streaming service. It then 
introduces the main components of this architecture and the 
function of each. 

A. Service Architecture Overview 

 
Fig. 1 Service Architecture Overview 

The overall system architecture is illustrated as shown in 
Fig. 1. The architecture consists of the following components: 
(1) a local video upload server, (2) multiple GC gateways, (3) 
an OpenFlow controller, (4) multiple video relays, (5) multiple 
video servers, and (6) a public web proxy server. A typical 
workflow in this architecture could be decoupled as four parts: 
(1) gateway selection, (2) video upload, (3) video download, 
and (4) the forwarding of packets of each video stream over 
one or multiple paths. Overall, a video producer/consumer 
inside a campus first accesses the public web proxy server to 
select an appropriate gateway/video server. After that, the 
video upload/download process is redirected to that 
appropriate gateway. For the uploading procedure, videos are 
first uploaded onto a GC gateway from the video source. After 
that, the OpenFlow controller executes the forwarding 
decision between the gateway and the video server(s). For the 
download procedure, a video request from a client is initially 
sent to the GC gateway and automatically transmitted to the 
selected video server by the gateway.  After the video server 

responds to the request, the video is downloaded from the 
appropriate video server through the GC gateway and is 
finally sent to the client. The forwarding path decision is still 
determined by the OpenFlow controller.  

 The GC architecture could be decoupled as two core 
subsystems: (1) end-to-end video streaming and (2) the optimal 
control of efficient data forwarding in the network. The first 
subsystem consists of an open-source live media streaming 
server and client framework for video production and 
consumption. The second subsystem focuses on forwarding 
traffic under optimal control over GENI network. The 
centralized SDN controller provides the feasibility and 
flexibility to control the flow traffic, which greatly increases 
the scalability of the service. GC service also decouples the 
traffic forwarding inside the GENI network from user. From 
the user’s perspective, he/she only communicates with the 
public interface of the gateway and the public web server. 
Inside the GENI network, one centralized OpenFlow controller 
can dynamically change the forwarding path based on traffic 
load or based on network coding efficiency.  

B. Functionality of Main Components 
This section will mainly describe the functionality of the 

GC gateway, the public web proxy server, and the video server. 

1) Public Web Proxy Server 

A public web proxy server is a regular public web server 
that interacts with video users to convey gateway and video 
server status information. Since GC gateways and video 
servers are all across the country, it is necessary for a video 
user to select the appropriate gateway or video server (e.g. an 
available and nearby one) in order to decrease the 
upload/download time and improve the video streaming 
performance. The gateway or video server status information 
depends on a few network traffic indicators, such as 
gateway/video server availability, packet delay between the 
user and gateway, and the streaming rate in bits per second. 

2) Gateway 

GC gateways are physical or virtual machines running in 
multiple geographically distributed GENI racks. They played 
a key role in GC service architecture. A gateway provides a 
public interface that interacts with video producers/consumers, 
and a private interface that interacts with video servers. One 
main function achieved here is the capability to modify packet 
headers using OpenFlow so that the video streams can be 
automatically forwarded to multiple video servers. In the real 
world, campuses are either OpenFlow-enabled or not 
OpenFlow-enabled. To satisfy all campuses, regardless of 
OpenFlow deployments, GC users can simply interact with the 
nearby GC gateway as the GC gateway has a public interface.  

There are three key software components in GC gateway, 
as shown in Fig. 2. They are: (1) a frontend connect & select 
(C&S) server, (2) a backend streaming relaying (SR) server, 
and (3) an OVS bridge. The C&S server acts as public 
interface. It authenticates, establishes, and terminates the 
connection between the GC gateway and the video server, for 

530



both video upload and video download tasks. It communicates 
the user information, (e.g. transport protocols, user’s IP 
address and receiving port number). The SR server is 
responsible for enabling optimal control of efficient video 
forwarding from the incoming video source to all video 
servers over one or multiple paths using OpenFlow. Lastly, 
the OVS bridge supports controlled traffic forwarding.  

