
On the effect of forwarding table size on SDN
network utilization

Rami Cohen
IBM Haifa Research Lab.

ramic@il.ibm.com

Liane Lewin-Eytan
IBM Haifa Research Lab.

lianel@il.ibm.com

Joseph (Seffi) Naor
Computer Science Dept., Technion

naor@cs.technion.ac.il

Danny Raz
Computer Science Dept., Technion

danny@cs.technion.ac.il

Abstract—Software Defined Networks (SDNs) are becoming
the leading technology behind many traffic engineering solutions,
both for backbone and data-center networks, since it allows
a central controller to globally plan the path of the flows
according to the operator’s objective. Nevertheless, networking
devices’ forwarding table is a limited and expensive resource
(e.g., TCAM-based switches) which should thus be considered
upon configuring the network. In this paper, we concentrate on
satisfying global network objectives, such as maximum flow, in
environments where the size of the forwarding table in network
devices is limited. We formulate this problem as an (NP-hard)
optimization problem and present approximation algorithms for
it. We show through extensive simulations that practical use of our
algorithms (both in Data Center and backbone scenarios) result
in a significant reduction (factor 3) in forwarding table size, while
having a small effect on the global objective (maximum flow).

I. INTRODUCTION

Software Defined Networks (SDNs) is a network architec-
ture where the data forwarding behavior of network elements is
determined by a centralized controller. This separation of the
control plane from the data plane allows network operators
to gain a fine grain control over the actual way packets
are forwarded, and thus better utilize their network. For this
reason SDN is becoming the leading technology behind many
traffic engineering solutions both for backbone and data-center
networks1.

In the SDN paradigm, network devices are becoming
simpler and cheaper, since they do not have to support complex
logics of distributed routing protocols. However, in most cases,
these devices should support general forwarding rules (e.g.,
OpenFlow [14]). Considering the growing demands for a
fast and efficient data plane, these rules are implemented
using expensive technology (in terms of cost and power) such
as TCAM (Trenary Content Aware Memory), which implies
that the number of forwarding rules, or the effective size of
forwarding tables in these devices, is limited (see [16], [15]).
This, in turn, imposes constraints on the control plane, since
the realization of a certain global objective may require more
local forwarding rules. Typically, each entry in the forwarding
table is dedicated to a different flow (characterized by several
parameters, according to specific header fields), and contains
instructions for routing the flow over its pre-defined path. We
note that even in small data centers, comprising of several
dozens of physical servers, the number of different flows

1See e.g., http://www-03.ibm.com/systems/networking/solutions/sdn.html,
http://www.opendaylight.org/,
http://www.wired.com/wiredenterprise/2012/04/going-with-the-flow-google/

can easily grow to several orders of magnitude above this
number, when taking into account potential pairs of connecting
entities which might also correspond to VMs residing within
the physical hosts. Thus, limits on the number of flows (or
paths) that can pass through the forwarding devices constitute
an important restriction.

In many practical scenarios, constraints on the routing paths
are already deployed. Examples of such are policy-based rules
such as “do not route internal US traffic through Europe”, or
operational-based rules such as “only use paths with latency
bounded by 20 milliseconds”. Thus, the goal of the control
plane algorithm is to select the right set of allowed paths,
such that local constraints on the size of the forwarding table
in network elements are met in a way that maximizes the
global objective under consideration (e.g., maximum network
utilization). However, the specific parameters of the problem
under hand may vary, depending on the specific technology
and the specific use case (e.g., backbone TE or data center
networking). We note that having local constraints on the
forwarding table size is not unique to SDNs. In optical
switches for example, implementing a forwarding rule requires
very expensive resources, and thus the number of rules allowed
for each device is very limited.

Our goal in this paper is to provide a profound under-
standing of the problems related to satisfying global network
objectives, such as maximum flow, in environments where the
size of the forwarding table in network devices is limited. To
this end we define and study a general model capturing the
most important aspects of SDNs, and evaluate the advantages
of using our results in different practical use-cases.

In general, a flow can be sent over multiple paths, even
when adhering to a particular policy, as described above. The
total size of the forwarding table (or the number of forwarding
rules) in a network device is then the total number of flow paths
that can go through it (since each flow traversing the device
requires a forwarding rule). We thus model the limited size of
forwarding tables by bounding the maximum number of paths
that can pass through each node in the network. This bound
is called the path-degree or forwarding table size of the node.
We consider a bandwidth-constrained practical setting, where
the links in the network have limited bandwidth capacity.

We thus investigate the bounded path-degree max flow
problem, where given different traffic demands in the network,
the goal is to maximize the overall feasible traffic that can
be routed, while satisfying the limited bandwidth capacities
of the links, as well as the path-degrees of the nodes. The
bounded path-degree max flow problem captures several well-978-1-4799-3360-0/14/$31.00 c©2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 1734

2

known NP-hard problems. The disjoint paths problem, where
the goal is to determine whether a set of source-destination
pairs can be connected by disjoint paths, is a special case of our
problem. This can readily be verified by letting all links have
unit capacity, all source-destination pairs have unit demand,
and setting the path-degrees of all nodes to be equal to 1.

We provide an in-depth theoretical analysis of the bounded
path-degree max flow problem, both in the case where the
allowed paths are explicitly provided, and in the general case
where flow can be routed on any (arbitrary) path. Our solution
is derived from rounding a fractional solution to a linear
formulation of the problem. We note that our linear formulation
is somewhat unusual, in the sense that a feasible integral
solution to the problem does not necessarily define a {0, 1}
solution to the linear relaxation.

In particular, we present a bicriteria approximation algo-
rithm guaranteed to achieve an expected total flow equal to
OPT/O(log n), where OPT is a bound on the maximum flow
obtained by any solution and n denotes the number of nodes in
the network. When adding a fairness requirement, according to
which the flow over each path is not allowed to consume than
a 1/ logn fraction of the path capacity, we can prove that the
bicriteria approximation algorithm achieves an expected total
flow equal to OPT/O(1). Our model and results are also valid
for the case of weighted flow demands, where the goal is to
maximize the overall weighted traffic that can be routed.

