
Traffic Engineering in SDN/OSPF Hybrid Network

Yingya Guo∗‡, Zhiliang Wang†‡, Xia Yin∗‡, Xingang Shi†‡,and Jianping Wu∗‡
∗Department of Computer Science and Technology, Tsinghua University
†Institute for Network Sciences and Cyberspace, Tsinghua University

‡Tsinghua National Laboratory for Information Science and Technology (TNLIST)

Beijing, P.R. China

Email:{guoyingya, wzl, yxia}@csnet1.cs.tsinghua.edu.cn, {shixg, jianping}@cernet.edu.cn

Abstract—Traffic engineering under OSPF routes along the
shortest paths, which may cause network congestion. Software
Defined Networking (SDN) is an emerging network architecture
which exerts a separation between the control plane and the
data plane. The SDN controller can centrally control the network
state through modifying the flow tables maintained by routers.
Network operators can flexibly split arbitrary flows to outgoing
links through the deployment of the SDN. However, SDN has
its own challenges of full deployment, which makes the full
deployment of SDN difficult in the short term.

In this paper, we explore the traffic engineering in a SDN/OSPF
hybrid network. In our scenario, the OSPF weights and flow-
splitting ratio of the SDN nodes can both be changed. The
controller can arbitrarily split the flows coming into the SDN
nodes. The regular nodes still run OSPF. Our contribution is that
we propose a novel algorithm called SOTE that can obtain a lower
maximum link utilization. We reap a greater benefit compared
with the results of the OSPF network and the SDN/OSPF hybrid
network with fixed weight setting. We also find that when only
30% of the SDN nodes are deployed, we can obtain a near optimal
performance.

Index Terms—traffic engineering; OSPF; SDN; partial deploy-
ment; hybrid network

I. INTRODUCTION

Open Shortest Path First (OSPF) protocol is one of the

most widely used Interior Gateway Protocols (IGPs) in recent

years [1]. In OSPF protocol, each link is assigned a weight

(or a cost) by the operators and the shortest paths between

the sources and the destinations are computed in terms of

these weighted links within an Autonomous System(AS). The

traffic directed to a same destination arrives at a router node

and is evenly split across the next hops on the equal cost

shortest paths. The multiple flows for a given destination

are split across the multiple next hops to balance the load.

In the traditional OSPF network, all router nodes support

OSPF protocol. Each router maintains a forwarding table and

always chooses the nearest next hop to forward packets. In

order to get better network performance in traffic engineering,

we should optimize the OSPF weights to balance the flows.

Much work has been done previously on searching for the

optimized weight setting under OSPF protocol. The problem

is proven to be NP-complete in [2]. Therefore, many heuristic

algorithms are proposed to solve the problem. The refined

local search heuristic algorithms [3] [4] are thus proposed

to search for the optimized weight setting. The algorithm in

[3] allows us to cope with 50%-110% more demand than

other weight setting algorithms, i.e, InvCapOSPF, UnitOSPF,

L2OSPF, RandomOSPF. Other heuristic search algorithms,

such as genetic algorithm [5], simulated annealing algorithm

[6], have also been used in searching for the optimal weight

setting. These heuristic algorithms can improve the network

performance but can only obtain the local optimal solutions,

which may be far from the global optimal solutions [7].

Software Defined Networking (SDN) is an emerging net-

work architecture that attracts people’s attention in recent

years. In this new architecture, its control plane and data plane

are separated. The SDN controller is a logically-centralized

control plane and takes charge of the flows in the SDN

network. It can flexibly control the flows in the network

and assign arbitrary flows to the outgoing links of the SDN

nodes. Some techniques can be exploited to direct the different

flows to the same destination to different next hops and

the traffic is split on the network layer. The deployment of

SDN in the network provides a convenient and effective way

to do the traffic engineering and can improve the network

performance on a large scale. Microsoft designs a Software-

driven WAN which interconnects the data centers and achieves

a high utilization of the network throughput [8], which is near

optimal. Google also exploits SDN and runs many links at the

utilization of near 100% [9]. The advantages of SDN provide

an incentive to the transition of SDN network. However, fully

deploying the SDN in the network is by no means an easy job.

