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Abstract—In this paper we propose, implement and evaluate
OpenSample: a low-latency, sampling-based network measure-
ment platform targeted at building faster control loops for
software-defined networks. OpenSample leverages sFlow packet
sampling to provide near–real-time measurements of both net-
work load and individual flows. While OpenSample is useful in
any context, it is particularly useful in an SDN environment
where a network controller can quickly take action based on the
data it provides. Using sampling for network monitoring allows
OpenSample to have a 100 millisecond control loop rather than
the 1–5 second control loop of prior polling-based approaches. We
implement OpenSample in the Floodlight OpenFlow controller
and evaluate it both in simulation and on a testbed comprised
of commodity switches. When used to inform traffic engineering,
OpenSample provides up to a 150% throughput improvement
over both static equal-cost multi-path routing and a polling-based
solution with a one second control loop.

Keywords-sFlow; Packet Sampling; Software Defined Network-
ing; Data Center; Traffic Engineering; Measurement

I. INTRODUCTION

Software-defined networking (SDN) replaces the dis-

tributed, per-switch control planes of traditional networks

with a (logically) centralized control plane that programs the

forwarding behavior of all the switches in a given network.

This centralized control plane, run on a controller, can act as

a control loop that (i) gathers traffic and other measurements

from the network and (ii) uses the gathered information to

compute and install forwarding behaviors in the switches. Al-

though there are two logical components to this control loop—

measurement and control—the focus of the vast majority of

SDN research has been on control. Some prior SDN research

has included a measurement component [1], [2], [3], but the

closest related work also notes this bias toward control [4].

OpenFlow [5], the dominant protocol used to implement

SDN, provides two measurement techniques to create a global

view of the network: packet_in messages and per-port/per-

rule counters. Typically when a packet matches no switch rule,

the switch sends a packet_in message containing the packet

header (and possibly payload) to the controller for handling,

which may include installing new rules. Thus, in a typical

setup, the controller receives one packet_in message1 at the

1It is possible to receive more than one packet_in message per flow
especially if the flow is not connection oriented and thus sends many packets
before hearing anything from the receiver.

beginning of each flow. In addition, switches maintain counters

to track the number of packets and bytes handled by each port

and each OpenFlow rule.

In practice, neither of these measurement mechanisms

enable a scalable, low-latency measurement system. The

packet_in messages place a high burden on the local switch

CPU and are typically limited to at most a few hundred per

second [6], [7]. Further, they only provide data when a new

flow appears or a rule expires. Allowing a rule to expire

typically causes the flow to be paused until the packet_in
message is delivered to the controller and a new rule installed,

which typically takes a few 10s of milliseconds. In the wide-

area this might be tolerable, but in data centers and other local-

area networks this is long enough to cause TCP timeouts and

thus likely unacceptable.

On the other hand, port and flow counters are typically only

updated every second or so [2], which limits the control loop of

a controller to operating at a speed that is too slow to catch any

but the largest flows [8]. Further, the space-granularity of coun-

ters are either per-port or per-rule. Per-port counters do not

provide flow-level information, which either limits visibility

into the network or requires more processing, i.e., tomography,

to (probabilistically) disaggregate port-level information into

flow-level tracking. Per-rule counters require that rules be

installed at the granularity of the desired measurement, which

couples forwarding and measurement, with both mechanisms

installing rules in the switch. For example, Frenetic [3] is

forced to break apart OpenFlow rules when the monitoring

requests do not directly correspond to the forwarding rules,

consuming even more scarce TCAM space [6].

Ideally, a measurement system for software-defined net-

works would provide global visibility into the network and

near–real-time data, i.e., latencies on the order of milliseconds.

Further, it would scale to large traffic volumes without over-

taxing switch control CPUs or the SDN controller.

