Enabling ICN in IP Networks Using SDN

Markus Vahlenkamp, Fabian Schneider, Dirk Kutscher, Jan Seedorf
NEC Laboratories Europe, Heidelberg, Germany

<first.last>@neclab.eu

Abstract—In this work, we outline how to enable Information-
Centric Networking (ICN) on existing IP networks, such as ISP
or data center networks, using Software-Defined Networking
(SDN) functions and control. We describe a mechanism that
requires neither new or extended network/L3 and transport/L4
protocols nor changes of ICN host network stacks, and supports
aggregation of routes inside the SDN controlled network. The
proposed solution is agnostic of the specific ICN protocol in use,
and does not require all network elements to be SDN-enabled. It
supports advanced ICN routing features like request aggregation
and forking, as well as load-balancing, traffic engineering, and
explicit path steering (e.g., through ICN caches). We present
the design as well as our first implementation of the proposed
scheme—based on the Trema OpenFlow controller-framework
and CCNx.

I. INTRODUCTION

The Software-Defined Networking (SDN) paradigm pro-
poses an open interface to network element (e.g., switches,
routers) that enables programming the behaviour of entire
networks. In this work, we apply SDN to a new type of
networking: Information-Centric-Networking (ICN) [1].

In the ICN paradigm consumers send content requests to
the network, asking for Named Data Objects (NDOs) that have
been published before and that are available in one or many
copies in the network. The network is thereupon responsible
for the content acquisition and delivery to the consumer.

Existing Approaches to Realize ICN: An ideal or native
deployment of ICN requires all user devices, content sources
as well as all intermediary network elements to be ICN
aware. We do not believe that in the near future such an
ICN deployment is viable given the need to exchange or at
least update all networking equipment installed today. In this
work we present a migration path towards ICN, through SDN-
enabling more and more parts of the network.

A slightly different solution to our approach has been
presented by Blefari-Melazzi et al. [2]. Their approach is based
on OpenFlow switches and dedicated border nodes which
perform name-to-location resolution — with the help of an
external system — for the requested NDO. The proposal defines
a new IP option which is supposed to include the requested
NDOs name and an ICN specific transport protocol.

Benefits of Our Solution: Our SDN backed ICN de-
ployment seeks to advance the approach of Blefari-Melazzi
et al., providing the following benefits: (i) Facilitate ICN
deployment over existing networks. We particularly focus on
initial and partial ICN deployments that can emerge with
time. We achieve this by allowing for the use of off-the-
shelf network protocols and network stacks in host operating

978-1-4799-1270-4/13/$31.00 (©2013 IEEE

+
+| Content
+ | source

Fig. 1.

Overall Operation

systems, i.e., unmodified IP and UDP. (ii) Routing or content
location learning, is simplified through separating routing
and forwarding through an SDN approach. The centralized
view of the controller enables easier path selection/finding
and more sophisticated forwarding decisions. Moreover, state
maintenance and complexity requirements on network ele-
ments can be kept low and actually moved between SDN
switches and controllers. (iii) Routing can be further improved
through knowledge about both interests/requests and publica-
tions/content locations. For instance, multiple requests can be
aggregated into one or split across multiple paths.

II. PROPOSED APPROACH

We assume an ICN protocol on top of the Internet Protocol,
specifically we assume that ICN messages are transferred
with UDP or TCP. The generic method is to enable an SDN
controller to install appropriate forwarding state for an ICN
request in a way so that network elements only have to support
IP forwarding and do not require ICN protocol knowledge.
This method is leveraging ICN protocol Message IDs and
features of SDN instantiations such as OpenFlow [3] to rewrite
packet header information. For our solution we require:

1) An SDN network element matchable ICN Protocol Iden-
tifier that is carried by all ICN packets.

2) A publicly routable network address (I1.C.N.P.) per do-
main that is to be announced on every SDN enabled
network element and made public via e. g., DNS.

3) The object’s name, which is used to determine the path
of the packets (routing).

4) A Message ID, which will be used for forwarding de-
cisions in the network elements on the determined path.
The Message IDs will replace destination IP addresses in
requests and source IP addresses in responses.



Request Forwarding: Figure 1 shows the processing of
ICN requests. When a Requester R wants to query an object
from the ICN service an IP packet is sent (1) with destination
IP address of I.C.N.P. The destination port number will be set
to the ICN Protocol Identifier. As application payload R will
follow the specification of the ICN protocol which includes at
least the name of the requested object.