We may encounter economical, organizational and technical

challenges [10]. As a result, a full deployment of SDN, i.e, all

the router nodes support SDN and can be centrally controlled

by the controllers, in the network will not work out in the

short term. Deploying SDN in the network incrementally can

be a better choice. In this paper, we consider the scenario of

partial SDN deployment, i.e, SDN/OSPF hybrid network.

Our work mainly focus on how to adjust the weight setting

of the entire network to balance the flows coming out of the

regular nodes and how to split the flows that aggregate at the

SDN nodes so that the maximum link utilization of the whole

network can be minimized. In this paper, we are original in

doing the traffic engineering in the hybrid network scenario

that the weight setting of the network and the splitting ratio

of the SDN nodes can both be changed at the same time.

The algorithm SOTE (SDN/OSPF Traffic Engineering) we

propose in this paper is novel in minimizing the maximum

2014 IEEE 22nd International Conference on Network Protocols

978-1-4799-6204-4/14 $31.00 © 2014 IEEE

DOI 10.1109/ICNP.2014.90

563

link utilization in this scenario. We obtain a better network

performance compared to the traffic engineering in traditional

OSPF network [3] and the hybrid network with fixed weight

setting (WFSOTE) [11]. Moreover, we discuss the number of

SDN nodes to deploy that can best meet our demands. We

deploy the network incrementally and find that when 30%
of the nodes are deployed, we can achieve a near optimal

performance.

The rest of the paper is organized as follows. We introduce

the related work in Section II. Section III depicts the scenario

of our hybrid network and formulates the problem as a

mathematical problem. We also analyze the complexity of the

problem in this section. Section IV is the introduction of our

algorithm, which solves the problem of optimizing the weight

setting and the splitting ratio of the flows at the SDN nodes.

Section V presents several experiments, which compare the

maximum link utilization and CPU time of our algorithm with

the algorithms in [3] and [11]. We also talk about the locations

and number of SDN nodes to deploy in this section. Section VI

is the conclusion and summary of this paper. It also outlines

the direction for the future work.

II. RELATED WORK

In this section, we present some related work on traffic

engineering in recent years.

[3] firstly proposes an IP-based intra-domain traffic en-

gineering solution by setting link weights of intra-domain

routing protocol (OSPF or IS-IS) to achieve traffic engineering

objectives. This solution makes a constraint that the traffic is

evenly split among all the next hop routers on shortest paths

from source node to destination node as OSPF and IS-IS have

done. They prove that optimizing the setting of link weights

is NP-hard and propose a local search heuristic solution. [7]

breaks down the constraint of evenly splitting traffic. In this

solution, a subset of the next hops for each routing prefix

is selected to evenly forward the traffic, which emulates the

uneven splitting of traffic to achieve a near optimal solution.

This solution needs complex configuration for each routing

prefix. Recently, Xu et al. present new link-state routing

protocols DEFT, PEFT to achieve optimal traffic engineering

in [12] and [13]. In this solution, traffic is not only carried by

multiple shortest paths but also longer paths, by splitting traffic

over multiple paths with an exponential penalty on longer

paths. [14] models optimal intra-domain traffic engineering

as the utility maximization of multi-commodity flows with

the generic objective function. This solution extends OSPF

routing protocol by adding a second weight for each link to

support arbitrary splitting of traffic over all shortest paths.

Generally speaking, in the most existing IP-based intra-domain

traffic engineering solutions, link state routing protocol needs

configuration or modifications. In this paper, we utilize the

flexibility of SDN and control the flows coming out the SDN

nodes.

Traffic engineering in hybrid network scenarios is definitely

a hot topic. [15] introduces a MPLS/OSPF hybrid network.

It formulates the problem as a linear programming multi-

commodity flow problem. It avoids the drawbacks of MPLS

and OSPF and provides a good solution to traffic engineering.