In this paper we present the design and evaluation of a

sampling-based SDN measurement system called OpenSample
that achieves these goals. Rather than using the OpenFlow

measurement mechanisms, OpenSample leverages the sFlow

packet sampling functionality present in most switches. sFlow

supports uniform random sampling of packets on a per-port

basis. The switch forwards the header of, on average, 1 in

every N packets traversing a given port to a collector. From

2014 IEEE 34th International Conference on Distributed Computing Systems

1063-6927/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDCS.2014.31

228



����

����

����

����

	�


�

��

��


�

��




��

	�





���
��


��� ��� 


��� ��� 


���
��

(a) The physical OpenSample testbed
with four 10 Gbps IBM G8264 switches
configured with 6 hosts and 3 large flows.
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(b) The throughput of three large flows both before and after
enabling OpenSample-based traffic engineering.

Fig. 1. An intuitive example of OpenSample-based traffic engineering
running on a physical testbed.

these random samples, the collector can infer a variety of

information about the network including the elephant flows

present on each link and link utilization. Further, since each

switch that a packet traverses can sample that packet, the

effective sampling ratio of a network grows as the network

grows and paths get longer.

To demonstrate the value of OpenSample’s faster network

monitoring, we implemented a traffic engineering application

that uses OpenSample to detect congested links and the large

flows using those links. In our experiments, traffic engineering

informed by OpenSample provides up to 150% more aggregate

throughput than both equal-cost multi-path (ECMP) routing

and polling-based traffic engineering (inspired by Hedera [1])

when flow sizes are small, i.e., a flow in a slow start phase.

Further, OpenSample can be implemented without the end-

host modifications required by Mahout [2] and MicroTE [8],

and does not require the use of expensive OpenFlow rules for

fine-grained measurement like Frenetic [3].

The following example, illustrated in Fig. 1(a), motivates

and explains OpenSample-based traffic engineering. We con-

figure a physical testbed with four IBM RackSwitch G8264

10GbE switches in a clique with three hosts attached to two

of the switches. Hosts A, B, and C each generate long-running

flows using iperf to hosts D, E, and F, respectively. Fig. 1(b)

shows the throughput of each of the three flows both before

and after we turn on traffic engineering. Initially, the three

flows compete for bandwidth on the single shortest path (SW1-

SW4) and converge to a fair share of approximately 3 Gbps

each. However, there are sufficient redundant paths in the

topology for each flow to follow its own disjoint path. After

five seconds we enable traffic engineering, which is able to

identify the three elephant flows and re-route two of them to

uncongested paths. After that, each flow achieves 10 Gbps of

throughput using the three different disjoint paths: 1-4, 1-2-4

and 1-3-4.

The remainder of the paper is organized as follows. Sec-

tion II provides a more detailed look at sampling-based

measurement as well as data center traffic characterizations.

We describe the design and implementation of OpenSample in

Section III. Section IV presents an evaluation of OpenSample

using both emulation and results from a real testbed. We cover

the work most closely related to OpenSample in Section V.

Finally, in Section VI we draw conclusions and present ideas

for future work.

II. BACKGROUND

Before diving into the design, implementation and evalua-

tion of OpenSample, we first present background material on

both typical data center workloads and existing non-OpenFlow

network monitoring approaches, which we use to drive the

design of our traffic engineering application.

A. Data Center Network Workloads and Topologies

While the purpose of this paper is not to characterize

modern data center workloads or topologies, we note certain

properties in current data centers that others have observed

and use these properties in our construction and evaluation of

OpenSample. In particular, several characterizations of data

center workloads [9], [10] have shown that while there are

often hot spots in data center networks, the remainder of the

networks is typically underutilized. Thus, if the topology has

multiple paths for any given flow to select, it is likely that

traffic experiencing congestion could be re-routed to an under-

utilized path.

Fortunately, common current and future data center network

topologies, e.g., Fat Tree [11], HyperX [12], and Jellyfish [13],

offer many diverse paths between arbitrary endpoints. Despite

this, most current data centers still use static routing configu-

rations and/or equal-cost multi-pathing (ECMP). While these

approaches attempt to minimize the occurrence of hot spots,

hot spots still occur and these static approaches can do nothing

in response to congestion once it occurs.