The practical importance of restricting the size of for-
warding tables has recently been acknowledged by the ASIC
industry2. Our approach is much cheaper and faster to de-
ploy, as it uses the software capabilities of the controller,
so as to overcome the hardware limitations of the network
devices. The theoretical part of our work provides an in-
depth understanding of these important issues, as well as
several provable effective algorithms. In order to demonstrate
how it can be used to address the actual problems arising in
practice, we conducted a thorough simulation-based evaluation
of the performance of our algorithms. We used several types
of networking topologies, representing both backbone, current
data centers, and future data center networks. For each of the
latter topologies we generated a set of 200, 000 flows3 and
measured the size of the forwarding tables needed to route
this traffic using oblivious protocols (i.e. max-flow) that do
not consider the amount of available forwarding rules in each
device. We then deployed a practical algorithm which is based
on the theoretical algorithms we developed and measured
the expected performance. Clearly, the results depend on the
network topology; for backbone based topology we are able
show that table size aware protocols can increase the total flow
in the network by a factor of 2, and for typical data center
topologies by more than 50%.

The paper is organized as follows. Section II presents
related works. The theoretical analysis of the bounded path-
degree max flow problem is presented in Section III. The
model is formally defined in Section III-A, Sections III-B &
III-C contain our approximation algorithms, and Section III-D
presents the solvability of the general case of our problem. The

2See e.g., http://pica8.org/blogs/?p=201, http://www.mellanox.com/blog/
3In many practical scenarios we expect many more flows, and our results

also apply to these cases.

simulation study is presented in Section IV. Finally, Section
V contains the conclusions.

II. RELATED WORK

To the best of our knowledge, the path-degree max flow
problem has not been investigated before. Our problem is
related to different versions of flow decompositions, where
the goal is to compute a flow that can be partitioned with
respect to various constraints. The maximum unsplittable flow
problem was introduced by Kleinberg [11], where the goal is
to decide whether demands from a single source to different
terminals can be each routed on a single path, so that capacity
constraints are satisfied. Many variations of the problem were
introduced subsequently, including unsplittable multicommod-
ity flow, variants in which we allow more than one path per
commodity, and varying optimization criteria (for recent work
see [3], [12] and references therein). Another related version of
this problem is presented in [10], which considers the problem
of decomposing a flow into a small number of paths.

Degree-constrained flows is another set of problems related
to ours, in which node bounds apply to the outdegrees (number
of outgoing edges) rather than to transient paths. A special
case is confluent flow, where at any node all the flow departs
along a single edge. Confluent flows were investigated in [4],
[5], focusing on the problem of determining confluent flows
with minimum congestion. A generalization of this problem
was investigated in [6], considering d-furcated flows, which
are flows with a support graph of maximum outdegree d.

Finally, a traffic engineering optimization problem is pre-
sented in [1], whose motivation arises from the SDN paradigm
as well. The authors of [1] consider traffic engineering in
the case where a SDN controller controls only a few SDN
forwarding elements in the network, and the rest of the network
uses a standard routing protocol like OSPF. Their model and
problem are thus completely different from ours, however our
SDN-traffic engineering motivation is closely related.

III. THE BOUNDED PATH-DEGREE MAX FLOW PROBLEM

The path-degree max flow problem is NP-hard and there-
fore we provide in this section approximate solutions. Our
starting point for obtaining an approximate solution is a linear
programming formulation of the problem (Section III-A). Our
formulation is somewhat unusual, in the sense that a feasible
solution to the problem does not necessarily define an integral
solution to the linear formulation. This happens since the path-
degree constraints are essentially non-linear; a path carrying
positive flow contributes to the path-degree constraints of all
the nodes belonging to it, independently of the flow value.
We show that the integrality gap of our linear program is at
least Ω(

√
n), where n denotes the number of nodes in the

network. Thus, circumventing the integrality gap and obtaining
better approximation factors requires a further relaxation. In
our solution, constraints are violated, however, the extent to
which they are violated is bounded.

Our approximate solution is derived from a randomized
rounding of a fractional solution to the linear program. Specifi-
cally, we present a bicriteria approximation algorithm (Section
III-B) which is guaranteed to achieve an expected total flow
equal to at least OPT/O(log n), where OPT is an upper

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1735

3

Es

A

B

C

D

t

10

10

10

10

10

5

5

5

5

10

10

10

20

s

A

B

C

D

t

5

10

5

10

55

5
5

10

10

10

b(A)=1

b(B)=2 b(D)=1

b(C)=2

b(E)=2
E

s

A

B

C

D

t

10

10

10

10

10

5

5

5 5

10

10

10

20

E

(a) (b)

Fig. 1. (a) max flow between s and t without path-degree constraints; (b)
max flow in the presence of path-degree bounds on the nodes.

bound on the maximum flow value obtained by any solution,
and is derived from the linear program. Our flow solution
satisfies the link capacity constraints. However, the path-degree
constraints might be violated by our solution. The violation of
each path degree constraint is by at most a factor of O(log n)
(with very high probability).

We further consider the case where fairness is required
(Section III-C). This means that flow over each path p is
not allowed to consume more than a 1/ logn fraction of the
capacity of any of the links belonging to p. We can prove that
in this case the bicriteria approximation algorithm achieves an
expected total flow equal to OPT/O(1).

In the general case, where flow can be routed on any path
in the network, our linear program can have an exponential
number of variables, corresponding to the number of distinct
paths in the network. An efficient solution of the linear
program in this case requires an efficient separation oracle for
the dual program. We develop such a separation oracle and
show how to implement it efficiently (Section III-D).

A. General model

We are given a directed graph (or network) G = (V,E)
with link capacities c(e) for each link e ∈ E. There are
pairs of sources and destinations (si, ti) wishing to transmit
traffic between them. Each pair (si, ti) is associated with a
flow demand di. Flow is routed between the sources and the
destinations via flow paths. The number of flow paths that
can be routed through a particular node is bounded and called
the path degree of the node. For node v, the path degree is
denoted by b(v). The bounded path-degree max flow problem
asks for the total maximum feasible flow between all pairs
(si, ti) satisfying: (i) for each i, total flow between si and ti
does not exceed di; (ii) for each link e, the total flow through
e does not exceed c(e); and (iii) for each node v, the number
of (positive) flow paths going through it does not exceed b(v).

A simple example is depicted in Figure 1, where the link
capacities are given in the upper graph. There is a single
pair (s, t) with a large flow demand. Without path-degree
constraints, the maximum flow is equal to 30 and is given in
1(a). In 1(b), path-degree bounds are added and the maximum
feasible flow drops down to 20.