We can flexibly split the traffic among the multiple tunnels

using MPLS. However, MPLS traffic engineering lacks of

global view and it distributes the flows regardless of other

flows. Moreover, they need to establish the MPLS tunnels,

i.e, Label Switching Paths (LSP) to forward the packets. In

our SDN/OSPF traffic engineering, SDN nodes have a global

view and can flexibly control the flow in the network. [11]

is the first paper to address network performance issues in an

incrementally deployed SDN network. It formulates the traffic

engineering as a linear programming problem and refines a

polynomial algorithm to solve it. In [11], the weight setting

is fixed and all link weights are set to 1. The network

performance is thus limited. In our research, the weight setting

is undetermined and we should search for the optimized weight

setting exploiting heuristic algorithm.

III. PROBLEM FORMULATION

In this section, we firstly depict the SDN/OSPF hybrid

network scenario. Then we formulate the problem as math-

ematical problem and analyze the complexity of the problem.

A. Hybrid Network Scenario

In our SDN/OSPF hybrid network, we assume that the SDN

nodes are a subset of the nodes in the network. SDN nodes are

the hybrid routers that run traditional network protocol stack

and at the same time support centrally control from the SDN

controller. The remaining are the regular nodes that only run

traditional network protocol stack. Therefore, all the nodes

support OSPF protocol. The regular nodes can compute the

shortest paths and route the flows in the entire network. The

weight setting of the network have an impact on the shortest

path selection between the regular nodes and the destinations,

but they do not have an impact on the splitting ratio of the

flows out the SDN nodes.

Fig.1 shows an example of the SDN/OSPF hybrid network

scenario. It is a research and education network of America

with 11 nodes, 28 links. In this topology, nodes 3,4,9 are

SDN nodes and are controlled by the controller. The others

are regular nodes and routes the flows along the shortest paths.

B. Optimization Problem Definition

We are given an undirected network graph G = (V,A) (V
is the vertexes set, A is the arcs set), capacity matrix C (Cij

denotes the capacity of link (i, j) ∈ A) and traffic matrix TM
(TMij denotes the estimated traffic demands from i to j). ω
denotes the weight setting matrix and ωij is an integer chosen

from [1,20]. CN is the SDN nodes set. In(v), v ∈ V denotes

the edge sets that there are traffic flowing into the node V .

Out(c), c ∈ CN represents the edge sets that there are traffic

flowing out of the node c. xe(ω) denotes that the splitting

flow on the edge e ∈ Out(c) with the weight setting ω. fe(ω)
denotes the flow on the edge e with the weight setting ω.

gvte (ω) denotes the flow on the edge e from v to t with the

564

�� �

� �

�

�

	

	 		

�

�
���
����

Fig. 1. A hybrid network scenario

weight setting ω. U is the maximum link utilization of the

network. We assume that the traffic matrix and the topology

of the network are steady for a short period. The locations and

number of the SDN nodes are fixed and are determined by

the experiments in section V. By adjusting the weight setting

matrix ω and the splitting ratio of the flows xi out the SDN

nodes, we intend to minimize the maximum link utilization of

the network, i.e., minimize U . We can formulate the problem

as following.

minimize U

∑

e∈In(t)

fe(ω) =
∑

v∈V

TMvt t ∈ V (1)

∑

e∈In(c)

fe(ω)+TMct =
∑

e∈Out(c)

xe(ω) c ∈ CN, t ∈ V (2)

∑

v,t∈V

gvte (ω) ≤ UC(e) e ∈ A (3)

ω ∈ Z (4)

xe(ω) ≥ 0 e ∈ A (5)

(1) denotes that the traffic demands are meet in the flow

routing. (2) denotes that the flows flow into the node equals

the flows that flow out of this node. (3) denotes that the total

flows on a edge cannot exceed its capacity. (4)-(5) denote that

the weights are integers and the flow on a link must be non-

negative.

C. Problem Complexity

When the weight setting is fixed, the problem boils down

to a multi-commodity linear programming problem, which can

be solved in polynomial time [16]. However, the weights are

integers and undetermined, which adds up the complexity of

the problem. It has been proved that optimizing of weight

setting is a NP-complete problem [2]. Our proposed model

can be reduced to the weight optimization problem in [3] if

all the traffic is split in a pre-defined manner, i.e, all traffic

is split to the shortest path and none to the longer paths. So

the complexity of the entire problem is easily proved to be

NP-complete. Due to the space limitations, the detailed proof

is omitted.

