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Abstract—Software Defined Networking (SDN) offers traffic
characterization and resource allocation policies to change dy-
namically, while avoiding the obsolescence of specialized for-
warding equipment. OpenFlow, a SDN standard, is currently the
only standard that explicitly focuses on multi-vendor openness.
Unfortunately, it only provides for traffic engineering on an
integrated basis for L2-L4. The obvious approaches to expand
OpenFlow’s reach to L7, would be to enhance the datapath
flowtable, or to utilize the controller for deep packet inspection,
both introduces significant scalability barriers.
We propose and prototype an enhancement to OpenFlow based

on the idea of an External Processing Box (EPB) optionally
attached to forwarding engines; however, we use existing protocol
extension constructs to control the EPB as an integrated part of
the OpenFlow datapath. This provides network operators with
the ability to use L7-based policies to control service insertion
and traffic steering, without breaking the open paradigm. This
novel yet eminently practical augmentation of OpenFlow provides
added value critical for realistic networking practice. Retention
of multi-vendor openness for such an approach has not been
previously reported in literature to the best of our knowledge. We
report numerical results from our prototype, characterizing the
performance and practicality of this prototype by implementing
a video reconditioning application on this platform.

I. INTRODUCTION

Internet usage has exploded within the last decade, with

smart appliances, such as smartphones and tablets, becoming

as ubiquitous as a toaster oven in a consumer’s home. These

devices offer users rich access to interactive network-centric

content such as streaming high-definition video and access to

real-time multi-player games. Companies often rely on spe-

cialized network appliances, known as middleboxes, in order

to manage these new traffic patterns. The term middleboxes

covers an umbrella of various devices (deep packet inspection,

load balancer, gateway), all providing network managers with

the ability to install new functionality into their network.

Traditional network switches and routers only look at a

packet’s header to determine the packet’s route. Network

vendors differentiate their products apart through proprietary

mechanism for processing this data, creating a fragmented

market where vendors market their network equipment based

on the equipment’s processing performance. Competition be-

tween vendors has driven innovation within networks, but

the proprietaries and closed nature characteristics for these

devices have also impaired network administrators abilities to

introduce custom features for their network deployment.

Software defined network (SDN) paradigm, decouples a net-

work device’s control and data (forwarding) plane, essentially

separating the device’s mind from its body, while providing an

interface for the two planes to continue communicating. The

device’s control plane (the mind), lies on a separate commodity

hardware, known as a controller, where it delegates the actions

for the network device. OpenFlow, a SDN protocol provides

an open interface, which defines the structure and mechanics

for the intercommunication between the decoupled planes. The

data plane is responsible with forwarding/dropping traffic as

specified by the controller. SDN encourages rapid development

cycles and reduction in capital and operating expenditures

(CapEx/OpEx) as network functions shift from purpose-built

network elements to commodity hardware [1]. With SDN,

companies can have their network managers program new

features within commodity hardware rather than wait for

network vendors to introduce it. OpenFlow performs traffic

engineering using a match-action paradigm based on Layer 2

- 4 header information [2][3]. An OpenFlow match does not

look into the Application header, leaving out some potential

traffic engineering possibilities. Traffic engineering based on

Application domain information would allow network oper-

ators the ability to build policies that could expedite traffic

based on the content of its URL or shape traffic based on

delay experienced on all video traffic. We propose extending

OpenFlow using their experimenter action property to control

and activate policies for deep packet inspection functionality

within a commodity hardware, resolving OpenFlow’s limita-

tion in traffic engineering on Application domain information.

Our approach uses an open, reusable extension in an

OpenFlow-recommended manner to allow service insertion.

By performing service insertion within the OpenFlow frame-

work, no additional software or end-point signaling is nec-

essary for devices to benefit from a value-added network

service. A commodity hardware box running Linux provides

additional processing at wire speed without the use of any

closed proprietary hardware.