We formulate the bounded path-degree max flow problem
as a linear program. In this linear program, we need to repre-
sent both capacity and path degree constraints. To this end, for
a path p connecting a pair (si, ti), define, c(p), the capacity of
p, as the minimum between the bottleneck link capacity of p
and the demand di, i.e., c(p(si,ti)) = min(mine∈p{c(e)}, di).
Let x(p), 0 ≤ x(p) ≤ 1, denote the fraction of path p used by
the linear program. Thus, the amount of flow routed through p
is defined to be f(p) = c(p) · x(p). We now discuss the path-
degree constraints. Each flow path p, for which f(p) > 0,
should contribute a unit towards the path-degree constraints of
the nodes belonging to it. This means that the contribution of
f(p) to the path-degree constraints is a “step function” which
is difficult to capture by linear constraints. In our formulation,
the contribution of path p to the path-degree constraints of the
nodes belonging to p is defined to be x(p). Thus, even if we
are given a feasible flow solution to the bounded path-degree
max flow problem, the values of the variables x(p) may still
be required to be fractional. Hence, our fractional formulation
is not a relaxation of an integral solution to the problem, even
though the value of our formulation is still an upper bound
on any feasible flow solution. In this sense our formulation
uses the integral/fractional linear programming framework in
a somewhat uncommon way.

Our formulation of the bounded path-degree max flow
problem is as follows.

Max
∑
p

x(p) · c(p) s.t. (Flow-LP)

for each edge e:
∑

{p|e∈p}

x(p) · c(p) ≤ c(e), (1)

for each node v:
∑

{p|v∈p}

x(p) ≤ b(v), (2)

for each pair (si, ti):
∑

{p|p∈(si,ti)}

x(p) · c(p) ≤ di. (3)

The first constraint (1) is the link capacity constraint,
stating that the total flow passing through an edge e is at most
its capacity c(e). The second constraint (2) is the node path-
degree constraint, stating that the sum of the path fractions
passing through a node v is at most its path-degree bound b(v).
The third constraint (3) states that the sum of flows over all
paths connecting a pair (si, ti) is at most the demand di. Note
that there is no need to add a constraint bounding x(p) ≤ 1,
as it is implied by constraint (1).

The number of variables x(p) in (Flow-LP) depends on
the number of paths connecting the sources and destinations,
and thus can be of exponential size in general. However, the
number of constraints is polynomial. We show in Section III-D
that (Flow-LP) can be efficiently solved using a combinatorial
framework. Furthermore, the number of paths carrying positive
flow in a fractional optimal solution can be shown to be poly-
nomial. However, the running time of this algorithm includes
several high value constants that might be problematic in large
scale settings. Moreover, in practice, it is often the case that
potential paths for routing the traffic are limited to a specific
set and provided ahead of operation time. We thus consider a
more practical variation of our problem, where we are given a

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1736

4

s_2

s_1

t_4 t_3 t_2 t_1

s_3

s_4

s_(k-1)

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

s_k

s_(k-2)

s_2

s_1

t_k t_(k-1) t_(k-2) t_2 t_1

. . .

t_3

Fig. 2. Integrality gap of the bounded path-degree max flow problem.

set of pre-defined paths P (typically of polynomial-size) over
which the flow between the pairs (si, ti) can be routed. In this
case, the linear program remains the same as (Flow-LP), but
has only a small number of variables x(p) (for all p ∈ P), and
thus can be solved more efficiently.

We note that our model is also valid for the case where each
flow demand di between (si, ti) has weight wi. These weights
can induce, for example, a prioritization of the demands. In
this case, the objective function is maximization of the total
weighted flow

∑
i

∑
p∈(si,ti)

x(p) · c(p) · wi. All the results
presented in this section can be directly applied to the weighted
case as well.

Integrality Gap. We present an integrality gap of Ω(
√
n) for

linear program (Flow-LP). The integrality gap is demonstrated
by the instance in Figure 2, comprising of a grid with k pairs of
sources and destinations (si, ti), 1 ≤ i ≤ k, all with demands
equal to 1. The left side of the figure presents the grid for
k = 4, and the right side presents the grid for general k. The
capacities of all links are 1, and the path-degree bounds of all
nodes are 1. Any two paths pi and pj , connecting pairs (si, ti)
and (sj , tj) respectively, share at least one common node.
In addition, any path pi connecting (si, ti), intersects all the
paths connecting all other pairs. Thus, the integral solution can
connect only a single pair and route a flow of 1 over its path,
achieving a revenue of OPTint = 1. In the fractional solution,
we can choose k paths connecting the pairs (si, ti) with the
property that at most two paths go through each internal node.
Thus, by routing a flow of 1/2 over each path (x(p) = 1/2
for each path p), we adhere to the path-degrees of the nodes,
and achieve a revenue of OPTfrac = k/2. As the number of
nodes is n = O(k2), we get an integrality gap of Ω(

√
n).

B. An (O(log n), O(log n)) bicriteria approximation

We present a bicriteria approximation algorithm for the
bounded path-degree max flow problem. Our algorithm first
solves (Flow-LP), the fractional LP relaxation of the problem.
Given an optimal fractional solution, the algorithm applies
randomized rounding to the solution simply by choosing each
path p ∈ P (independently) with probability equal to x(p), and
then routing over p a flow value of c(p)/O(log n). The algo-
rithm achieves an expected total flow equal to OPT/O(log n),
where OPT is the maximum flow obtained by the fractional
solution (for which flow is also restricted to P), and n denotes
the number of nodes in G. Our algorithm satisfies the link

capacity constraints, but may violate the path-degree bounds
of the nodes by at most a factor of O(log n).

It follows from the integrality gap example above that
any algorithm satisfying the path-degree bounds can only
achieve an Ω(

√
n)-approximation factor. Thus, relaxing the

path-degree bounds is motivated by this example, so as to
improve the approximation factor.

Algorithm 1 Randomized (O(log n), O(logn)) bicriteria approximation

1: Solve (Flow-LP) for the bounded path-degree max flow problem.
2: Independently, for each path p ∈ P , choose it with probability x(p).
3: For each chosen path p, route over p a flow value of c(p)/(6 logn).