IV. ALGORITHM FOR TRAFFIC ENGINEERING IN

HYBRID NETWORK

Given the NP-completeness of the problem, we resort to

heuristic algorithms. In this section, we firstly introduce our

novel algorithm called SOTE, which is a local search heuristic

algorithm. Then we give a simple example to illustrate our

algorithm in detail.

A. A novel algorithm SOTE

Algorithm 1: SOTE

Input: G = (V,A) , CN , C , TM
Output: U

1 Initial weight setting matrix W , U ;

2 currutil = floydwarshall (G,W, TM) ;

3 bestutil = currutil ;

4 currweights = W ;

5 bestweights = W ;

6 foreach iteration times increase by one do
7 currweights =neighbour search (G,W);
8 currutil =Splitting ratio

(currweights, CN, TM,C, V,A);
9 if currutil < bestutil then

10 bestutil = currutil ;

11 bestweights = currweights ;

12 U = bestutil ;

Algorithm 1 is SOTE. At the core of the algorithm is

the neighbour search function (line 7) and the Splitting ratio

function (line 8). We first use Floyd algorithm to find the

shortest paths between the two nodes and route the traffic

demands to obtain the current link utilization (line 2). Then

we set the current weight setting and link utilization to be

the best weight setting and utilization (line 3-5). In each

iteration of local search (line 6-11), we change the weights

of the links (line 7). When we obtain a weight setting, we

use the splitting ratio function to optimize the splitting ratio

of the flows coming out the SDN nodes (line 8). We evaluate

the maximum link utilization with the current weight setting

and the optimized splitting ratio (line 9-11). We iterate to get

the solution finally.

Algorithm 2 shows when the weight setting is fixed, how

to optimize the splitting ratio of the SDN nodes. We firstly

construct Directed Acyclic Graphs (DAGs) for treating every

node d as a destination node (line 2). DAG in the algorithm

denotes the matrix that stores all possible paths between the

565

Algorithm 2: Splitting ratio

Input: local optimal weight setting currweights, CN ,

TM , C, V , A
Output: U

1 foreach vertex d ∈ V do
2 DAG =Dijkstra Shortest Path(currweights, d) ;

3 foreach arc (i, j) in outgoing links(SDNi) do
4 DAG(i, j) = 1;

5 if check loop(DAG) == 1 DAG(i, j) = 0;

6 foreach vertex v in Topological Sort(V) do
7 Route Flow (v);

8 expr = Multi Commodity (A, V);
9 cplex solve (expr);

nodes to a specific node d. DAG(i, j) == 0 if there is no link

between i and j in the DAG and DAG(i, j) == 1 if there

is a link between i and j in the DAG. When constructing a

DAG, we first choose a node and find all the shortest paths

to this specific node with Dijkstra Shortest Path function. The

shortest paths tree ensures there are no loops. Then we add

all the edges that are outgoing links of the SDN nodes to

the DAG (line 4). If there is a loop after adding a link, we

remove the link and ensure there is no loops (line 5). When

the DAG is constructed, we can route the traffic demands in

Route Flow function. We choose the node according to the

topologically sort order so that all the flows passing through

the current node are calculated before assigning the flows to

the next hops. Then we route the flows to all outgoing links

in DAG (line 6-7). If the node chosen is a SDN node, the

splitting flows are denoted as xi and are added to the next

hops. The flows to the same destination are injected to the

next hops in an arbitrary proportion. We can exploit the hash

function to map flows to different next hops to realize the

splitting of the flow; if the node chosen is a regular node, the

flows are equally split among the shortest paths and added to

next hops. In this way, we have all the flows from the chosen

node to node d routed (line 7). We repeat this process and

route the flow of every node in topologically sort order. As

the weight setting is fixed, our problem boils down to a multi-

commodity problem (line 8). We can list the expressions and

employ the CPLEX to solve the optimized problem (line 9).