Recent research efforts [1], [6], [8] use SDN to reroute

flows in reaction to congestion. The result is a variety of

good techniques for selecting alternate paths. However, these

approaches rely on switch-based measurements with latencies

measured in seconds, and are thus limited to detecting and

rerouting only the largest flows.

Thus, all of the ingredients for substantially improved

traffic engineering are present, except for the timely network

measurements OpenSample provides.

Further, we note that the traffic characterization indicates

that flow sizes are approximately exponentially distributed and

flow inter-arrival times are also exponentially distributed, i.e.,

a poisson process. As a consequence, in our emulation results,

we assume exponential flow sizes and inter-arrival times.
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B. Non-OpenFlow Network Monitoring
While many readers are no doubt familiar with the network

monitoring features of OpenFlow, i.e., per-port and per-rule

byte and packet counters, they may be less familiar with other

monitoring techniques such as NetFlow [14] and sFlow [15].

NetFlow produces per-flow statistics without requiring rules

to be installed. sFlow provides real-time packet samples from

individual switches. Mann et al. [16] recently compared Net-

Flow and sFlow for network monitoring at the hypervisor in

virtualized data centers. Since congestion can occur anywhere

in the network, we monitor both physical and virtual switches.

And because the overhead of monitoring impacts its value, we

are concerned with the overhead of monitoring techniques.
1) NetFlow: NetFlow [14] was originally developed by

Cisco to provide a way to collect statistics about individual IP

flows in a data network. In NetFlow, each switch (or router)

maintains a flow cache that tracks flow statistics for each

flow, usually identified by 5-tuple (source and destination IP

address, source and destination TCP/UDP port, and IP protocol

number) and type of service. As each packet arrives, its header

fields are checked to see if it matches an existing entry in the

flow cache. If it does, then the flow cache entry is updated

appropriately, i.e., by incrementing the packet and byte counts.

If the flow is not already present in the flow cache, a new

entry in the flow cache is created. NetFlow has four policies to

decide when to send the flow record to a NetFlow collector: (i)

when a TCP packet is seen with a FIN or RST flag indicating

flow completion, (ii) when a flow idle timeout expires, (iii)

when a hard timeout fires indicating that the flow has been

tracked for y seconds regardless of whether it is still sending

traffic, and (iv) when the flow cache is full and an entry must

be evicted. When any of these four conditions hold, the switch

sends a NetFlow record including flow statistics to a collector

for further analysis.
Implementing NetFlow in hardware requires a dedicated

CAM to track this information at line-rate. This hardware is

not found in all switches and support for NetFlow is chiefly

found in Cisco products and hypervisor vSwitches such as

VMware ESX and Open vSwitch.
Further, NetFlow timeouts are specified at second granular-

ity and in practice many implementations do not allow for val-

ues less than 30 seconds, so it provides little latency advantage

over the low polling rates achievable using OpenFlow’s per-

rule counters. Since OpenSample is focused on low-latency

network measurements, NetFlow is not a suitable choice for

OpenSample.
It should be noted that later versions of NetFlow also in-

clude a “Sampled NetFlow” [17] mode that produces NetFlow

records based on sampling 1 in N packets that traverse a

switch rather than every packet. However, the samples are still

applied to the records in the flow cache and records are still

sent according to the same policy. Thus Sampled NetFlow

incurs the same coarse-grained timeouts that make NetFlow

unsuitable for low-latency monitoring.
2) sFlow: The sFlow [15] standard aims to provide fine-

grained network measurements without requiring per-flow
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Fig. 2. The number of samples per second received at the collector as the
sampling ratio increases.

state at switches. Instead it relies on two forms of sampling:

packet sampling and port counter sampling.

For packet sampling, the switch captures one out of every

N packets on each input port2. It then immediately forwards

the sampled packet’s header encapsulated with metadata to a

central collector. The metadata includes the sampling ratio of

the port, the switch ID, the timestamp at the time of capture,

and forwarding information such as the input and output port

numbers.