In the sequel we analyze the algorithm. We compute
the expected flow value and bound the probability that link
capacities and path-degrees are violated, resulting from the
randomized rounding. The following version of the Chernoff
bound will be very useful in our analysis. Given are indepen-
dent random variables x1, . . . , xn, where for all i, xi ∈ [0, 1].
Let μ = E[

∑n

i=1 xi]. Then,

Pr

[
n∑

i=1

xi ≥ (1 + ε)μ

]
≤ e

−ε2μ

2+ε . (4)

Link capacity constraints. We first bound the extent to
which link capacities are violated. Given a link e, we define a
set of random independent variables yp,e corresponding to the
paths going through e:

yp,e =

{
c(p) with probability x(p)
0 otherwise

Random variables yp,e are independent. Note that their sum
f(e) =

∑
{p|e∈p} yp,e is exactly the flow over link e following

our randomized rounding procedure. The expected flow over
e is:

f̂(e) = E

⎡
⎣ ∑

{p|e∈p}

yp,e

⎤
⎦ =

∑
{p|e∈p}

x(p) · c(p) ≤ c(e), (5)

where the last inequality follows from the link capacity constraint
(1) of (Flow-LP).

Lemma 1: The probability of violating the capacity of link e by
more than a factor of (1 + 6 log n) is at most 1/n4, i.e.,

Pr

⎡
⎣ ∑

{p|e∈p}

yp,e ≥ (1 + 6 log n)n · c(e)

⎤
⎦ <

1

n4
,

Proof: We normalize the random variables yp,e to the range
[0, 1] by considering yp,e

c(e)
. By inequality (5), E[

∑
{p|e∈p}

yp,e
c(e)

] ≤ 1.
Applying the Chernoff bound (4) to the variables yp,e

c(e)
and choosing

ε = 6 log n we get:

Pr

⎡
⎣ ∑

{p|e∈p}

yp,e
c(e)

≥ (1 + 6 log n)

⎤
⎦ ≤ e

−36 log2 n

2+6 log n < e−4 log n =
1

n4
.

The number of links in G is at most n2. By the union bound,∑
e (Pr [f(e) ≥ (1 + 6 log n)c(e)]) < 1

n2 , meaning that the prob-
ability that the capacity of any link (among all links in G) is violated
by a factor higher than O(log n) is less than 1/n2, i.e., negligible.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1737

5

Demand constraints. We turn to consider the flow demands
and bound the probability that the flow between (si, ti) exceeds the
demand di. We define random variables yp,i corresponding to the
paths P connecting (si, ti):

yp,i =

{
c(p) with probability x(p)
0 otherwise

Random variables yp,i are independent. Note that their sum fi =∑
{p|p∈(si,ti)}

yp,i is exactly the amount of flow between si and
ti following our randomized rounding procedure. The expected flow
over all paths connecting (si, ti) is:

f̂i = E

⎡
⎣ ∑

{p|p∈(si,ti)}

yp,i

⎤
⎦ =

∑
{p|p∈(si,ti)}

x(p) · c(p) ≤ di, (6)

where the inequality follows from the constraint (3) of (Flow-LP).

Lemma 2: The probability of violating demand i by more than
a factor of (1 + 6 log n) is at most 1/n4, i.e.,

Pr

⎡
⎣ ∑

{p|p∈(si,ti)}

yp,i ≥ (1 + 6 log n) log n · di

⎤
⎦ <

1

n4
.

Proof: We normalize the random variables yp,i to the range [0, 1]
by considering

yp,i
di

. By inequality (6), E[
∑

{p|p∈(si,ti)}

yp,i
di

] ≤ 1.
Applying the Chernoff bound (4) to the variables

yp,i
di

and choosing
ε = 6 log n, we get:

Pr

⎡
⎣ ∑

{p|p∈(si,ti)}

yp,i ≥ (1 + 6 log n)di

⎤
⎦ <

1

n4
.

The number of demands in G is at most n2. By the union bound,∑
i (Pr [fi ≥ (1 + 6 log n)di]) < 1

n2 , meaning that the probability
that the flow of any pair (si, ti) exceeds the demand value di by
more than a factor of O(log n) is less than 1/n2, thus negligible.

Path-degree constraints. We now turn to consider path-degree
constraints and bound the probability that the flow going through
node v exceeds the path-degree constraint b(v). We can assume that
for each node v, b(v) ≥ 1, that is, at least one path can pass through
each node. Given a node v, we define a set of random independent
variables yp,v:

yp,v =

{
1 with probability x(p)
0 otherwise

Random variables yp,v are independent. Note that their sum β(v) =∑
{p|v∈p} y(p, v) is exactly the number of flow paths going through

v following our randomized rounding procedure. The expectation of
β(v) is:

β̂(v) =
∑

{p|v∈p}

y(p, v) =
∑

{p|v∈p}

x(p) ≤ b(v), (7)

where the last inequality follows from the path-degree constraint (2)
of (Flow-LP).

Lemma 3: The probability of violating the path-degree constraint
of node v by more than a factor of (1 + 5 log n) is at most 1/n3,
i.e.,

Pr

⎡
⎣ ∑

{p|v∈p}

yp,v ≥ (1 + 5 log n) log n · b(v)

⎤
⎦ <

1

n3
.

Proof: We normalize the random variables yp,v to the range
[0, 1] by considering yp,v

b(v)
. By inequality (7), E[

∑
{p|v∈p}

yp,v
b(v)

] ≤ 1.

Applying the Chernoff bound (4) to the variables { zp,v
b(v)

}{p|v∈p} and
choosing ε = 5 log n we get:

Pr

⎡
⎣ ∑

{p|v∈p}

yp,v
b(v)

≥ (1 + 5 log n)

⎤
⎦ ≤ e

−25 log2 n
2+5 log n < e−3 logn =

1

n3
.

The number of nodes in G is n. By the union bound,∑
v (Pr [β(v) ≥ (1 + 5 log n)b(v)]) < 1

n2 , meaning that the prob-
ability that the number of flow paths going through a node exceeds
the path-degree constraint by more than a factor of O(log n) is less
than 1/n2, thus negligible.

Approximation factor. It follows from our analysis that by
scaling down the flow on each chosen path by a factor of O(log n),
link capacities are only violated with negligible probability. The path-
degree constraints will not be violated by more than a factor of
O(log n) with very high probability.

Contribution of flow to the objective function should only come
from flows satisfying the demand constraints. Since we scaled down
the flow on each chosen path by a factor of O(log n), demand
constraints are only violated with negligible probability (by our
analysis), and thus all flow paths that are chosen by the algorithm
indeed contribute their flow. Consequently, we achieve a flow solution
of total value OPT/O(log n), satisfying link capacities, demand
constraints, and violating path-degree constraints by at most a factor
of O(log n).