We proved the usefulness of this approach by performing

video reconditioning based on video signaling properties. This

involved performing operations on information gleaned from

Layer 5 - 7 data, allowing the network to perform service-

aware routing. Service-Aware routing allows traffic steering

based on bandwidth capacity, malicious software detection,

content-availability, and user-subscribe service and thus has a
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strong influence over user’s quality of experience (QoE)[4][5].

QoE describes the user’s perceived experience for a provided

service. Packet loss, delay, and jitter (variance of delay) can

affect the quality of service (QoS) for an application [6]. We

evaluated our architecture against a standard OpenFlow net-

work based on these QoS metrics and video quality assessment

measurements.

II. ARCHITECTURE DESIGN

Additional processing control within the OpenFlow frame-

work, in support of policies expressed in L5-L7 semantics,

can be accommodated in three locations: the controller, the

datapath, or a separate additional device. The first two pro-

vide obvious possibilities for such enhancement, but are not

scalable. Including additional processing within the controller

not only breaks the policy/mechanism separation paradigm,

but can very quickly overwhelm a controller, which is typ-

ically envisaged as being software (for agility) running on

commodity hardware, and controlling multiple datapaths. The

second choice is expanding the definition of OpenFlow so that

a datapath flowtable can represent match fields from higher

layers. This would allow the controller to express policies

easily, but realizing such a datapath would be prohibitively

complex if attempted in hardware, due to the plethora of

application protocols.

We follow the third option in our approach: that of an

additional “helper box” that can be slaved to the datapath, and

used as needed by the datapath to classify traffic using higher

layer headers or payload. To the controller, this appears as the

capability of the datapath itself. To the datapath, this becomes

a problem in simply translating extension matches to the

terms understood by the helper box when new flowtable rules

are installed, and installing flows to guide traffic requiring

such classification to and from the helper box. Scalability is

retained, since the helper box can operate independently of

the datapath, so that the datapath’s processing of other traffic

(not requiring such classification) is only minimally affected.

The helper box itself can be made as powerful as necessary

to ensure the desired performance for the traffic it classifies,

and multiple helper boxes can be installed to perform load

balancing.

We design such a complete system and discuss the design

and architecture issues below. Our helper box contains an

open-source Deep Packet Inspection (DPI) engine software.

Our OpenFlow extension provides a structure for expressing

rules with match fields that can be satisfied by this box. In what

follows, we refer to the helper box as the External Processing

Box.

The OpenFlow External Processing Experiment’s design is

split into two core pieces:

• Modifying the OpenFlow protocol

• External Processing Box (EPB)

Installation for the external processing functionality within

the OpenFlow protocol, requires registration of an experi-

menter OpenFlow Action on both the control and data plane

endpoints; the controller and the datapath.

Fig. 1: External Processing Action Message Format

A. Experimenter OpenFlow Action: External Processing
An Experimenter OpenFlow Action has been defined to

manage specified traffic flows and issue policy instructions

to the EPB. Throughout this literature this Experimenter

Action will be called the External Processing Action. An

Experimenter Action requires an experimenter ID to be issued

to identify the manufacturer for the operation [7]. The External

Processing Action is illustrated in Figure 1 and requires the

following arguments:

• Control port: the switch port dedicated to transmitting

control messages (EPB Policy Message) to the EPB

• Data port: the switch port dedicated to transmitting data

to the EPB

• EPB library ID: the policy identifier to instruct the EPB

• EPB library options: library operation for the specified

Library ID

• EPB Search Field: defines the construct that the controller

wishes for the EPB to perform its instructions on. This

construct has three components: type, length, and value

The EPB Search Field is intended to allow comparison

between values, much like OpenFlow Match fields are used to

match bits within a packet’s Layer 2 - 4 headers. EPB Search

Field is used to pass search parameters from the controller to

the EPB.

B. Experimenter OpenFlow Message: EPB Policy Message
The purpose of EPB Policy Message is to orchestrate policy

creation within the EPB. Policy creations involves installing

a new rule into the EPB’s DPI Engine and instructing the

Traffic Shaper how to steer the outgoing packets. The Datapath

is responsible for determining when this message should be

forwarded to the EPB based on uniqueness of the traffic that

triggered the action that is discussed in detail in Section II-D.