The rate of samples sFlow produces is not constant; as it

samples one in every N packets, the rate of samples varies

based on the rate of packet arrivals. Since the packet arrival

rates vary dramatically based on network load and packet size,

the rate of samples also varies. Note that a packet passing

through multiple switches is eligible to be sampled by every

switch along the path. If a flow passes through k switches,

combining the samples from those switches gives an effective

factor of k increase in the sampling ratio.

From the gathered samples, the collector can probabilisti-

cally infer a number of flow statistics, e.g., it can estimate the

expected number of packets and bytes in each flow by simply

multiplying the number of sampled bytes and packets by the

sampling ratio, N [18]. This approach statistically produces an

unbiased estimator for the actual number of bytes and packets

sent by the flow. In the remainder of this paper we refer to

this technique for estimating the byte and packet counts of the

flow as Maximum Likelihood Estimation (MLE).

However, MLE has the limitation that it requires a large

number of samples to provide accurate estimates of the true

flow byte and packet counts. The expected relative error is

inversely proportional to the square root of the number of

samples, s, gathered from that flow. In particular, the percent

error can be bounded as: % error ≤ 196 ·
√

1
s [18].

With an analysis of real data center workloads by Benson

et al., [10] we found that an average of 60 flows totaling

3,000 packets arrive at each top-of-rack switch in any given

100 ms window. This means the average flow has 50 packets

in a 100 ms window. Even if all 50 packets from a given

flow are sampled, we can only estimate the flow’s actual

2In actuality N is a parameter per port of a switch and need not be the
same for all ports. However, in OpenSample, we assume the sampling ratio
is fixed for all ports and leave exploration of per-port sampling ratio to future
work.
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Fig. 3. The architecture of OpenSample providing measurement data to an
SDN controller is depicted. sFlow agents running on switches provide samples
to an sFlow collector which are then forwarded to flow and port analyzers.
This information is aggregated into network snapshots and exposed via an
open API. The SDN controller uses this API to make flow rerouting decisions.

rate with approximately 30% error. In practice with realistic

sampling ratio, even this is optimistic. Using MLE, there are

only two ways to improve accuracy: (i) increase the sampling

ratio and/or (ii) increase the sampling period. The latter is

not viable without violating OpenSample’s goal of low-latency

measurements.

Unfortunately, increasing the sampling ratio is difficult as

well. Fig. 2 shows the number of samples per second our

sFlow collector receives from one of our testbed switches as

we increase the sampling ratio while keeping the amount of

traffic going through the switch constant, i.e., 10Gbps. The

number of samples per a second peaks at between 300 and 350

samples per second. We believe this limit is a consequence of

the switch’s control CPU being overwhelmed. With a limit of

∼350 samples per second, the expected number of samples

for a given flow in a 100 ms time window that samples from

60 flows is less than one. While newer switches may provide

faster control CPUs, it seems likely that it will be infeasible

to get enough sFlow samples in a short period, i.e., 100 ms,

to provide an accurate estimate of the flow throughput for the

foreseeable future. Therefore, we need to do something other

than MLE to estimate flow statistics accurately and in near-

real-time, which is detailed in the next section.

III. OPENSAMPLE DESIGN

The architecture of OpenSample is illustrated in Fig. 3. We

use i) packet sampling, e.g., sFlow, to capture packet header

samples from the network with low overhead and ii) use TCP

sequence numbers from the captured headers to reconstruct

nearly-exact flow statistics. Simultaneously, we use the same

packet samples to estimate port utilization at sub-second time

scales, described in detail below. We use a single, centralized

collector that combines samples from all switches in the

network to construct a global view of traffic in the network at

both flow and link granularities.

Detailed network monitoring information has a variety of

uses, including traffic engineering, resource provisioning, VM

placement/migration, and intrusion detection. For illustration

purposes, we focus on traffic engineering as the consumer of

OpenSample’s ability to very quickly detect elephant flows

and estimate link utilization. In the following subsections, we

describe how OpenSample extracts flow statistics from the

samples, detects elephant flows, estimates link utilization of

each switch’s ports, and enables traffic engineering.