C. An (O(1), O(log n)) bicriteria approximation

We present an (O(1), O(log n)) bicriteria approximation under
the assumption that the flow over each path p is not allowed to
consume more than a 1/ log n fraction of the path capacity. This
restriction can easily be incorporated into linear program (Flow-LP)
by requiring that for each path p, x(p) ≤ 1

log n
. For this case, our

randomized algorithm achieves an expected total flow of OPT/O(1),
while satisfying the link capacity constraints, but potentially violating
the path-degree bounds of the nodes by at most a factor of O(log n),
as before.

Algorithm 2 Randomized (O(1), O(logn)) bicriteria approximation

1: Solve (Flow-LP) for the bounded path-degree max flow problem with the
additional constraint x(p) ≤ 1

logn
for each path p.

2: Independently, for each path p ∈ P , choose it with probability x(p) logn.
3: For each chosen path p, route over p flow of value c(p)/(7 logn).

Our algorithm applies randomized rounding to the fractional
optimal solution by choosing each path p ∈ P with probability equal
to x(p) log n. Note that x(p) log n ≤ 1. We then route over p flow
of value c(p)

7 log n
. factor.

The analysis of the algorithm goes along similar lines as in
Section III-B. The proofs are thus presented concisely, focusing on
the particularities of this case.

Link capacity constraints. We define the set of random inde-
pendent variables yp,e as follows:

yp,e =

{
c(p) 1

log n
with probability x(p) log n

0 otherwise

Lemma 4: The probability of violating the capacity of link e by
more than a constant factor of 7 is at most 1/n4, i.e.,

Pr

⎡
⎣ ∑

{p|e∈p}

yp,e ≥ 7c(e)

⎤
⎦ <

1

n4
.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1738

6

Proof: We normalize the random variables yp,e to the range
[0, 1/ log n] by considering yp,e

c(e)
. From the link capacity constraint

(1), the expected value

E

⎡
⎣ ∑

{p|e∈p}

yp,e
c(e)

⎤
⎦ =

∑
{p|e∈p}

c(p)

c(e)
·

1

log n
· x(p) · log n ≤ 1.

Applying the Chernoff bound (4) to the variables yp,e
c(e)

· log n (where
now μ ≤ log n) and choosing ε = 6, yields the desired result.

Note that the sum of the random independent variables∑
{p|e∈p} yp,e is exactly the value of the flow over link e following

our randomized rounding procedure. By the union bound, the proba-
bility that the capacity of a link is violated by more than a factor of
7 is less than 1/n2, thus negligible.

Demand constraints. The analysis of the demand constraints is
similar to the link capacity constraints. Defining a set of random
independent variables yp,i corresponding to the paths connecting
(si, ti), it can be shown that the probability that the flow of any
pair (si, ti) exceeds the demand value di by more than a factor of 7
is less than 1/n2, thus negligible.

Path-degree constraints. The path-degree of a node is not
changed by scaling down the value of positive flows over the different
paths, as any positive value has the same contribution to the degree.
Intuitively, this explains why the additional constraint on the value of
x(p) does not improve the violation of the path-degree constraints.

We define random independent variables zp,v for each node v:

zp,v =

{
1 with probability x(p) log n
0 otherwise

Applying the Chernoff bound (4) to the variables {
zp,v
b(v)

}{p|v∈p}

(similarly to Section III-B), yields that the probability that the number
of flow paths going through a node exceeds the path-degree constraint
by more than a factor of O(log n) is less than 1/n2, thus negligible.

Approximation factor. It follows from our analysis that by scal-
ing down the flow on each chosen path p by a factor of 7 log n, link
capacities and demand constraints are only violated with negligible
probability. Consequently, we achieve a flow solution of total value
OPT/7, satisfying link capacities, demand constraints, and violating
path-degree constraints by at most a factor of O(log n).

D. Solvability of the general problem

In the general bounded path-degree max flow problem, there is
no (predefined) restricted set of allowed flow paths P , and in general
traffic can use any path in the network. Thus, the LP relaxation
of this problem (see (Flow-LP)) may have an exponential number
of variables x(p), corresponding to all possible paths p connecting
sources and destinations. Nevertheless, we show that by applying the
Ellipsoid algorithm to the dual linear program, (Flow-LP) can be
solved efficiently (i.e., in polynomial time). Moreover, the randomized
rounding algorithms and analysis presented in Sections III-B and III-C
still apply to the general case of our problem.

In the dual linear program, there is a dual variable ye for each
capacity constraint on edge e (primal constraint (1)), a dual variable
zv for each path-degree constraint on node v (primal constraint (2)),
and a dual variable αi for each demand constraint i (primal constraint
(3)). The dual problem is as follows.

Min
∑
e∈E

c(e) · ye +
∑
v∈V

b(v) · zv +
∑
i

di · αi s.t. (8)

∀p ∈ (si, ti):
∑

{e∈p}

c(p) · ye +
∑

{v∈p}

zv + c(p) · αi ≥ c(p)(9)

∀ e, v, and i: ye, zv, αi ≥ 0. (10)

As already mentioned, in the dual problem the number of variables is
polynomial while the number of constraints might be exponential (all
possible paths). Such a pair of primal-dual linear programs can be
solved by the Ellipsoid algorithm if a separation oracle can be found
for the dual LP. A separation oracle is a polynomial-time algorithm,
that given an assignment to the dual variables, either answers that
the assignment is feasible for the dual linear program, or finds a
violated constraint. Moreover, if the separation oracle can find the
most violated constraint in polynomial time, the LPs can be solved
efficiently using a combinatorial algorithm (see e.g., [8].

The separation oracle. Given an assignment to the dual variables,
the separation oracle checks whether there is a violated constraint.
That is, for all i, does there exist a path p ∈ (si, ti) such that:

∑
{e∈p}

ye +
1

c(p)

∑
{v∈p}

zv < 1− αi. (11)

The separation oracle can be implemented by computing the path p
minimizing the value of the expression in the LHS of (11). Path p
either defines a violated constraint or provides a certificate that the
dual solution is indeed feasible. (We note that if p defines a violated
constraint, it also defines the most violated constraint.) The separation
oracle thus reduces to the problem of computing:

min
p∈(si,ti)

⎧⎨
⎩

∑
{e∈p}

ye +
1

c(p)

∑
{v∈p}

zv

⎫⎬
⎭ . (12)

We note that the coefficient 1
c(p)

(which is specific to each path p) is
the source of the difficulty of solving(12). Otherwise, (12) is easily
reducible to the problem of finding a shortest path in a graph (via
Dijkstra’s algorithm), with both edge and node lengths (ye, zv).