The EPB Policy Message contains a 32-bit Experimenter ID

and a 32-bit Experiment Type [7]. The OpenFlow switch sets

Experimenter ID to the EPB ID and uses the action’s Library

ID for the Experimenter Type.

C. OpenFlow Controller
We have modified a Ryu controller to communicate our

External Processing Action to an OpenFlow switch. Using this

approach, the controller can provide instructions to the EPB

for some matched traffic. At its minimum case, the controller

needs to have an OpenFlow Match setup to steer traffic towards

the EPB for additional processing.
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D. OpenFlow Switch

Open source software switches offer an open programmable

platform, a feature which hardware switches can not provide

without access to the vendor’s firmware. FlowForwarding’s

Link is Not Closed (LINC) OpenFlow software switch was

selected for its ease in developing and testing new OpenFlow

features [8]. Along with recognizing the External Processing

Action, the OpenFlow switch is responsible for generating and

sending an EPB Policy message for the traffic that triggered

it. To achieve this the switch must maintain an in-memory

database to track whether an EPB Policy message needs to

be sent to the EPB via its control interface. The in-memory

database’s uses the External Processing Action parameters and

the identifiers from the header fields of the triggered flow’s

packet. The in-memory database stores the flow’s polling

value, and the number of occurrences in which the key has

been checked against the database. The polling parameter

is used to determine the frequency an EPB Policy message

should be issued. Depending on the polling bit’s value; an

EPB Policy Message is transmitted for the first packet that

triggered the action or not at all. The insertion of EPB policies

operates reactively to traffic triggering External Processing

Action by the Datapath. The polling bit and the uniqueness

of the trigger traffic characteristics determine whether EPB

message is generated or not.

The EPB Policy generated has the standard OpenFlow

structure for a symmetric message with the message type

containing the Experimenter class value. The Experimenter

message contains a 32-bit Experimenter ID and a 32-bit

Experiment Type [7]. The OpenFlow switch sets Experimenter

ID to the EPB ID and uses the action’s Library ID for the

Experimenter Type. The remaining structure has been defined

in Section II-B. The EPB Policy Instruction is encapsulated

inside a UDP packet. The following list demonstrates the UDP

structure sent through the EPB’s control interface. A non-

routable IP address 0.0.0.0 is used identify control messages

between OpenFlow switch and the EPB [9]. The EPB is

responsible for checking whether packets received from its

control port has the appropriate structure before attempting to

dissect the EPB Policy message within the packet, otherwise

the packet is dropped.

E. External Processing Box

The External Processing Box is a commodity box that

performs additional processing on packets sent to it by the

datapath. The EPB can be viewed as a middlebox platform

for DPI powered applications. The current model provides

only a subset of possible processing components that can

be implemented within such a box. The EPB used in this

experiment has the following four components: OpenFlow

Dissector Agent, EPB Policy Interface, Deep Packet Inspection

Engine (DPI Engine), and the Traffic Shaper, also illustrated

in Figure 2.

1) OpenFlow Dissector Agent: The OpenFlow Dissector

listens to all traffic entering the EPB’s control port from the

OpenFlow Switch and dissects the traffic to determine whether

Fig. 2: External Processing Architecture

the traffic has OpenFlow encapsulated message containing

an EPB Policy Message. Packets containing the encapsulated

message are then parsed by the Dissector and sent to the

EPB’s Policy Interface via a Unix domain socket. A Unix

domain socket provides inter-process communication channel

for exchanging data between two processes. If the retrieved

packet does not contain an encapsulated EPB Policy message

then that packet is dropped.

2) External Processing Box Policy Interface: The EPB Pol-

icy Interface is responsible for deconstructing the EPB Policy

Messages it receives into policy semantics for the DPI Rules

Engine. The configuring of the DPI Rules Engines involves

writing policies within a configuration file and restarting DPI

service to activate the new policies. The OpenFlow Dissector

and the Traffic Shaper communicate to the EPB Library.

