978-1-4799-3512-3/14/$31.00 ©2014 |IEEE

Globecom 2014 - Next Generation Networking Symposium

A Robust SDN Network Architecture for Service
Providers

Fernando Lépez-Rodriguez
Department of Electrical Engineering
Universidade de Brasilia (UnB)
Brasilia, Brazil
Email: fernando.lopez.br @ieee.org

Abstract—Large scale networks, such as those deployed by
Service Providers (SPs), employ robust architectures, capable
of supporting large volumes of traffic with very different char-
acteristics. Their network equipment has significant processing
load, being responsible for building both a routing logic and
the routing of traffic itself. By having the network control
implemented in a distributed manner and being built with a
limited number of vendors, these networks have limitations of
control and traffic engineering, hindering the differentiation
among SPs. Additionally, the network intelligence is hidden
in the network equipment, making innovations very slow and
conditioned to the vendors interests. As an alternative option, this
work proposes a Software Defined Networking (SDN)-OpenFlow
network architecture that attempts to improve the previously
mentioned problems, and, at the same time, to solve the arising
difficulties related to the SDN network centralized feature. With
the proposed architecture, a robust SP SDN-OpenFlow network is
created to support high controller response times and controller
outages, without additional delays in the creation of flows and
with significant reduction of the controller load. A prototype
has been built using Open vSwitch as a virtualization software
for OpenFlow clients, Mininet for the topology construction
and Ryu as the controller, all with OpenFlow 1.3 support. The
obtained results are general and can be extended to other types
of networks.

I. INTRODUCTION

Service Providers (SPs) are organizations that commercial-
ize Internet access for enterprises, end users and other SPs.
In addition to access services, SPs usually offer a diversity
of other services such as cloud storage, VoIP (Voice over
IP) services, digital television, among others. Due to these
characteristics, SPs must carry a huge volume of traffic with
very different QoS (Quality of Service) requirements [1],
making their network management a complex task.

In architectural terms, SP networks have automatic, dis-
tributed control mechanisms such as routing protocols (e.g.,
Internal Border Gateway Protocol — IBGP, Open Shortest Path
First — OSPF, Intermediate System to Intermediate System
— ISIS), and signalling protocols (e.g., Label Distribution
Protocol — LDP, Resource Reservation Protocol — RSVP).
These mechanisms generate very robust networks, with equip-
ment able to automatically recalculate the topology when a
network change occurs. However, those mechanisms also lead
to complex equipment, responsible for building routing tables
and routing traffic, what increment their processing load. As
additional features, SP networks have high infrastructure and

1903

Divanilson R. Campelo
Centro de Informatica (CIn)
Universidade Federal de Pernambuco (UFPE)
Recife, Brazil
Email: dcampelo@cin.ufpe.br

operation costs, and usually must keep different management
teams for each type of network, such as IP (Internet Pro-
tocol) and WDM (Wavelength Division Multiplexing). Their
equipment is from a reduced group of vendors with a similar
set of functionalities, what reduces the possibility of traffic
engineering and the differentiation among SPs. The network
“intelligence” is hidden inside the equipment, slowing innova-
tion and conditioning it to the network manufacturers interests.

As an alternative way, Software Defined Networking
(SDN), along with the OpenFlow protocol, provides an open
interface through which client devices, the OpenFlow clients,
interact with a network controller, the OpenFlow controller
[2], [3]. The controller has a global view of the network and
is responsible for managing all flow tables at each Open-
Flow client. SDN enables the separation of the data plane
(formed by the OpenFlow clients) from the control plane
(i.e., OpenFlow controller), providing a significant number of
opportunities such as traffic engineering [4], [5], [6], control
plane unification for different kinds of networks such as IP and
WDM [7], [8], mobility management [9], and several others.
These possibilities have attracted the interest of many network
equipment vendors, some of which are already incorporating
OpenFlow in their products [10].