We solve the problem of (12) efficiently as follows. Let us restrict
our attention to the paths connecting si and ti. (We do this for each
i separately.) First, for each link e, c(e) is assumed to be at most di,
otherwise c(e) can be truncated to di, since c(p) ≤ di for all p ∈
(si, ti). Next, we define a set of graphs {Gw = (V,Ew)} with respect
to parameter w, where Ew = {e ∈ E|c(e) ≥ w}. The graphs in the
set {Gw} are defined for each value w = c(e) of edge capacities in
E, and thus |{Gw}| ≤ |E|.

Claim 3.1: Each path p ∈ (si, ti) is a path in at least one graph
in {Gw}. Conversely, each path p ∈ Gw (for all w) is a path in G.

The proof of the claim is immediate, and follows from the fact
that each edge in Gw is also an edge in G, and a path p in G is a
path in all graphs Gw for which w ≤ c(p).

We define �(p) =
∑

{e∈p} ye +
1

c(p)

∑
{v∈p} zv as the length of

path p, with distance values ye on the edges and zv
c(p)

on the nodes.
We define �w(p) =

∑
{e∈p} ye +

1
w

∑
{v∈p} zv as the length of path

p, with distance values ye on the edges and zv
w

on the nodes. As
already mentioned, we note that minimizing �w(p) in Gw can be
solved efficiently by a variant of Dijkstra’s algorithm.

The algorithm computing minp{�(p)} (thus solving the mini-
mization problem stated in (12)) runs as follows. For each graph
Gw, we compute the shortest path with respect to �w(p). The
algorithm picks the path with minimum length �w(p) among all
the shortest paths computed for the graphs in {Gw}. Denote by
p′ the path with minimum such length, being the shortest path in
Gw′ . The output of the algorithm is the (true) length of p′, i.e.,
�(p′) =

∑
{e∈p′} ye +

1
c(p′)

∑
{v∈p′} zv .

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1739

7

Let p∗ be the path minimizing (12). We show that �(p′) ≤ �(p∗),
thus proving the correctness of the algorithm. Let w∗ = c(p∗). Thus,
p∗ ∈ Gw∗ and �(p∗) = �w∗(p

∗). Since the algorithm returned path
p′, �w′(p

′) ≤ �w∗(p
∗). However,

�(p′) =
∑

{e∈p′}

ye +
1

c(p′)

∑
{v∈p′}

zv

≤
∑

{e∈p′}

ye +
1

w′

∑
{v∈p∗}

zv = �w′ (p
′), (13)

since p′ ∈ Gw′ and c(p′) ≥ w′. Hence, �(p′) ≤ �(p∗), completing
the proof of correctness.

IV. EXPERIMENTAL STUDY

In this section, we present extensive simulations, demonstrating
the practical use of our algorithm for the bounded path-degree max
flow problem, both in data centers and backbone scenarios. Our
experiments were performed over the practical setting comprising of
two main phases. In the first phase, we compute a set comprising of
10 different paths for each pair (si, ti), over which the traffic can be
routed (traffic can be split between the paths).

In the second phase, we compute the maximum flow for this
setting, and provide as output the flow value routed over each path.
Given the pre-defined set of potential paths P , the second phase is
performed by solving the fractional path-degree max flow LP over
the set of paths P , and rounding the solution, as described in Section
III-B. The complete algorithm used in our experiments is described
by Algorithm 3.

Algorithm 3 complete algorithm for the bounded path-degree max flow
problem

1: For each pair (si, ti), compute a set Pi of k different paths over which
the traffic can be routed. � “k-shortest” or “almost disjoint” paths

2: Apply algorithm 1 (or 2) using the paths in the sets Pi.
3: For each node v with path-degree violation:

• Sort the paths with positive flow passing through v in decreasing
order according to their amount of flow.

• Remove paths according to this order until path-degree b(v) is
satisfied.

A. Simulated instances

We performed our experiments over three types of graphs, repre-
senting different practical cases of networking infrastructures.

• The Barabasi-Albert (BA) model [2], used for generating
random scale-free networks with power-law degree distri-
butions. Scale free networks are observed in many systems,
including the Internet backbone network [7]. The BA graphs
were created with 1000 nodes. During the creation of the
graph, each new added node has an initial degree of 2, and
is connected to an existing node vi with probability δi∑

j δj
,

where δi is the degree of node vi and
∑

j δj is the sum
of degrees over all pre-existing nodes. The nodes in these
graphs represent forwarding devices, to which dozens of
physical hosts are attached using point-to-point connectivity.
Assuming different demands can be associated with different
virtual machines, or different applications running on a
physical host, we obtain an infrastructure where we can
easily accommodate a large set of demands.

• The BCube network architecture [9], specifically designed
for modular data centers supporting bandwidth-intensive
applications. At the core of the BCube architecture is its
server-centric network structure, where servers act not only
as end hosts but also as relay nodes for each other. BCube is
a recursively defined structure, where a BCube0 comprises

of n servers connected to an n-port switch, and a BCubek
(k ≥ 1) is constructed from n BCubek−1 and nk n-port
switches. We generate a 2-level structure, with n = 30. We
chose to simulate the BCube topology as it is much more
complex than other common Data Center topologies (e.g.,
Fat-Tree), allowing the flow to be routed on diverse paths.

• A mesh topology, with n = 40 · 12 nodes, each with
degree 4. Such a topology can either model a general core
network (Internet backbone), or a cold storage data center
topology, used to store data that is written once and accessed
infrequently. We model an infrastructure of 12 racks, each
rack comprising of 40 UBoxes, each may contain dozens
of virtual or physical servers. In this type of data center,
top-of-rack (ToR) switches are omitted due to power and
budget constraints, and the connectivity between servers is
obtained by the use of mini switches (typically with four
or six 10 Gigabit ports) located of each UBox. In this case
the mini-switches are connected one to one another using a
mesh-like topology. This topology is highly relevant in our
case since such mini-switches are usually limited devices
with low resources in terms of forwarding flow capacities.