3) Deep Packet Inspection Engine: DPI Engine refers to an
application with the ability to examine the data (Application

layer) of a packet. The DPI Engine provides a sensing mecha-

nism for the EPB by detecting what a packet payload contains

and sends a descriptor along with the packet itself to the Traffic

Shaper. To achieve this, an open-sourced Network Intrusion

Detection System (NIDS), Snort, was selected. Any applica-

tion with DPI capability could serve as a DPI Engine for this

experiment. Several open-source NIDS solutions (Bro, Snort,

Suricata), were evaluated for their strength and weaknesses

[10][11]. Snort was selected due to its lightweight nature, ease

of use, and active community.

Snort is used to detect and classify packets sent through

it for the next EPB’s process (the Traffic Shaper) to handle.

The Traffic Shaper is responsible for listening to incoming

traffic. Within Snort’s rule options, messages may be logged

along with the packet that triggered it. This allows for packet

description and/or other messages to be sent to the Traffic

Shaper, which it can then be used to categorize the type of

traffic and what action should be taken for that packet.

4) Traffic Shaper: Traffic Shaper is responsible for mon-

itoring packets passing through the DPI Engine. The EPB

Policy Interface instructs the Traffic Shaper’s actions based

on a given packet’s classification. Based on these actions the

Traffic Shaper determines which port that traffic should exit

the Datapath. The Traffic Shaper shapes outgoing packets by

attaching a VLAN ID tag corresponding to the selected port
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before transmitting the packets out of the EPB.
Traffic Shaper maintains three conduits of information:

receiving data from the DPI Engine, and transferring data

to the EPB Library or back to the Datapath. Data from the

DPI Engine is received from the DPI Engine serves. Based

on this received data, the Traffic Shaper may transfer control

data in the form of an EPB Policy message to the EPB Policy

Interface and/or forward the original packet back to Datapath

after processing. The egress connection between the EPB and

the Datapath serves as a VLAN trunk, allowing any VLAN

tagged traffic to travel through it. The Datapath is programmed

to pop VLAN tags off incoming traffic from this VLAN trunk

port and then forward that traffic out the switch port with the

matching VLAN tag value.

III. PROOF OF CONCEPT PROTOTYPE

For our prototype, we evaluated the video quality of Video-

On-Demand streams between a media server and a client to

assess the effect the EPB has on the network topology. Our test

scenarios, include a baseline and three different traffic patterns

test scenarios, which will be evaluated based on the delay

conditions faced by the client and/or the media server before

and/or after the EPB interaction is applied. QoS and video

quality assessment metrics will illustrate the overall network

performance benefits that the EPB brings for streaming video.

While this prototype demonstrates the effect the EPB can

have on traffic redirection on Application domain data, this

same prototype can be used to perform packet scheduling on

Application data with a minor modification.
Test Scenarios
1) Baseline condition, video streams traveling the best-

effort route with no Traffic Controller activated delay

or EPB intervention

2) Video streams traveling a best-effort route with no EPB

intervention

3) Video streams traveling a best-effort route with the EPB

involved in the circuit

4) Video streams traveling a high availability route due to

EPB intervention

Network Delay Conditions
• Network delay only affecting normal communication

route between the client and the OpenFlow Network

• Network delay affecting all normal communication

routes.

Our prototype simulates an environment where requests and

responses between a client and media server from streaming

video must travel through our OpenFlow network. Figure 3

illustrates a logical topology map for this environment. Traffic

propagating through the best-effort routes was treated with

variable amount of delay. These clouds are simulated by

Traffic Controllers, as seen in Figure 4. The Traffic Controllers,

introduce outgoing traffic delay with a variance of 100ms ±
50ms. Delays on networks are rarely uniformly distributed, so

to simulate real-life network delay we have programmed our

Traffic Controllers to have a normal distribution of variation

in delays [12].

Fig. 3: Logical Topology

Fig. 4: Physical Topology

A single switch is used to provide the client and the

media server with dual access to the OpenFlow network.