S1 will try to match (2) the packet to its rules and find
that only the “default ICN” rule matches. This rule matches
for the combination of the specific I.C.N.P. and ICN port.
Subsequently the switch sends the packets to the Controller
C. Upon reception of the packet by C (3), C will parse the
ICN protocol payload and extract the requested object name.
Next the location of the NDO, that is the address of a cache
that can serve the requested object, is determined (4). Then
the IPs and Port numbers of the packet are rewritten: The
new destination IP is the IP of the cache from which the
object should be served. The new source IP is the MsgID.
The destination port number is kept to identify the packet as
ICN. In addition the source port number is changed, in order
to identify the “ingress” network element. Next (5) C installs
forwarding rules on all the SDN network elements on the path
to the content source and sends the re-written packet back
to S1. Eventually (6), the packet is forwarded to the content
source, the cache serving the object.

Response Forwarding: Steps 7-9 of Figure 1 show the
processing of ICN responses. When requests arrive at the
content source they will be processed and a corresponding
response will be generated. The first SDN enabled element
will forward the first response packet to the controller. This
can be achieved by matching for ICN in the source port.
However the controller might already have installed a specific
(based on the MsgID) or aggregated (based on the IRI) rule to
forward responses; in that case the packet(s) are not sent to the
controller. Then (7) the network forwards the packet(s) to the
origin, performing the address and port re-write on the egress
SDN node. When the response has been completely delivered
to R (8) the egress SDN node will notify C that all state for
MsgID can be removed (9).

III. IMPLEMENTATION

The Controller implementation consists of different parts,
as depicted in Figure 2. For each controlled switch, the
Trema Switch Manager (not depicted) forks a Switch Daemon,
that is responsible for the communication with its associated
OpenFlow Switch. Each packet yielded by the OpenFlow
Switches is, via the Switch Daemon, first delivered to the
Packet_In Filter, whose task is to filter out Link Layer
Discovery Protocol (LLDP) packets and deliver them to the
Topology component, who is likewise generating and receiving
those LLDP packets for the purpose of detecting the network
topology. According to our Packet_In Filter configuration, all
other packets are handed over to the CCNx-SDN-Controller
process.

The CCNx-SDN-Controller maintains a FIB to manage
the object name to ICN node address mappings. It learns
this information from observing name prefix announcement
traffic of the controlled CCNx nodes. Moreover, it processes

the incoming packets and further sends information back to

the OpenFlow Switch, via Packet_Out messages. The core
CCNx-SDN-Controller further utilizes the Topology compo-
nent to calculate paths through the network. The actual path
provisioning is partially delegated to the Path Manager, that
consistently handles the path creation.

Path Path CCNx-SDN
Manager Controller

&

9%
N

Flow_Mod o

Trema Controller
Framework

Packet_In
(!LLDP)

Packet_In
Switch Packet_In Packet In (LLDP)
’ — - Topol
Dacmon @— e

Packet_Out (LLDP)

OpenFlow
OpenFlow [ __ CCNx
Switch Node

Fig. 2. ICN-SDN Implementation Architecture

IV. CONCLUSION

In this work we introduce a mechanism to deploy ICN
protocols in IP networks via the assistance of the SDN
paradigm. Our approach utilizes smart packet header rewriting
in combination with a single IP prefix to initially contact
the ICN network. This approach is backed by the centralized
SDN controller, that is used to generate paths through the
SDN controlled network domain. The benefits include ease
of deployment in existing IP networks, not requiring addi-
tional transport protocols or extensions to the IP protocol
and separation of the ICN data and control plane. The latter
enables simpler ICN routing mechanism through centralized
knowledge as well as improved traffic engineering capabilities.
Furthermore our approach allows trading the need for keeping
state in network elements for reduced interactions between the
controller and network elements.

ACKNOWLEDGMENT

This work has been supported by the GreenICN project (GreenICN: Architecture and
Applications of Green Information Centric Networking ), a research project supported
jointly by the European Commission under its 7th Framework Program (contract no.
608518) and the National Institute of Information and Communications Technology
(NICT) in Japan (contract no. 167). The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the GreenICN project, the
European Commission, or NICT.

REFERENCES

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A
survey of information-centric networking,” Communications Magazine,
IEEE, vol. 50, no. 7, pp. 26-36, 2012.

[2] N. Blefari-Melazzi, A. Detti, G. Mazza, G. Morabito, S. Salsano, and
L. Veltri, “An openflow-based testbed for information centric network-
ing,” in Future Network Mobile Summit (FutureNetw), 2012, 2012, pp.
1-9.

[3] OpenFlow project at Stanford, “OpenFlow Switch Specification, Ver-
sion 1.0.0,” 2009, http://www.openflow.org/documents/openflow-spec-
v1.0.0.pdf.