For all topologies, we simulated traffic of 200,000 different de-
mands. Commonly, forwarding tables size may range from thousands
to dozen of thousands for on-die devices (with resources on-chip),
while they may grow to hundreds of thousands for external devices.
In each graph instance used for our experiments, this size was set
uniformly between the range of 500 and 10,000. This value is set with
respect to the number of flow demands (200,000). We note that these
values can characterize much larger instances, where the number of
flows and the forwarding table sizes increase accordingly (see Figure
7 and respective discussion on normalized forwarding table size, end
of Section IV-B).

In all topologies, link capacities are uniform (typically represent-
ing 10 Gigabit links), while demands are generated randomly using
uniform distributions, and are normalized with respect to the maxi-
mum flow that can be supported by our infrastructure. Specifically, we
denote by Fmax the maximum flow that can be routed for all demands
in case there are no path degree constraints on the nodes. Then, each
randomly generated demand di is normalized to di∑

i di
· Fmax.

We considered two heuristics for selecting the set of paths
during the first phase of our algorithm. As the first heuristic, we
used a generalization of Dijkstra’s algorithm for computing the k
shortest paths between each pair (si, ti) (in our instances, all links
are weighted equally). The second heuristic was used for selecting
“almost disjoint” paths, that is, paths with a large number of distinct
links. For each pair (si, ti), the “almost disjoint paths” heuristic first
picks the shortest path. Then, it significantly increases the weights of
its links, picking the shortest path of the new instance, and continuing
similarly, each time increasing the weights of the links of the chosen
path. The simulations are presented for the best set of paths computed
during the first phase, which is achieved by the “almost disjoint paths”
heuristic. This heuristic achieves a better performance, as it tries to
distribute the usage of forwarding tables resources between distinct
paths. Conversely, considering our instances, the k shortest paths
heuristic picks paths having a significant overlap, thus condensing
flows and creating a set of loaded nodes.

B. Simulation results

Figure 3 presents the performance of our algorithm with respect
to the maximum flow that can be achieved (considered as 100%),
that is, the flow achieved in case there are no bounds on the
forwarding tables size. Results are presented for all three types of
topology, namely, BA, BCube and mesh topologies. The performance
(percentage of maximal flow achieved) is computed for different

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1740

8

 0

 20

 40

 60

 80

 100

500 1000 2000 5000 10000

T
ot

al
 F

lo
w

 %

Forwarding table size

Performance of path-degree max flow algorithm
BA

Bcube

Mesh

Fig. 3. Percentage of the total flow achieved by Alg. (3) with respect
to the maximum flow that can be routed in the network.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
er

fo
rm

an
ce

 r
at

io

Forwarding table size

Performance ratio of path-degree max flow algorithm and Greedy

BA

Bcube

Mesh

Fig. 4. Performance ratio of Alg. (3) and the greedy algorithm.

values of forwarding tables size (path-degree of the nodes), ranging
from 500 to 10,000 entries. Clearly, the smaller the flow table size
of the nodes, the lower the total flow that can be achieved. For
forwarding table sizes of 5000 entries, the flow achieved is above
75% of the optimum (BA topology), while for sizes of 1000 entries
it decreases to be above 25% of the optimum (BCube topology). We
note that when computing the maximum flow, where no bounds are
provided on the forwarding tables size, the actual usage of forwarding
table entries was measured to be up to 30,000 (the highest values were
measured for the BA topology). As can be seen from the graph, using
our technology, one needs to use only 10,000 entries (a factor of 3)
while reducing the total flow by 15%.

However, it could be the case that only few devices actually
need big tables, and the extra flows carry only a small fraction
of the total flow. To check it, we tested our algorithm against a
greedy algorithm (Greedy) that calculates a maximum (fractional)
flow without considering forwarding tables size constraints, and then
removes small flows passing through overloaded nodes, so as to
adhere to the path-degree constraints. The ratio between the total
flow achieved by our algorithm and Greedy is depicted in Figure 4,
for all three types of topologies.

It can be seen that the performance of our algorithm exceeds the
performance of the greedy algorithm in almost all cases (except a
single case for the mesh topology). The lower the flow table size of
the nodes, the better the performance of our algorithm compared to
greedy. This is a direct outcome of the fact that our algorithm has a
global view of the network, and balances the utilization of the for-
warding tables resources among all nodes, which is more significant
as the resources become more limited (i.e. small forwarding table
sizes). The larger difference is observed for the BA topology, where
our algorithm outperforms the greedy algorithm by up to a factor of
2.5. For the BCube topology, a difference of up to a factor of 1.7 can
be observed between the performance of the algorithms. Note that all
values were measured for the case of 200,000 flow demands, and are
thus expected to be even more significant in settings of larger scale,
with a higher number of flow demands.

While the theoretical approximation factor of our randomized
rounding algorithm is only guaranteed to be at most O(log n), in
all the simulations performed, we obtained a difference of less than
1% between the flow achieved by the fractional optimal solution and
our randomized rounded solution. Consequently, almost no violation
of the constraints occurred during the randomized rounding procedure
of the algorithm, and the solution obtained is almost optimal.

Figure 5 presents the distribution of the flows between the
different paths provided by the first phase of the algorithm. A number
of 10 different paths were computed for each flow demand as potential
paths for routing the traffic. It can be seen that in all topologies, up
to 45% of the demands use the first path (shortest path), and the rest

are distributed between the other paths. This result focuses on the
importance of the first phase of our algorithm, and emphasizes the
need of providing a set of diverse paths for each flow demand.

An interesting practical question is the distribution of the forward-
ing table resources between the nodes. Clearly, such a distribution
highly depends (among other things) on the network topology. Figure
6 presents the utilization and average load of the forwarding tables
of the nodes within each of the three topologies. The maximal table
size in this simulation was set to 1000 entries, however, we note that
a similar usage was observed for larger values as well. It can be
seen that in the mesh topology, which is a flat network, all nodes are
equally loaded and reach a very high percentage of their size limit.
In the BA topology, the forwarding tables load nearly follows the
power-law nature of the graph, where only 10% of the nodes utilize
more than 80% of their forwarding table size. In the BCube topology,
the distribution follows the hierarchical structure of the graph, where
most of the nodes utilize less than 15% of the resources while 7%
of the nodes utilize more than 90% of their forwarding table size.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

1 2 3 4 5 6 7 8 9 10

D
em

an
ds

 %

Path Number

Flow Distribution between routing paths

BA

Mesh

Bcube

Fig. 5. Flow distribution of the demands between the different paths provided as input
by the first phase of Alg. (3).