In consonance with this trend, this paper presents a
modified SDN-OpenFlow network architecture for service
providers, even though the obtained results are general and can
be extended to other types of networks. For an SP, the standard
SDN-OpenFlow architecture does not seem to be appropriate
due to the following reasons: a) its centralized characteristic,
which requires that each new flow has to be processed by
the controller, generating overload on the controller; b) its
excessive dependence on the controller, which greatly reduces
the network robustness; and c¢) the performance degradation
due to the fact that the creation of each new flow has to
wait for the controller response for routing traffic. This paper
proposes solutions to overcome each of these problems through
a network architecture that is able to manage traffic with and
without QoS. To verify the effectiveness of the proposed archi-
tecture, a prototype has been built with Open vSwitch, Mininet
and the Ryu controller, all with support to OpenFlow 1.3. In
addition, the paper also proposes an alternative architecture
with hybrid equipment, which preserves the capabilities of the
distributed control plane and at the same time incorporates
the OpenFlow functionalities. The paper is summarized with a
qualitative comparison in terms of some network performance

Globecom 2014 - Next Generation Networking Symposium

metrics among the current classic network, the standard SDN-
OpenFlow network, the proposed hybrid network and the
proposed SDN-OpenFlow network architecture.

The rest of this paper is organized as follows. Section II
presents the SDN-OpenFlow proposed architecture, highlight-
ing the general operation logic, the proactive mechanisms that
allow to reach all target networks, and the QoS management
logic that makes possible the creation of new flows without
additional delays. In section III, an alternative architecture with
hybrid equipment is suggested. In section IV, the prototype of
the proposed SDN-OpenFlow architecture and its associated
results are presented, along with a comparative table among the
four aforementioned network architectures in terms of some
network performance metrics. Finally, Section V presents the
main conclusions of the paper.

II. PROPOSED SDN-OPENFLOW ARCHITECTURE
A. General considerations

This paper proposes an SP SDN network architecture
based on OpenFlow that uses the Multiprotocol Label Switch-
ing (MPLS) data plane [8]. The MPLS technology already
provides an appropriate data plane abstraction, since it uses
the concept of flows, which is suitable to OpenFlow. This
protocol has been developed in this direction, incorporating
the necessary functionalities to allow the use of the MPLS data
plane [3]. When a packet is processed by a flow table in an
OpenFlow client, the packet can match a flow entry according
to its MPLS label, and the associated instructions can modify,
add or erase MPLS labels.

The fact that OpenFlow allows the control of individual
flows enhances the accuracy and the potentials of the man-
agement capabilities. However, this individual manipulation
also leads to a larger processing delay and network overhead.
Furthermore, the creation of each new flow requires the
corresponding flow entry configuration in the flow tables of
each equipment involved in the end-to-end path, with the corre-
sponding controller-clients communications. For this reason, it
is important to define policies for the different types of traffic,
analysing which one requires a flow by flow treatment or a
general treatment to reduce the controller overhead.

B. General operation logic

In each OpenFlow client of the proposed SDN-OpenFlow
architecture, there is an initial table indexed by 0, according to
Fig.1. In table O, general rules are applied to classify arriving
packets with the smallest number of flow entries (examples
of matching fields: such as differentiated services code point
(DSCP) field, MPLS experimentals bits (EXP), port group, IPs
address group), and the packets are forwarded to a specific
management logic. The specific management logics utilized in
the proposed architecture are:

1) Internal management logic: It allows to reach all
internal networks to the SP, such as interconnection
networks, service networks, and both residential and
enterprise customers networks. The result of this
management logic is similar to the one obtained with
today’s internal routing protocols.

1904

QoS management logic Controller

QoS flow table

Specific Qos flow entry 1

new specific QoS floy
configuration (flo

|eALe
19)0ed y

Specific Qo flow entry N

Internal

management
Packet without logic
specific flow

QoS packet
Initial table

preconfigured R Internal
(Table 0] / flow table
According to general
flow entries, the
packet is forwarded
to a specific MPLS
management logic.
management
logic
Security MPLS
— VPN Management) flow table
T management i
management Togic logic
logic 423

Fig. 1. General architecture and QoS management logic for border equipment.

2) MPLS management logic: It is the case when an
incoming packet is routed based on its MPLS label.
The result of this management logic is similar to the
one obtained with protocols such as RSVP or LDP.