Cplex solves LP problems using dual simplex algorithm and

the complexity of the algorithm is in polynomial time.

The complexity of the floydwarshall, neighbour search are

both O(n3) and the complexity of Dijkstra Shortest Path is

O(n2). The complexity of other functions are no more than

O(n3). Therefore, the overall complexity of the algorithm is

O(n3).

B. A simple example of the algorithm

We use Fig.2 as a simple example to illustrate our algorithm.

The graph on the top is a simple network topology. It has three

nodes and node 0 is a SDN node. We first search the neighbour

of our present weight setting. We assume that the numbers on

the links are the weights of the links for the moment and in

this example, they are 2,3,4, respectively. When the weight

setting is determined, we construct the DAGs to node 0,1,2,

respectively, as shown in the bottom three graphs in Fig.2. The

solid lines are the shortest path we find exploiting the Dijkstra

algorithm. Because the flows pass through the SDN nodes can

flexibly choose the outgoing links regardless of their weights,

we use dotted lines to represent the extra possible links that

the SDN node can split the flows to. As long as these extra

links cause no loops in the network, we can add them into the

DAG. Then in each DAG, we can calculate the flows on each

link corresponding to the nodes in topologically sort order. We

take the DAG in the middle for an example. The result of the

topologically sort is 0,2,1. We choose 0 first and it is a SDN

node. x1, x2 denote the splitting ratio of node 0 on link (0, 1)
and link (0, 2). We can get the equation x1 + x2 = TM01.

At the same time, the flows are routed to node 1,2 and we

add the flows x2 to the traffic demands TM21. Therefore,

all the flows originated from node 0 have been assigned and

the flows that has to be transferred from node 2 to node 1

are TM21 + x2. Then we choose the second node 2 in the

order and it is a regular node. We route the flow to the next

hop on the shortest paths to node 1. The flows on the link

(2, 1) are TM21+x2 and all the demands to node 1 are meet.

The procedures are the same when we calculate the flows on

the links in the other two DAGs. We add up the flow load

on each link and restrict the flow load as (1)-(5) shows. The

specific equations and inequations are listed in Fig.2. Finally,

we take advantage of CPLEX to solve the linear programming

problem.

 �

	

�

� �

�����
��

 �

	

 �

	

 �

	

���������
����
���
 ���������
����
���	 ���������
�����
����

� �

� � �
�

� ��
� ��
� ��
�

� ��
� � ��
� � �
�

� ���

Fig. 2. A simple example of the algorithm

V. EXPERIMENTS AND EVALUATION

In this section, we conduct the simulation experiments. The

topologies are shown in TABLE I. They are the same with

566

the topologies in [3], which are inferred by Rocketfuel [17].

The traffic matrices are randomly generated. Due to space

limitations, we choose the first three topologies to conduct

the experiments. The results are similar for the remaining two

topologies.

TABLE I
THE TOPOLOGIES FROM ROCKETFUEL

Name Nodes Links
Abovenet 17 74
Ebone 18 66
Exodus 21 72
Sprint 27 126
Tiscali 28 132

A. Number of the SDN nodes

Firstly, We should determine the number of SDN nodes

in the hybrid network before the experiments of comparison.

We decide to deploy the SDN in the network with greedy

algorithm. We choose to deploy the nodes whose outgoing

link has the maximum link utilization every time. We plot

the curves that the maximum link utilization varies with the

increasing of the deployment rate and the results are shown

in Fig.3.

� ��� ��� ��� ��� ��� ��	 ��
 ��� ��� �
���

���

���

���

��	

��

���

���

�

��������������

�
��

��
��

����
��
��
����

��
��
�

��� �����
!����
!��
�"

Fig. 3. The number of SDN nodes in the network

From Fig.3, we can obtain that the maximum link utilization

decreases with the increasing of the deployment rate. When

the deployment rate ranges from 0%−30%, the maximum link

utilization is decreasing rapidly. When the deployment rate is

greater than 30%, the variation of maximum link utilization

becomes relatively flat. We demonstrate that when deploying

the SDN at a small rate, we can obtain the most of the benefit.