 
Fig. 2 GENI Cinema Gateway Diagram 

3) Video Servers 

Video servers are GENI racks as well. The key software 
components’ functionalities, as shown in Fig. 3, are very 
similar to the GC gateway: (1) a VideoLAN (VLC) server, (2) 
a SR server and (3) an OVS bridge. Instead of a C&S server in 
gateway, a VLC server is set up to listen for the request. The 
SR server is responsible for optimal forwarding, path control. 
OVS bridge allows for controlled video traffic forwarding.  

 
Fig. 3 GENI Cinema Video Server Diagram 

III. EXPERIMENTS USING GENI TESTBED 
This section first introduces the details of the experiment 

design using the GENI testbed. It then shows the details of the 
video upload/download implementation and its results.  

A. Experiment Design Using GENI Testbed 

 
Fig. 4 Demo Experiment Scenario 

The experiment scenario implements the base framework 
of the GC service solution. Within a limited time, an initial 
prototype with certain simplifications has been designed with 
GENI networks as shown in Fig. 4. This prototype mainly 
demonstrates the core concepts for the two subsystems of the 
GC service: (1) end-to-end video uploading/downloading and 
(2) OpenFlow forwarding and path control. An IP camera and 
a wireless router are used in addition to the resources of the 
testbed. The IP camera can either get a public campus network 
IP or obtain a private IP from a router. Local video upload 
server is needed because almost every campus has an active 

firewall, and GENI racks are usually deployed outside campus 
firewalls. GC gateway has its own firewall rules with port 
30000+ [6] allowed. So video streams cannot be directly 
fetched from the GC gateway. Local video upload server acts 
as a video relay that initiates the connection from inside 
campus firewall to relay the video streams on behalf of the 
camera to the GC gateway. After that, the video goes into the 
GENI network. In GENI’s network, three InstaGENI 
aggregates communicate with each other. Their locations are: 
(1) a GC gateway VM at Boston, (2) an OpenFlow VM at 
Wisconsin, and (3) a VLC video server VM at Stanford. Since 
a video stream contains a large amount of data to be 
transferred, a customized layer 2 network is required to ensure 
the sufficient bandwidth. Thus, the network topology is 
configured with GENI Stitcher [7] using an Rspec file. 

Between the GC gateway and the video server, the video 
needs to be automatically forwarded over multiple paths. A 
programmed OpenFlow scheme is able to accomplish this but 
requires complex custom code to fully implement it. To prove 
the key concept as a first step, Linux Network Address 
Translation (NAT) is configured on both VM to automatically 
forward video streams from one to another. The OpenFlow-
based NAT will be implemented latter.  The OpenFlow VM is 
the place to prove the concept of optimal forwarding path 
control with OpenFlow. On this VM, there are three OVS 
bridges connected each other and a local OpenFlow controller 
installed. The OpenFlow Floodlight controller is chosen. It 
statically pushes flows with its REST API onto the OVS 
bridges to select a path: one is the “long path” where traffic 
goes through three OVS bridges and the other is the “short 
path” where traffic goes through only two OVS bridges.   

B. UDP Video Uploading Procedure 

On local video upload server, RTSP video streaming is 
fetched from IP camera on port 554. It then uses VLC to send 
incoming video to the IP address of GC gateway with port 
number 34567 over UDP. Each UDP packet has the source IP 
address with local server and destination IP address with GC 
gateway. GC Gateway automatically relays the video stream 
towards the VLC video HTTP servers via NAT. NAT changes 
the packet headers’ destination IP at the GC to the VLC 
server. So from the video producer’s point of view, the video 
is just uploaded onto the GC gateway. OF controller executes 
the routing decision by REST API on whether “long path” or 
“short path” flows are inserted. The video is on VLC HTTP 
server at Stanford. On VLC server, a VLC HTTP server is 
running to listen to the interface with port number 34568.   