Each client and the media server’s connections were separated

into different VLANs. This separation allows the switch to

be viewed as two separate logical switches to the end-hosts

and thus does not allow intercommunications between them

through the device. Connections between the Traffic Con-

trollers to the OpenFlow datapath and Switches are displayed

as a bi-directional connection in Figure 4, but are actually dual

connections each with a separate directional stream of data.

This simplified debugging connectivity issues with a packet

analyzer.

A. Testing Tools and Resources

To objectively evaluate video quality, we used Peak Signal-

to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM)

to measure the perceived visual quality. We used Video-Tester

[13], a video assessment platform that provides SSIM, PSNR

measurements, Quality of Service metrics (like a jitter), among

other measurement values. Video-Tester comes built with an

RTSP server, client, a traffic sniffer, and a HTTP server for

platform management messages. In order to use the Video-

Tester with our prototype, the code was modified to use

a constant port for its internal RTSP server, due to VOD

Reconditioning policies requirement for the EPB.

Videos used for evaluating this architecture are among

the videos sequences used predominately in video research

[14]. Video-Tester requires that their client have the requested

video’s properties such as the frame per seconds (fps) and

the intended bit rate. The video’s fps configured matches

the original videos frequency, while the bit rate values were

subjectively determined based on [15] and the videos content

these values are expressed Table I.
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TABLE I: Test Video Properties

Video Name Frames Per Seconds (fps) Encoding (kbps)
akiyo cif.264 25 128
football cif.264 25 282
foreman cif.264 25 128

IV. RESULTS

For each of the test scenarios, five tests were performed

with three videos resulting in 105 total tests. Charts displaying

this information have grouped data sets by their video and/or

categorized by the test suite it represents. Table II illustrates

the test suite’s identifier and a short description.

TABLE II: Test Scenarios

Identifier Description
Test A Baseline, no Traffic Controller or EPB involved
Test B EPB with Traffic Controller 1 activated
Test C EPB with both Traffic Controllers activated
Test D Only Traffic Controller 1 activated
Test E Both Traffic Controllers activated
Test F EPB with Traffic Controller 1 and Expedited Routes activated
Test G EPB with both Traffic Controllers and Expedited Routes activated

As seen in Figure 5, all videos experienced the same

treatment through the network despite their video’s varying

properties. Each video experienced their lowest jitter during

the baseline test. As delay is introduced into the network, each

video experienced an increasing amount of jitter, as would be

expected. These two figures give us an overall baseline for our

entire network before EPB is included into the network. Later

figures will compare the effect EPB has on the video quality

based on PSNR and SSIM measurements.

PSNR-based Mean Opinion Score (MOS) for best-effort

routed video streams maintained a similar score with and

without the EPB. Figure 6 shows that there is not a significant

difference between these values, thus the inclusion of the EPB

into the circuit even when it is not expediting traffic, had

little effect on the video quality. The MOS scores were at

its highest with baseline traffic, but expedited traffic closely

mirrored its average MOS. Figure 7 showed that when both

Traffic Controllers are activated, the system without EPB has

a slightly higher MOS score than best-effort traffic with the

EPB. When expedited service is included, the video scored its

highest MOS.

Fig. 5: Jitter experienced for each of the videos

Fig. 6: MOS with Traffic Controller 1 activated versus baseline and
expedited

Fig. 7: MOS with both Traffic Controllers activated versus expedited

SSIM measurement for Test B and D (Figure 8) showed a

similar assessment as the previous tests with the EPB inclusion

within the circuit and not hampering video quality. Unlike

our previous tests, comparison between Test A and F shows

that the expedited service measured a higher quality than our

baseline test. We suspect that Test F has a higher SSIM score,

due to Traffic Controller involvement within the baseline test.

Baseline tests traveled via best-effort route as described in

Figure 4, and thus must travel through the Traffic Controller.

While the Traffic Controller is not emulating any delay for

the baseline, traffic still endured some propagation time due

to traffic traveling up and down the stacks within the Traffic

Controller. Further tests will be necessary to validate whether

or not that is the case.