B. simulation experiments

From the aforementioned experiments, we determine that

the deployment rate of SDN is 30% in SOTE and WFSOTE.

We deploy the nodes in the network according to their outgo-

ing links with maximum link utilization. To compare with the

maximum link utilization in OSPF, we carry out the experi-

ments in [3]. We implement the SOTE and all parameters in

the heuristic algorithm are set the same with the parameters

in [3]. The iteration times are set to 5000 (SOTE5000), 2000

(SOTE2000), 1000 (SOTE1000), respectively and the weights

of links are integers in [0, 20]. We also conduct the comparison

experiments in the scenario of [11] with fixed links weight

setting (WFSOTE). We carry out twenty experiments with

different traffic matrices and draw the Cumulative Distribution

Function (CDF) graphs of the maximum link utilization. The

results are shown in Fig.4, Fig.5 and Fig.6.

��� ���� ��� ���� ��� ���� ��� ���� ��	 ��	� ��

�

���

���

���

���

���

��	

��

���

���

�

������������������������

#$
%

&'(%
)%'&*!
'&*!+����,
'&*!+����,
'&*!+����,
&������

Fig. 4. The CDF curves of Abovenet

��� ���� ��� ���� ��� ���� ��� ���� ��	 ��	� ��

�

���

���

���

���

���

��	

��

���

���

�

������������������������

#$
%

&'(%
)%'&*!
'&*!+����,
'&*!+����,
'&*!+����,
&������

Fig. 5. The CDF curves of Ebone

��� ��� ��	 ��
 ��� ��� � ��� ��� ���
�

���

���

���

���

���

��	

��

���

���

�

������������������������

#$
%

&'(%
)%'&*!
'&*!+����,
'&*!+����,
'&*!+����,
&������

Fig. 6. The CDF curves of Exodus

567

As the above figures illustrate, our algorithm SOTE in the

figures obtains a lower maximum link utilization compared

with the other two algorithms. SOTE(5000) can improve the

overall maximum link utilization by 5% and our algorithms

with different iteration times do not have much effect on the

maximum link utilization. The maximum link utilization of

our proposed algorithm is near Optimal with a deployment

rate of 30%.

C. CPU time

We also conduct the experiments to measure the CPU time

of our algorithm. The experiments are done on a computer

with 2.6GHz Intel Core 4 CPU and 4GB memory. The CPU

time of the experiments on three different topologies are listed

in table II. We record the CPU time of 20 experiments and

calculate the average CPU time of three topologies.

TABLE II
THE CPU TIME OF DIFFERENT ALGORITHMS

Algorithms Abovenet Ebone Exodu
OSPF 8.8s 13.3s 16.8s
SOTE(1000) 10.3s 15.2s 22.4s
SOTE(2000) 19.7s 27.9s 37.4s
SOTE(5000) 49.1s 57.5s 87.4s
WFSOTE 16.6ms 21.8ms 24.8ms

As shown in table II, WFSOTE without iterations is gen-

erally faster than other algorithms. SOTE(5000), SOTE(2000)

can obtain a low maximum link utilization but occupy more

CPU time. We should set the iteration times to be 1000

where we can get a low maximum link utilization with shorter

CPU time. Moreover, in short terms, we can choose to timely

adjust the splitting ratio of the SDN nodes according to the

traffic demands without optimizing the link weights. In the

long terms, we can optimize the OSPF weights together with

adjusting the splitting ratio of the SDN nodes. In this way, we

can fully utilize the potential of the SDN in the network.

VI. CONCLUSION

The SDN/OSPF hybrid network traffic engineering is a

popular problem that raises people’s attention worldwide.

It deviates from the traditional traffic engineering scenario,

where the flows are always routed along the shortest paths.