C. TCP Video Downloading Procedure 

Client uses VLC to send a video request to GC gateway 
with port number 34568. TCP video request packet has the 
source IP of the client and destination IP of the GC gateway. 
GC gateway automatically sends video request to the 
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appropriate video server. NAT changes TCP packet header 
destination IP from the GC gateway to the VLC server. OF 
controller executes “long path” or “short path” decision. VLC 
server receives the video request and sends the video response 
packet back to the GC gateway. After that the VLC server 
sends the video to the GC gateway. NAT changes the TCP 
packet header for both processes. GC gateway receives both 
the request and video packet from the VLC server and changes 
the TCP packet header source IP from the video server to the 
GC gateway. The client receives the TCP video packets from 
the GC gateway. So from the video consumer’s point of view, 
the video is originating from the GC Gateway.  

D. Experiment Results 
Couple key service performances and capabilities are 

evaluated in this section. The lower-bound channel bandwidth 
requirement of the service is evaluated under a fixed high 
video resolution condition. A basic video resolution 
requirement is also found under a fixed bandwidth. A flow 
entry control structure is lastly shown in order to show the 
service capability of network traffic control.  

A live video snapshot (Fig. 5) with high-quality, persistent, 
and stable video quality demonstrates the GC service 
addressed the end-to-end video streaming requirement. The 
link bandwidth is 300Mbps, and the video resolution is 1080p 
(1920 x 1080). The left image in Fig. 5 is the video producer 
and the right one is the video consumer. The delay is about 5 
seconds. An on-demand link bandwidth test is then evaluated 
to show the basic bandwidth requirement of the service. The 
1080p video starts to degrade in quality if the channel 
bandwidth decreases to 2Mbps. With 3Mbps or above, video 
quality is stable and reliable. It turns out the service does not 
consume a large link bandwidth, and does potentially have a 
scalable space to handle a larger number of users. A series of 
video resolution tests are also evaluated with a 1Mbps channel 
bandwidth to show the basic video resolution requirement. For 
this resolution test, the 1080p video frame size is too large for 
the channel bandwidth. The resolution of 800 x 450 is the 
highest that could reproduce the video on client end, but with 
freezing and distortion in video frames (Fig. 6 (a)-(b)). The 
resolution 176 x 144 is the only one that guarantees good 
video quality on a 1Mbps link, as shown in Fig. 6 (c)-(d).  

The flow control structure of one switch (Fig. 7) shows 
that an OpenFlow controller can easily manipulate the 
network traffic flows by changing related fields in this 
structure. In “short path” or “long path” cases, one switch only 
needs to install four flow rules in total. For dynamic control, 
one only needs to customize an OpenFlow controller 
application to interact with the data plane traffic in–time. This 
dynamic and feasible traffic control is a critical benefit for GC 
service since this on-demand network traffic management 
alleviates the congestion problem in the Internet core. 

 
Fig.7 One Switch Flow entry control structure  

IV. CONCLUSIONS AND FUTURE WORK 
This paper presents a proposed SDN-Assisted GC service 

architecture. GC service is a scalable live video streaming 
service without requiring a high link bandwidth. It deeply 
leverages SDN features and the abundant resources in the 
GENI infrastructure. An early prototype conceptual video 
streaming experiment has been implemented in order to prove 
the key concepts of the architecture. The live video is 
successfully uploaded to the gateway and automatically 
forwarded to the video server. Clients can download the live 
video from the server via the gateway. The download video 
quality is stable and reliable. Future work will be conducted 
on the GENI testbed to further develop, evaluate, and test GC 
service. First, we need to implement all the functionalities of 
the GC gateway. Second, video streaming over multiple paths 
via OpenFlow will be implemented. 
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Fig. 5 Resolution 1920 x 1080  

 
            (a)                     (b)                 (c)                 (d) 

Fig. 6 (a)(b) Resolution 800 x 450 with distortion;  
                (c)(d) Resolution 176 x 144 without distortion.
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