3) QoS management logic: It allows to manipulate indi-
vidual flows that require end-to-end QoS. Examples
are VoIP, video, digital TV and real time control
applications. This management logic is one of the
main contributions of this paper.

4) Other management logics not developed in this paper
as: External routing, which allows to reach all target
networks outside the autonomous system; Virtual Pri-
vate Network (VPN) logic, which allows customers
to interconnect their sites maintaining isolation poli-
cies; security logic, used for traffic that needs to be
authorized before being sent through the network.

Each management logic is implemented by a flow table or a
group of linked flow tables, which are located in the OpenFlow
pipeline processing of each equipment. These tables differ
according to the kind of OpenFlow client and its location in
the network. Next subsection describes the internal and MPLS
management logics in a general way, and the QoS management
logic, the focus of this paper, with more details.

C. Internal and MPLS management logic

These logics are composed by tables with forwarding
information to reach all internal networks to the SP, similar
to tables of existing distributed control networks (i.e., without
a flow-by-flow basis). These tables are proactively built by the
controller (i.e., before the arrival of flows) at each OpenFlow
client, and are updated by the controller when topological
changes occur in the network (the OpenFlow client must notify
the controller about the changes). The controller must have
the information of all directly connected networks to each
OpenFlow client and the network topology.

With the topological knowledge and an appropriate routing
protocol, the controller is able to the execute the internal
routing protocol (e.g., OSPF, or ISIS, or a new one), find
out how to reach all internal networks from each OpenFlow
client and build the internal flow tables in each OpenFlow
client, constructing, in this way, the internal management logic.
After that, the controller establishes the association between

Globecom 2014 - Next Generation Networking Symposium

the MPLS labels and the destination networks, producing the
Forwarding Equivalent Classes (FECs). The MPLS tables are
built in each OpenFlow and then the MPLS management logic.
(similar to what occurs in current distributed control networks
with LDP and RSVP protocols). For the internal and MPLS
management logics, in the cases where the routing protocols
executed at the controller find several optimal paths, they can
be considered and added in the corresponding flow tables. For
this purpose, OpenFlow allows to configure Group Tables that
are able to route traffic with a suitable balancing algorithm and
improve the network load distribution [3].

Three important considerations must be highlighted. The
first one is that, like in all SDN architectures, the routing
algorithm is only known and implemented in the controller.
The controller is responsible for building all routing tables
for each node. Second, the OpenFlow clients do not need to
exchange information about routing and topological changes
among themselves, reducing the convergence time; all Open-
Flow clients only need to inform topological changes to
the controller and the latter recalculates the routing table,
constructing a new topology. Last, it is not necessary to use
complex routing and signalling protocols such as OSPF Traffic
Engineering (OSPF-TE) , ISIS Traffic Engineering (ISIS-TE),
LDP or RSVP.

D. QoS management logic

When a packet with QoS requirements enters the network,
the QoS management logic reactively creates an end-to-end
path that allows to satisfy such QoS requirements of the
specific flow. To identify when a packet enters the network,
the border equipment (the ones that have some interfaces
inside and others outside the SDN-OpenFlow network) and the
internal equipment (those ones that have all interfaces inside
the SDN-OpenFlow network) must be identified. To understand
how this logic works, the two types of flow entries of the QoS
tables are firstly described:

e General flow entries: Allow any type of QoS traffic
to find matching using few flow entries. In the border
equipment, the general flow entries treat differently if
the packet is entering or exiting from the OpenFlow
network (it is done by the examination of the packet
input interface). These flow entries allow to forward
the first packets of each QoS flow, and they are used
while the packet does not have a specific QoS flow
entry yet.

e Specific flow entries: These ones are specific to each
individual QoS flow. Initially, the QoS table does not
have specific flow entries; they will be created during
the operation.