In order to further understand the capabilities of our algorithm in
different settings, Figure 7 presents its performance with respect to
a normalized forwarding table size (NS). This normalization is done
with respect to ρ = m·δ

n
where m is the number of flow demands, δ

is the average routing path length, and n is the number of devices in
the network. This number represents the forwarding table size needed
for the “ideal” case where all flows are distrusted evenly among all
network devices. For example, in order to satisfy 200,000 demands
in a network with a total of 1,000 nodes, where the average routing
path comprises of six nodes, the forwarding table size of each node
should be at least 200000·6

1000
(if the forwarding table sizes are not equal,

then the total number of entries should be considered instead).

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1741

9

 20

 40

 60

 80

 100

 0 200 400 600 800 1000

N
od

es
 %

 (
1-

C
D

F
)

Forwarding table size

Forwarding table utilization

BA

Bcube

Mesh

Fig. 6. The x-axis represents the number of forwarding table entries used. The y-
axis represents the complement of the cumulative distribution function, i.e., percentage
of nodes with usage higher than the respective x-axis value.

So when we have b entries in each device of the network, the
normalized forwarding table size is b

ρ
= b·n

m·δ
. In Figure 7, the

performance of our algorithm is evaluated with respect to different
NS values, providing a good indication of its performance on different
settings and scales. It can be observed that in hierarchical network
topologies (such as BA and BCube), where most of the routing paths
traverse a small set of nodes, a larger NS value is required in order to
satisfy the set of demands, as opposed to uniform graphs (e.g., mesh)
where routing path are uniformly distributed between the nodes 4.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11

T
ot

al
 fl

ow
 %

Normalized forwarding table size

Performance vs. normalized forwarding table size

BA

Bcube

Mesh

Fig. 7. Performance of Alg. 3 with respect to different NS values. The y-axis represents
the percentage of the total flow achieved wr to the maximum flow that can be routed in
the network.

V. DISCUSSION

The vast interest and the fast adoption of SDN solutions introduce
new interesting challenges. In this paper we address one of the
important limitations of SDN devices - the limited sizes of their
TCAM based forwarding tables. We conducted a thorough theoretical
study of the bounded path-degree max flow problem, for maximizing
network utilization in environments where the size of the forwarding
table of the network devices is limited. We considered both the general
version of the problem, as well as a practical setting in which there
is a set of pre-defined paths over which the traffic can be routed, and
developed bi-criteria randomized approximation algorithms that can
be implemented in the practical setting with high efficiency.

4The discussion is valid only for the case of flow demands with uniform
distribution. The load of other demand distributions would not be uniformly
distributed over the network, and thus a different computation would be needed
for different parts of the network topology.

We demonstrated the practical usefulness of these results by eval-
uating the expected performance gain in several typical networking
scenarios. The results indicate that our forwarding table size aware
algorithms can increase the total network flow by a factor of 2 in the
backbone setting and by more than 50% in the data center setting,
compared to current table size oblivious algorithms.

The setting we study is one of the first examples where the
power of the SDN paradigm is used to overcome hardware related
deployment issues. From the theoretical point of view, to the best
of our knowledge, our work is the first to tackle network utilization
and flow configuration under capacity constraints, as well as limited
forwarding table sizes of network devices. Many more problems
and future research directions arise in the SDN-traffic engineering
context. Examples of such are the online version of our setting,
the investigation of this framework with respect to other types of
device constraints, or different network design problems for efficiently
locating SDN-compliant devices within different networking infras-
tructures.

REFERENCES

[1] S. Agarwal, M. Kodialam, and T.V. Lakshman. Traffic engineering in
Software Defined Networks. Proceedings of IEEE Infocom 2013.

[2] R. Albert and A.L. Barabasi. Statistical mechanics of complex networks.
Reviews of Modern Physics, Vol. 74, pp. 47-97, 2002.

[3] G. Baier, E. Kohler, and M. Skutella. The k-splittable fow problem.
Algorithmica, Vol. 42, pp. 231178, 2005.

[4] J. Chen, R. Rajaraman, and R. Sundaram. Meet and merge: approx-
imation algorithms for confluent flow. Proceedings of the 35th ACM
Symposium on Theory of Computing (STOC), pp. 373-382, 2003.

[5] J. Chen, R.D. Kleinberg, L. Lovasz, R. Rajaraman, R. Sundaram, and
A. Vetta. (Almost) Tight bounds and existence theorems for single-
commodity confluent flows. Journal of the ACM, Vol. 54(4), Article
16, 2007.

[6] P. Donovan, B. Shepherd, A. Vetta, and G. Wilfong. Degree-Constrained
Network Flows. Proceedings of the 39th annual ACM symposium on
theory of computing (STOC), pp. 681-688, 2007.

[7] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the Internet topology. ACM SIGCOMM Comput. Commun.
Rev., Vol. 29(4), pp. 251-262, 1999.

[8] N. Garg, and J. Könemann. Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems. SIAM J. Comput.,
Vol. 37(2), pp. 630-652, (2007)

[9] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
Songwu Lu. BCube: A high performance, server-centric network archi-
tecture for modular data centers. Proceedings of the ACM SIGCOMM
2009 conference on Data communication, 2009.

[10] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and M. Segalov. How to
split a flow? Proceedings of IEEE Infocom 2012.

[11] J. M. Kleinberg. Single-source unsplittable flow. Proceedings of FOCS
1996, pp. 6817.

[12] S.G. Kolliopoulos. Edge-disjoint paths and unsplittable flow. Handbook
of Approximation Algorithms and Metaheuristics, ser. Chapman and
Hall/CRC, T.F. Gonzalez, Ed., 2007.

[13] C.E. Leiserson. Fat-trees: Universal networks for hardware-efficient
supercomputing. IEEE Transactions on Computers, 1985.

[14] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation
in campus networks. SIGCOMM Comput. Commun. Rev., Vol. 38(2),
2008.

[15] R. Narayanan, S. Kotha, G. Lin, A. Khan, S. Rizvi, W. Javed, H.
Khan, and S.A. Khayam. Macroflows and Microflows: Enabling Rapid
Network Innovation through a Split SDN Data Plane. 2012 European
Workshop on Software Defined Networking (EWSDN), pp. 79-84, 2012.

[16] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter. PAST: scalable
ethernet for data centers. Proceedings of the 8th international confer-
ence on Emerging networking experiments and technologies (CoNEXT
’12), pp. 49-60, 2012.

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1742

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