A. Protocol-Aware Flow Statistics Detection

As discussed earlier, accurately inferring flow statistics

using MLE requires many samples per flow. To overcome the

limitation of statistical inference, we exploit the fact that most

traffic sent in data centers today is TCP traffic [19]. Each

TCP packet carries a sequence number indicating the specific

byte range the packet carries. Fortunately, when sFlow samples

the header of TCP packets, this header also includes the TCP

sequence numbers3.

Thus, if we sample at least two distinct packets from a given

TCP flow, we can compute an accurate measure of the flow’s

average rate during the sampling window by subtracting the

two sequence numbers and dividing by the time between the

samples.

Exploiting TCP information drastically increases estima-

tion accuracy for any given sampling ratio. This TCP-aware

sFlow analysis is the key innovation OpenSample incorporates

compared to prior sFlow monitoring frameworks. In the next

section, we provide analytic and simulation-based analysis of

the probability of sampling two different packets from a given

flow for a given number of switches, sampling ratio, and flow

size. We also examine the expected time before receiving two

samples from a flow for a variety or parameters.

Our OpenSample-based traffic engineering mechanism con-

siders any TCP flow for which it receives two or more samples

to be an elephant flow and all elephant flows are candidates

for traffic engineering. Thus, it considers far more flows to be

candidates for rerouting than prior work [1], [2], [8].

Finally, we note that this approach is not limited to TCP,

but can be extended to any protocol that includes sequence

numbers in the header. Even if the sequence numbers represent

packets and not bytes, as long as this is known a priori, the

sequence numbers can be used to compute flow bandwidth

rates substantially more accurately than MLE.

B. Probability of Flow Statistics Detection

To determine the probability of detecting a flow statistics

using our enhanced Protocol-aware flow statistics detection,

we analytically calculate the probability of getting at least

two different samples from a single switch and use a simple

simulator to find the same probability across one or more

switches. In both cases, we evaluate the probability under a

variety of different flow sizes and sampling ratio.

3 The sFlow specification does not actually mention or require that
samples include TCP sequence numbers, but it does specify that the preferred
implementation should provide the raw packet header [20] and, in practice,
both our physical switches and Open vSwitch [21] provide this information.
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(a) The analytical and simulated probability for
one switch. The lines show the analytical values
while the points show the simulated values.
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(c) The CDF of the delay to get any two consecu-
tive samples from a flow based on average packet
inter-arrival rate λ.

Fig. 4. The probability of getting at least two different samples from the same flow for varying flow sizes, sampling ratio and number of switches. Each
line is labeled “1 in N” for the single switch case or “1 in N , k” for multiple switches where the sampling ratio is 1

N
and there are k switches.

First, we develop an analytical model for a single switch.

To ease exposition, we introduce the following variables:

n = number of packets in the flow

p = probability of packet sampled (0 ≤ p ≤ 1) =
1

N
k = number of switches

Since there is no risk of sampling the same packet twice at

a single switch, the probability of getting two samples from

the same flow at the same switch is the probability of getting

two samples from the same flow. More formally:

Pr{2+ samples} = 1− Pr{get zero or 1 sample}
= 1− Pr{get no samples} −

Pr{get 1 sample}
= 1−

(
n

0

)
(1− p)n −

(
n

1

)
p(1− p)n−1

= 1− (1− p)n − np(1− p)n−1

When considering the case with more than one switch,

the analysis becomes more complex because it must account

for the possibility of sampling the same packet twice at two

different switches. However, for realistic numbers of switches,

k, and probability of packet sampled, p, the probability of

sampling the same packet more than once at different switches

is low enough that it effectively acts as the one switch model

with a probability of packet sampled of kp. More formally:

Pr{2+ samples} ≈ 1− (1− kp)n − nkp(1− kp)n−1

To avoid analytical inaccuracy due to this simplification, we

use a simple simulator to estimate the probability of getting

two distinct samples from k switches. Each point is the result

of 1000 simulations and the error bounds are small enough

that we omit them. The results from both our analysis and

simulator appear in Fig. 4. Fig. 4(a) shows the results of

both the analysis and simulator for a single switch at various

sampling ratio. The points are from the simulator and the

lines are from the analysis. The two are almost identical,

which provides validation for our model. Further, note that for

sampling ratio greater than 1 in 200, we are nearly guaranteed

to get two distinct samples from flows with more than 1000

packets, i.e., 1.5 MB or more. In contrast, for a 1000-packet

flow and a 1 in 200 sampling ratio, MLE has an 87% estimated

error.
Fig. 4(b) shows the simulation results for varying number

of switches and sampling ratio. This shows that even for low

sampling ratio, increasing the number of switches drastically

improves the probability that we will get two distinct samples

with low-cost. It also confirms the intuitive approximation to

the one switch model. The lines with half the sampling ratio,

but twice the switches closely follow each other, e.g., one

switch with 1 in 5000 sampling produces the same result as

two switches with 1 in 10000 sampling.

C. Flow Detection Delay
To determine how long it takes to acquire two samples from

a given flow, we analytically calculate the expected delay, D.

We express D as the sum of two random variables, X1 and

X2, representing the arrival time (after the start of the flow)

of the first and second sampled packets.
If packet arrivals are a Poisson process with average packet

inter-arrival rate λ, then sample arrivals are a Poisson process

with an average inter-arrival rate of λp. Thus, X1 and X2 are

i.i.d. exponential random variables with mean 1
λp . Assuming a

single switch, the delay to receive two samples can be stated:

E[D] = E[X1 +X2]

= E[X1] + E[X2] =
1

λp
+

1

λp
=

2

λp

For the case with k switches, this is approximately 2
λkp .

More accurately, D, is an Erlang-distributed [22] random

variable with shape k̂ = 2 and rate λ̂ = λkp. The CDF of D is

shown in Fig. 4(c). We present values for k = 3 representing

a typical 3-hop path in data center and for packet inter-arrival

times of 1000μs and 10μs representing slow (12 Mbps) and

fast (1.2 Gbps) flows (assuming 1500 byte packets). As can be

seen, we easily detect all fast flows in less than 100 ms even

with sampling ratio of 1 in 1000.
Note that there is nothing special about the choice of starting

time and two samples. The analysis holds for the time to gather

two samples after any arbitrary point in the duration of a flow.

D. Estimating Switch Port Utilization
In addition to packet samples, sFlow reports exact packet

and byte counter values for each port in a switch every 5
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seconds, similar to OpenFlow. This data is not useful for our

goal of sub-second monitoring.

Thus we use packet samples to estimate link utilization at

small timescales. OpenSample estimates the utilization of each

link during a given interval by multiplying the number of

sampled packets in that interval by the average packet size.

This is akin to treating all packets going through a particular

link as a single “superflow” and using MLE to estimate its

throughput. This estimate is accurate, despite MLE’s poor

error bounds, as it includes all samples from a given port.

E. Network State Snapshot Database

Every 100 ms, OpenSample generates a snapshot of the

network state for consumption by other applications. This state

includes the network topology (retrieved from the SDN con-

troller), estimated utilization of every switch port, and the set

of detected elephant flows. For each elephant flow, the snap-

shot includes the flow’s five-tuple, its estimated bandwidth,

and its current path. Applications such as traffic engineering

can query the latest snapshot through an API, making them

loosely coupled with the internals of OpenSample.

F. Traffic Engineering

Traffic engineering is a natural application of software-

defined networks because the controller has a global view of

the topology and it controls all of the switches’ forwarding

tables. An SDN controller forward a flow over a non-shortest

path just as easily as over a shortest path, with no concerns

about convergence time, forwarding loops, or black holes.

Unfortunately, the high latency of network measurements has

limited the effectiveness SDN-based traffic engineering [23].

Since we use exponentially distributed flow sizes, statisti-

cally a flow is expected to last as long as it has already lasted.