The emerging of SDN provides a new method to solve the

traffic engineering problem. It can centrally control the flows

that directed to the outgoing links of the nodes, which is

similar with the model of multi-commodity. In this paper, we

concentrate on a new hybrid network scenario and propose a

novel algorithm SOTE to solve the traffic engineering prob-

lems in this scenario. Compared with other traffic engineering

algorithms, our algorithm performs better and obtains a lower

maximum link utilization. We also conduct the experiments

to show that a small portion deployment of SDN can reap a

great benefit, which is near the benefit of the full deployment

of SDN in the network.

In the future work, we will carry out the experiments on

the testbed and consider more hybrid network scenarios.

VII. ACKNOWLEDGEMENTS

This work is partially supported by the National Natural

Science Foundation of China (Grant No. 61202357, No.

61161140454), the Project for 2012 Next Generation Internet

technology research and development, industrialization, and

large scale commercial application of China (No. 2012 1763)

and the National High Technology Research and Development

Program of China (863 Program) (No. 20 11AA010704).

REFERENCES

[1] B. Fortz and M. Thorup, “Optimizing ospf/is-is weights in a changing
world,” IEEE journal on selected areas in communications, vol. 20,
no. 4, 2002.

[2] Y. Wang, Z. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in INFOCOM 2001. Twentieth Annual Joint
Conference of the IEEE Computer and Communications Societies.
Proceedings. IEEE, vol. 1. IEEE, 2001, pp. 565–571.

[3] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing ospf
weights,” in INFOCOM 2000. Nineteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 2. IEEE, 2000, pp. 519–528.

[4] ——, “Increasing internet capacity using local search,” Computational
Optimization and Applications, vol. 29, no. 1, pp. 13–48, 2004.

[5] M. Ericsson, M. G. C. Resende, and P. M. Pardalos, “A genetic algorithm
for the weight setting problem in ospf routing,” Journal of Combinatorial
Optimization, vol. 6, no. 3, pp. 299–333, 2002.

[6] M. Pióro, A. Szentesi, J. Harmatos, A. Jüttner, P. Gajowniczek, and
S. Kozdrowski, “On open shortest path first related network optimisation
problems,” Performance evaluation, vol. 48, no. 1, pp. 201–223, 2002.

[7] A. Sridharan, R. Guerin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current ospf/is-is networks,” IEEE/ACM Trans-
actions on Networking (TON), vol. 13, no. 2, pp. 234–247, 2005.

[8] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, “Achieving high utilization with software-driven wan,”
in Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM.
ACM, 2013, pp. 15–26.

[9] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience with
a globally-deployed software defined wan,” in Proceedings of the ACM
SIGCOMM 2013 conference on SIGCOMM. ACM, 2013, pp. 3–14.

[10] S. Vissicchio, L. Vanbever, and O. Bonaventure, “Opportunities and
research challenges of hybrid software defined networks,” ACM SIG-
COMM Computer Communication Review, vol. 44, no. 2, pp. 70–75,
2014.

[11] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 2211–2219.

[12] D. Xu, M. Chiang, and J. Rexford, “Deft: Distributed exponentially-
weighted flow splitting,” in INFOCOM 2007. 26th IEEE International
Conference on Computer Communications. IEEE. IEEE, 2007, pp.
71–79.

[13] ——, “Link-state routing with hop-by-hop forwarding can achieve
optimal traffic engineering,” IEEE/ACM Transactions on Networking
(TON), vol. 19, no. 6, pp. 1717–1730, 2011.

[14] K. Xu, H. Liu, J. Liu, and M. Shen, “One more weight is enough: Toward
the optimal traffic engineering with ospf,” in Distributed Computing
Systems (ICDCS), 2011 31st International Conference on. IEEE, 2011,
pp. 836–846.

[15] M. Zhang, B. Liu, and B. Zhang, “Multi-commodity flow traffic engi-
neering with hybrid mpls/ospf routing,” in Global Telecommunications
Conference, 2009. GLOBECOM 2009. IEEE. IEEE, 2009, pp. 1–6.

[16] N. Garg and J. Koenemann, “Faster and simpler algorithms for multi-
commodity flow and other fractional packing problems,” SIAM Journal
on Computing, vol. 37, no. 2, pp. 630–652, 2007.

[17] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment. ACM, 2002, pp.
231–236.

568