When a new QoS packet enters the network through an
border equipment, the packet is sent to the QoS table and is
initially processed by a general QoS entry with external input
interfaces. This general flow forwards the packet through two
different processing pipelines (see Figs. 1 and 2) simultane-
ously, as described below:

1 — Firstly, the general flow entry with external input
interfaces sends a complete or partial copy of the packet to
the controller (a packet-in message). To do it, the OpenFlow

1905

client has the immediate execution instruction of the type
Apply-Actions, and within it, an action of type Output to
the reserved port Controller [3]. With this information, the
controller calculates the optimal path to satisfy the QoS flow
requirements. One can use a constrained Dijkstra algorithm
similar to those used by ISIS-TE or OSPF-TE, or create a
new one specifically designed for each QoS type [4]. The
controller configures a specific new flow entry through a flow-
mod message in the QoS table of each equipment of the
optimal path (built in the opposite direction of flow traffic).
It is important to point out that all the specific QoS flow
entries are created with high priority (to be matched before
general entries) and with an appropriate idle time-out (to be
automatically deleted after a period of inactivity). Additionally,
since OpenFlow has priority queues, the QoS flows can be
mapped to these queues. Finally, the controller sends a packet-
out message without action, indicating that the packet that
originated the packet-in message must be dropped (this is
because the packet has already been sent by the second pipeline
processing, described below).

2 — Concurrently with the actions described in the previ-
ous paragraph, the packet continues the pipeline processing
indicated in the general QoS flow entry with external input
interface. In this flow entry, an instruction of Goto-Table type
is defined [3], which instructs that the packet must continue
its processing in the internal flow table (see Figs. 1 and 2).
Thereby, the packet is processed immediately as a flow without
QoS and it does not have to wait for the controller response
to be forwarded.

When the packet enters an internal equipment or an border
equipment (output border equipment) through an internal input
interface, the general QoS flow entries are simpler, since
it only has to send the packet to the internal flow table
(second pipeline processing). This is because the input border
equipment has already sent a request for a new flow to the
controller, and the controller creates a specific QoS flow entry
in all involved equipment, including the internal equipment
and the output border equipment (avoiding a redundant new
flow request).

E. Important remarks about the proposed architecture.

It is important to highlight that with the QoS management
logic, the controller does not have to add waiting time in the
establishment of a new flow. This statement is based on the fact
that packets from the same flow are always initially forwarded
by the internal flow table of the internal management logic,
and are simultaneously processed by the controller to find the
optimal path. Afterwards, when the QoS table has the specific
QoS flow, all subsequent packets of this flow are matched
with this new specific flow entry and are forwarded by the
optimal specific QoS path. Load balancing is not allowed in
the specific QoS path. Therefore, a unique path for each QoS
flow is obtained, reducing the QoS traffic jitter.

In addition, the proposed SDN-OpenFlow architecture al-
lows to reduce the excessive controller dependence that the
standard SDN-OpenFlow implementations have. When the
controller is in outage or presents high response times, the
new QoS flow always continues to be forwarded trough the
internal management logic. This is a very important aspect of
robustness, which is necessary for all SPs.

Globecom 2014 - Next Generation Networking Symposium

The input packet is forwarded YES
from table 0 to the QoS table.

<Execute instructions
+Send the packet to the
output port

~Update counters

Ignore the packet

Match with a
specific QoS
flow entry?

*The controller sends a
packet-out order to drop
the packet

The controller puts a
+Send a new flow specific QoS flow inside the
request to the QoS table of all equipment
controller (packet-in) |3 in the path

*Keep the packet The equipment that sends
header in memory arequest drops the packet
from memory

s there an equal
flow waiting for
aresponse from

Match with a
generic QoS flow
entry?

«Execute instructions
Send the packet to the
output port

=Update counters

Match with an
entry inside the
internal routing
table?

Send a packet to the internal
routing table

“miss-table”

Fig. 2. QoS management logic for border equipment.

Moreover, for any SDN-OpenFlow implementation, it is
useful to have mechanisms for OpenFlow clients to prevent
that successive packets of the same flow generate the same
queries to the controller while the client is waiting for the first
controller response. In the standard SDN-OpenFlow architec-
ture, it is difficult to implement this mechanism, because all
successive packets from the same flow that are waiting for the
controller response are required to be stored in memory until
the packet-out message arrives and the output action of the
packet-out message must be applied to all stored packets. In
the proposed SDN-OpenFlow architecture, only the header of
the first packet for each QoS flow must be stored, because
the successive packets of the same flow have already been
sent when the packet-out arrives. In the proposed architecture,
only the header of entering packet must be compared with
the headers of the storage packets, and a packet-in message is
generated if there is not a match (first packet of a new flow,
Fig. 2).