Thus, if we detect an elephant flow that has sent a significant

amount of traffic, we can expect it to send that much again

in the near future. By moving such flows from congested

to uncongested paths, that future traffic will achieve higher

throughput, as will any traffic with which it was competing.

Because only the packets sent after the flow is scheduled can

benefit from traffic engineering, fast detection and scheduling

are crucial to the efficiency of traffic engineering. Thus,

OpenSample’s low-latency monitoring is an ideal candidate

for traffic engineering.

While we experimented with a variety of scheduling al-

gorithms, we found that, in general, the speed at which the

scheduling control loop could operate made a more significant

difference than the algorithm used. As a consequence, we

use the global first fit algorithm presented in Hedera [1]

for its simplicity. Our technical innovations focus purely on

improving the speed of congestion and large flow detection

rather than improved flow scheduling techniques.

While our algorithm is borrowed from Hedera, it operates on

a 100 ms interval—50 times faster than Hedera’s five second

interval. As data center networks are upgraded from 1 Gbps

to 10 and 40 Gbps, we expect flow duration to shrink, which

means that traffic engineering must become proportionately

faster to remain effective. Alternately, with a constant link

speed faster traffic engineering can make better decisions, as

shown in our evaluation.

By default, all traffic in our network follows shortest paths—

we do not use Spanning Tree Protocol or equivalent. When

multiple shortest paths exist, ties are broken by using equal-

cost multi-path (ECMP) hashing based on the TCP/IP 5-tuple.

Every 100 ms interval, the controller estimates the utilization

of every link in the network and attempts to reduce congestion

by moving elephant flows from highly-utilized links to less

utilized ones. The controller considers the set of detected

elephant flows that traverse at least one congested link and

uses a global first-fit algorithm to re-route them.

In OpenSample, both default forwarding and traffic en-

gineering use OpenFlow. Engineered paths use high-priority

OpenFlow rules and default paths use lower-priority rules.

Scheduling a flow along a different path simply requires

installing one new high-priority rule in each switch along the

path. After an elephant flow ends, its rules time out and the

switches automatically remove them. The time to install an

OpenFlow rule—approximately 10 ms—is fairly small com-

pared to OpenSample’s 100 ms control interval.

IV. EVALUATION

In this section, we present the results of our experimental

evaluation of OpenSample. Our goal is to compare OpenSam-

ple’s fast control loop against previous counter-polling–based

approaches. To this end, we implemented OpenSample and a

traffic-engineering application as modules for Floodlight [24],

an open-source OpenFlow controller written in Java. We tested

OpenSample on both the Mininet-HiFi [25] emulator and a

physical network testbed of x86 servers connected with IBM

RackSwitch G8264 switches.

Because of our physical testbed’s limited scale—only four

switches—we predominantly used it to verify that our tech-

niques work in practice, to validate our simulator framework,

and to inform our design with the constraints of real-world

hardware. As a consequence, we omit the testbed results

except for the simple demonstration of traffic engineering,

shown in Fig. 1, and an evaluation of the sampling ratio

supported on our switches, shown in Fig. 2.

The remainder of this section focuses entirely on the em-

ulation results, which provide an insight into OpenSample’s

operation at reasonable scales.

A. Methodology

We use the Mininet-HiFi [25] network emulator to evalu-

ate OpenSample in a controlled and repeatable environment.

Mininet uses Linux containers to emulate hosts and Open

vSwitch (OVS) to emulate switches, allowing a whole network

to be emulated on a single computer. Mininet-HiFi uses

Linux traffic shaping to emulate fixed-speed links, giving the

emulated network realistic congestion and queueing delays.

We set the link speed to 10 Mbps to allow for faster emulation.