Test G’s SSIM measurements exceeds the video quality of

the other two tests as expected due to expedited traffic reducing

the amount of delay traffic faces, this can be witnessed in

Figure 9. Test C and E comparative scores, however does not

match the predicted trend. Test C has a noticeable higher SSIM

value than Test E. It is our belief that this is being caused by

the small sample size; further test data would normalize this

to fit the common assessment.

As expected our results show expediting traffic towards an

high availability route provided a better quality of experience

based on the gathered video quality assessment measurements.
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Fig. 8: SSIM with Traffic Controller 1 activated versus baseline and
expedited

Fig. 9: SSIM with both Traffic Controllers activated versus expedited

Degraded and/or delayed multimedia traffic to our OpenFlow

network was shown to have a strong influence on the assessed

video quality experienced by the end-user. Despite giving

degraded video traffic expedited treatment our test results show

that the EPB could not further improve the experienced quality,

demonstrating that the EPB is dependent on the quality of

arriving network packets. If the end-user’s video player has

already passed the delayed multimedia traffic, any expedited

treatment given to the traffic by the EPB is a waste, as the

player will no longer have any use of that particular traffic. On

the other hand, expediting traffic away from a delayed network

paths has been shown to improve received video quality. The

additional propagation time the EPB spends processing and

rerouting the packets, has also been shown to have little to no

effect in comparison to baseline conditions.

V. RELATED WORK

Including an OpenFlow Extension to OpenFlow’s table to

accept Application layer metadata has been suggested by

industry. Standardization would need to be required in order

to facilitate a common App ID and metadata format. Without

standardization vendors’ devices would not be interchangeable

as each device could have inconsistent App ID and metadata

thus increasing network complexity, and reducing equipment

efficiency [5]. Qosmos ixEngine is a software development kit

(SDK) of libraries and tools that can identify applications and

extract metadata such as packet loss, latency, codec, mobile ID,

and attached documents ran on Intel Data Plane Development

Kit (DPDK) [1]. This indicates that there exists industry

interest in systems similar to what the EPB can provide.

FRESCO[16], an OpenFlow security application framework

allowed the integration of legacy security application, like

Snort, to interface with FRESCO’s Event Management to

generate flow rule logic when an alert is generated. The

key difference between this approach and the one we have

suggested is the fact that FRESCO sits on control plane while

ours sits within the data plane alongside with the Datapath.

VI. CONCLUSIONS

We have proposed an architectural extension to OpenFlow

to allow management and granular control over traffic through

a datapath that match desired L7 characteristics. The value of

our extension lies in its seamless integration into the open

multi-vendor nature of OpenFlow, while providing flexibility

and scalability. Our architecture exhibits an effective pro-

gramming model for performing service-aware routing using

commodity hardware. We have realized a practical prototype

that demonstrates the realistic nature of the solution, and its

potential feasibility in practice. Quantitative results from a

study of our prototype show that this approach can provide

the desired traffic engineering results while imposing a low

overhead that can be easily tolerated, for the challenging task

of in-flight video reconditioning without explicit cooperation

from end-systems.

Our architecture is not limited to video or other real-

time traffic, or to traffic scheduling or re-routing applications.

Our approach can be adopted to provide a variety of other

value-added network services inside the network; such as

security services to detect or eliminate malware embedded

in unwary user traffic, context-sensitive services for fast-

breaking situations in dissemination of news or public service

information, or even as pure network analytics to detect if

there are any statistically significant unexpected trends in

delay characteristics of specific flows of traffic, indicating

the possibility of attacks or violation of neutrality by some

carrier. As industries continue to move their on-premise

infrastructure to cheaper cloud computing resources, SDN

powered clouds offer network managers the ability to maintain

elastic services and to strategically steer resources for high

performing applications and users. Our EPB approach would

enable orchestration of traffic engineering, or content- and

resource-management in such scenarios. In brief, we believe

that our work in demonstrating the practicality of such an

approach opens the door to many fruitful areas of research.
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