According to [11], the probability of finding a packet
belonging to a new flow in a OpenFlow client is 4%, which
means that with the standard OpenFlow implementation 4%
of the total traffic is forwarded to the controller, which is very
excessive for a SP. In the proposed SDN-OpenFlow architec-
ture, the controller load is significantly reduced because: 1)
the traffic without QoS is not forwarded to the controller; 2)
only the first packet of each QoS flow generates a packet-in
message; and 3) only the input border equipment sends a new
QoS flow request to the controller.

III. PROPOSED ARCHITECTURE WITH HYBRID
EQUIPMENT

In this Section, an alternative architecture that uses hybrid
equipment is considered. Such an architecture maintains the
capabilities of the distributed control plane and at the same
time incorporates the OpenFlow capabilities. For this, Open-
Flow has the instruction Write-actions that allows to define in
the action-set the action output to the reserved port Normal
[3]. This action allows the OpenFlow pipeline to forward the
packet to the classic distributed control plane.

Combining hybrid equipment with the SDN-OpenFlow
architecture presented in Section II, it is possible to develop
an intermediate architecture that is able to program table O

1906

Host with Qos >

i 10.2.1.2/24 1021.3/28

\ Vi 102. 24\

\ sB21 27/ =
=S

Flow without QoS '\

Flow with QoS

POP1 T,

SB3L o5t with Qos
=
103.1.2/24",

pym§

10.3.1.3/24

\10113/24

Teibe- Ex. of Internal link

Ex. of external link 10.3.2.2/24

Fig. 3. Prototype topology.

and the QoS management logic with OpenFlow, as well as the
other management logics with the distributed control plane. In
this case, the operation is as follows: If a packet requiring QoS
arrives to table 0, it is sent to the QoS management logic, as
indicated in section II. If the QoS table does not have a specific
flow entry yet, the packet is forwarded to the controller and
simultaneously is sent to internal management logic, which
is implemented in this case by the distributed control plane
(using the reserved port Normal). While there is not a specific
QoS flow entry in the QoS flow table, successive packets of
the same flow are forwarded by the distributed control plane.
When the specific QoS flow entry is available, the packet is
forwarded by this specific QoS flow entry.

This architecture with hybrid equipment would have little
resistance to be used in a SP. This architecture increases the
possibilities for traffic engineering, and at the same time,
completely maintains the network robustness, since when there
is a controller outage, the traffic can be indefinitely routed with
the classic distributed control plane. This architecture could be
used in a migration process from distributed control plane to
the SDN-OpenFlow architecture proposed in the paper.

IV. PROTOTYPE

To demonstrate the benefits provided by the SDN-
OpenFlow proposed architecture, a prototype with the topology
shown in Fig. 3 has been created. It consists of 3 points
of presence (POPs), each one with two internal equipment
(SCxx), two border equipment (SBxx) and three hosts. The
prototype has been created with Mininet 2.1 for the topology
construction, Open vSwitch 2.0 as a software switch that im-
plements the OpenFlow clients, and Ryu 3.3 as the controller,
all with support to OpenFlow 1.3. Without loss of generality,
the topology has been implemented without MPLS, with the
purpose of facilitating the implementation of the logics and
reducing the number of tables used.

The QoS links shown in Fig. 3 are only used for QoS
traffic, which is generated by the hosts with IP address 10.x.1.2
(x ranging from 1 to 3) and it has the DSCP field set as 5.
The QoS flow table is named as table 5, and the internal flow
table is named as table 10 (table 5 redirects to table 10, but
the opposite is not possible according to OpenFlow).

Globecom 2014 - Next Generation Networking Symposium

A. General flow entry construction

The initially, proactively created flows by the controller are
described below.

Table O:

e In SBxI, the layer 2 flow entries are inserted to make
possible the interconnection among hosts inside the
same Local Area Network (LAN).

e In each equipment, two flow entries are added: one to
send the packets marked with DSCP = 0 to table 10
(internal flow table), and another to send the packets
marked with DSCP = 5 to table 5 (QoS flow table).

Table 10:

e [t contains a group of flow entries to forward the pack-
ets to all target networks (similar to current routing
protocols).

Table 5:

e In the border equipment, the general flow entries
with external input interfaces (input border equipment)
are inserted. These general entries send the packet
to two pipelines: to the controller (instruction apply-
action, with reserved port Controller); and to table 10
(instruction Goto-table 10) for immediate processing.

e In the internal equipment and in the border equipment,
the default QoS general flow entries are inserted,
which only send the packet to table 10 (the internal
and the output border equipment do not send a new
flow request to the controller to avoid request dupli-
cation).

B. Operation mode and specific flow entry

Initially, all flows are processed by table 0, which sends the
QoS flow (DSCP = 5) to table 5 (Fig. 4, option — OP. 1), and
sends the flows without QoS requirements to table 10 (Fig. 4,
OP. 2).

In the SBxx equipment, when there is not a specific QoS
flow entry yet, and there is a match with a general QoS flow
entry with external input interface (Fig.4, OP. 1.b), the SBxx
sends a packet-in message to the controller and redirects the
packet to table 10. The controller receives the message and
responds with a flow-mod message, creating a specific QoS
flow (inside all tables 5 of every equipment involved in the QoS
path) with idle-timeout of 60 seconds and with priority higher
than that of the general QoS flow entries. Additionally, the
controller sends a packet-out message to the SBxx equipment
requesting it to drop the packet (its packet has just been
processed by table 10).

In the SCxx, or SBxx equipment, when there is not a
specific QoS flow yet, and there is not a match with a general
QoS flow entry with external input interface (Fig. 4, OP. 1.c),
it only sends the packet to table 10. Finally, in all equipment,
when there exists an specific QoS flow entry (Fig. 4, OP. 1.a)
this one processes the packet.

1907

Table 5 (QoS flow table]

Specific Qo flow entry. 1

OP. a

A packet Specific Qo flow entry. N
arrival

General flow entry (ext.int) 1
oP.b i

General flow entry (ext. int) K [~

Packet with [Qos.

OP. ¢

Default QoS flow entry

" 0P 1.

Table 0

OP.1

Flows with QoS
OoP.2
Flows without QoS

Packet without
QoS requirement

Table 10
Internal flow
table]

Flowe:nlrv ™M
Fig. 4. Prototype architecture for a SBxx equipment.

C. Tests

First, it is verified that all destination networks are reach-
able using table 10. Then the QoS flow generation between the
hosts with IP addresses 10.1.1.2 and 10.2.1.2 is tested, verify-
ing that only the first round trip packet is processed by table
10 and the remaining packets of the same flow are processed
by the specific QoS flow entry (reactively constructed).

After that, a controller outage is emulated. During the
outage, a QoS flow between hosts with IP 10.1.1.2 and
10.2.1.2 is generated (flow without QoS in Fig. 3). Finally, the
controller is re-established and a specific QoS flow is created
(flow with QoS in Fig. 3). Fig. 5 shows the SB11 real flow
tables regrouped, obtained with the command sudo ovs-ofctl O
OpenFlowl3 dump-ow sbll. In this example, 81 QoS packets
(all with DSCP = 5) are generated (41 in SB11-SB21 direction,
and 40 in SB21-SB11 direction), matching with flow entry
1 of table 0, which sends the packet to table 5. From the
81 packets, 45 are sent during the controller outage (23 in
SB11-SB21 direction, and 22 in SB21-SB11 direction), and
the other 36 (18 in each direction) are sent with the controller
re-established.

It is important to notice that packet 24 in the SB11-
SB21 direction, and packet 23 in the SB21-SB11 direction
are the first packets that have a controller response, with the
creation of two specific QoS flow entries, one in each direction.
However, these packets are still processed by the general QoS
flow entry with external input interface. As a result, the first 24
packets in SB11-SB21 direction are processed by the general
QoS flow entry with external input interface (Fig. 5, table 5,
flow entry 4). This general QoS flow entry sends the packets
simultaneously to the controller and to table 10, where they
match with flow entry 5 of table 10. On the other hand, the
23 first packets in SB21-SB11 direction are processed by the
general QoS flow entry without external input interface (Fig.
5, table 5, flow entry 3), because SB11 is an output border
router in SB21-SB11 direction. The flow entry must send the
packets only to table 10, where they match with flow entry 1.
The last 17 packets in both directions have already an specific
QoS flow entry in QoS table (Fig. 5, table 5, flow entries 1 and
2), then they are directly routed for these specific ow entries.

The tests confirm the robustness of the proposed SDN-

Globecom 2014 - Next Generation Networking Symposium

TABLE 0
1. cookie=0x0, duration=122.841s, table=0, n_packets=81, n_bytes=7938, ip,nw_tos=20
actions=goto_table:5
2. cookie=0x0, duration=122.817s, table=0, n_packets=0, n_bytes=0, ip,nw_tos=0
actions=goto_table:10

TABLE 5

1. cookie=0x0, duration=17.051s, table=5, n_packets=17, n_bytes=1666, idle_timeout=60,
priority=45000,ip,nw_src=10.2.1.2,nw_dst=10.1.1.2,nw_tos=20 actions=dec_ttl,output:3

2. cookie=0x0, duration=17.088s, table=5, n_packets=17, n_bytes=1666, idle_timeout=60,
priority=45000,ip,nw_src=10.1.1.2,nw_dst=10.2.1.2,nw_tos=20 actions=dec_ttl,output:2

3. cookie=0x0, duration=120.931s, table=5, n_packets=23, n_bytes=2254, ip,nw_tos=20
actions=goto_table:10

4. cookie=0x0, duration=120.788s, table=5, n_packets=24, n_bytes=2352,
priority=35000,ip,in_port=3,nw_tos=20 actions=CONTROLLER:65535,goto_table:10

5. cookie=0x0, duration=120.652s, table=5, n_packets=0, n_bytes=0,
priority=35000,ip,in_port=4,nw_tos=20 actions=CONTROLLER:65535,goto_table: 10

TABLE 10

1. cookie=0x0, duration=122.421s, table=10, n_packets=23, n_bytes=2254,
ip,nw_dst=10.1.1.2 actions=dec_ttl,mod_dI_dst:00:00:00:01:01:02,output:3

2. cookie=0x0, duration=122.558s, table=10, n_packets=0, n_bytes=0, ip,nw_dst=10.1.2.2
actions=dec_ttl,output:1

3. cookie=0x0, duration=122.444s, table=10, n_packets=0, n_bytes=0, ip,nw_dst=10.1.1.3
actions=dec_ttl,mod_dI_dst:00:00:00:01:01:03,output:4

4. cookie=0x0, duration=121.88s, table=10, n_packets=0, n_bytes=0,
ip,nw_dst=10.3.1.0/24 actions=dec_ttl,output:2

5. cookie=0x0, duration=121.927s, table=10, n_packets=24, n_bytes=2352,
ip,nw_dst=10.2.1.0/24 actions=dec_ttl,output:1

6. cookie=0x0, duration=121.86s, table=10, n_packets=0, n_bytes=0,
ip,nw_dst=10.3.2.0/24 actions=dec_ttl,output:2

7. cookie=0x0, duration=121.903s, table=10, n_packets=0, n_bytes=0,
ip,nw_dst=10.2.2.0/24 actions=dec_ttl,output:1

Fig. 5. Regrouped real flow tables (for the SB11 equipment)

OpenFlow architecture, and show that the packet continues to
be routed even if there is a controller outage. Additionally,
when the controller is re-established, the specific QoS flow
entry is created, and the flow is re-routed. Finally, it is
confirmed the immediate routing of all packets and that the
controller does not add waiting times in the creation of a
new flow. The proposed SDN-OpenFlow architecture leads
to important improvements over the standard SDN-OpenFlow
architecture, and at the same time maintains the potentials that
OpenFlow provides.

TABLE L. COMPARISON OF NETWORK ARCHITECTURES FOR SERVICE
PROVIDERS
Current Standard Hybrid SDN-
distributed SDN- network OpenFlow
control OpenFlow proposal network
network network proposal
Forwarding response Immediate Interme- Immediate Immediate
diate
Traffic engineering | Good Very good Very good Very good
possibilities
Jitter for QoS traffic Interme- Low Low Low
diate
Network behavior | N/A Poor Excellent Very Good
during controller
outage
Network behavior | N/A Poor Excellent Very Good
with high response
times of the controller
Controller overload N/A Poor Excellent Very good
Routing protocols | Very high Interme- Very high Interme-
complexity diate diate
Processing load in | High Low High Low
network equipment

To summarize the discussions and results presented in
this paper, Table I shows a qualitative comparison among
the current distributed control networks, the standard SDN-
OpenFlow networks, the proposed hybrid network, and the

1908

proposed SDN-OpenFlow architecture in terms of some im-
portant metrics for service providers. It can be noted that the
proposed hybrid architecture and the proposed SDN-OpenFlow
architecture have the best characteristics, and, therefore, are
promising alternatives to current distributed control networks
and standard SDN-OpenFlow networks.

V. CONCLUSION

The proposed SDN-OpenFlow architecture improves crit-
ical aspects of the standard OpenFlow architecture, such as
the excessive dependence on the controller, the additional
delay added by the controller in the creation of a new flow,
and the excessive information that must be processed by the
controller. At the same time, it allows to solve today’s net-
works problems, such as the impossibility to build massively
individual paths for QoS flows, traffic engineering limitations,
complex information distribution algorithms, significant jitter,
the impossibility to unify the control plan to different networks,
and slow innovation conditioned to the vendor interest. An
alternative hybrid architecture that preserves the capabilities
of the distributed control and incorporates the OpenFlow
capabilities has been presented.

ACKNOWLEDGMENT
This work has been supported by CNPq and CAPES.

REFERENCES

[1] J. L. Garcia-Dorado, A. Finamore, M. Mellia, M. Meo, and M. Munafo,
“Characterization of isp traffic: Trends, user habits, and access technol-
ogy impact,” Network and Service Management, IEEE Transactions on,
vol. 9, no. 2, pp. 142-155, 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69-74, 2008.

[3] Open Networking Foundation. (2002) Openflow switch specification
version.1.3.0. [Online]. Available: https://www.opennetworking.org/
images/stories/downloads/specification/openflow-spec-v1.3.0.pdf

[4] H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S. Civanlar, “Scalable
video streaming over openflow networks: An optimization framework
for qos routing,” in Image Processing (ICIP), 2011 18th IEEE Interna-
tional Conference on. 1EEE, 2011, pp. 2241-2244.

[5] S.Das, Y. Yiakoumis, G. Parulkar, N. McKeown, P. Singh, D. Getachew,
and P. D. Desai, “Application-aware aggregation and traffic engineering
in a converged packet-circuit network,” in National Fiber Optic Engi-
neers Conference. Optical Society of America, 2011, p. NThD3.

[6] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in INFOCOM, 2013 Proceedings IEEE.
IEEE, 2013, pp. 2211-2219.

[7] S. Das, “Pac.c,” PhD Dissertation, Stanford University, 2012, (http:
/farchive.openflow.org/wk/index.php/PACC_Thesis).

[8] S. Das, G. Parulkar, N. McKeown, P. Singh, D. Getachew, and L. Ong,
“Packet and circuit network convergence with openflow,” in Optical
Fiber Communication (OFC), collocated National Fiber Optic Engi-
neers Conference, 2010 Conference on (OFC/NFOEC). 1EEE, 2010,
pp. 1-3.

[9] S. Namal, I. Ahmad, A. Gurtov, and M. Ylianttila, “Enabling secure
mobility with openflow,” in Future Networks and Services (SDN4FNS),
2013 IEEE SDN for. 1EEE, 2013, pp. 1-5.

[10] Open Networking Foundation. Sdn product directory.
[Online]. Available: https://www.opennetworking.org/sdn-resources/
onf-products-listing

[11] F. Wamser, R. Pries, D. Staehle, K. Heck, and P. Tran-Gia, “Traffic
characterization of a residential wireless internet access,” Telecommu-
nication Systems, vol. 48, no. 1-2, pp. 5-17, 2011.