However, note that OpenSample can control either Mininet or

a physical network with no changes.
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Fig. 5. Aggregate throughput for ECMP, Polling, OpenSample-MLE and OpenSample-TCP traffic engineering on a k=4 fat free compared to a single
non-blocking switch all with 10 Mbps links. Each bar represents the average of 5 runs with error bars showing standard deviations. Flow inter-arrival times are
exponentially distributed with a 1 ms average. OpenSample uses a sampling ratio of N=50 and a 100 ms scheduling interval while polling uses a 1 s interval.
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234



We replicate the testbed benchmark of Hedera [1] with

identical settings, including topology and workloads. We use a

three-level k=4 FatTree as an example of a network topology

with a realistic diameter and degree of multipathing (a real

network would use a much larger switch radix such as k=64).

We also run the workloads on an emulated single large non-
blocking switch to determine the maximum throughput when

constrained only by host NIC speeds. Note that we omit the

details of FatTree and non-blocking topology and refer to

Figure 2 in [1] due to the page limitation. However, we do

note that because non-oversubscribed FatTree topologies are

rearrangeably non-blocking, the non-blocking topology also

serves as the achievable optimum performance on the FatTree.

We evaluate OpenSample with two sampling ratios: N=50

and N=200. Simple calculations indicate that to avoid ex-

ceeding the 350 sample per second limit on our physical

switches, the sampling ratio should be closer to N=250,000 to

handle line-rate traffic on all ports. The bulk of the discrepancy

comes from the 1000x difference between link speeds in our

emulations and our physical switches. The remainder stems

from the fact that (i) in practice, not all ports operate at line

rate simultaneously under realistic workloads and (ii) newer

switches [26] have significantly faster control CPUs allowing

for more than 350 samples per second.

We use a workload generator [27] originally written for

Hedera. It has three different traffic communication patterns

such as Stride(s), Staggered Prob (EdgeP, PodP), and Ran-
dom(u). Given a network with N hosts, the Stride(s) workload

causes the host with index i to communicate with the host

with index (i + s)mod(N), resulting in an adversarial traffic

pattern on our topology. On the contrary, in the Random(u)
workload each host communicates with u different hosts that

are chosen uniformly. Staggered Prob (EdgeP, PodP) has each

flow stay within the same rack with probability EdgeP, stay

within the same pod with probability PodP, and crosses pods

with probability 1− EdgeP − PodP.

Moreover, we generate two classes of flows: (i) short flows

with an exponential distribution of mean 1 MB size, and (ii)

long flows with the same exponential distribution but a 1 GB

mean flow size. Both short and long flows follow the same

inter-arrival time distribution, exponential with a mean of 1 ms.

For our performance baseline we use shortest-path ECMP

forwarding with no traffic engineering. We compare three dif-

ferent measurement approaches: (i) Polling, (ii) OpenSample-

MLE using a maximum likelihood estimator as described in

Section II-B2, and (iii) OpenSample-TCP using TCP sequence

numbers to infer throughput as described in Section III.

The Polling approach is designed to model measurement

based on querying all of the flows in each switch as presented

in prior work [1], [7], [28], [29], [30]. Based on their observa-

tions, we chose a polling rate of once per second as it matched

the typical performance reported for the hardware switches

evaluated. However we note that depending on the number

of flows present in the switch and implementation details this

latency varies from 75 ms to 15 s. We note that the systems

which provided performance noticeably better than one second

Technique Total bytes sent % of bytes scheduled

Polling (1s) 133 MB 25%
OpenSample-MLE (N=200) 166 MB 30%
OpenSample-MLE (N=50) 185 MB 36%
OpenSample-TCP (N=200) 226 MB 41%
OpenSample-TCP (N=50) 264 MB 62%

TABLE I
THE TOTAL BYTES SENT IN 30 S AND THE PERCENT OF THOSE BYTES

SCHEDULED BY TRAFFIC ENGINEERING FOR THE Stride8 WORKLOAD.

either used specialized interfaces to query counters or assumed

that only a very small number of flows would be present.

To evaluate the performance of each approach, we measure

the aggregate throughput achieved on the various spatial work-

load patterns after applying traffic engineering as described

earlier. In all cases, we employ the same (Hedera) traffic

engineering algorithm and change only the underlying mea-

surement system. Meanwhile, we measure the total number of

bytes sent and the fraction of those bytes that we were able

to schedule on alternate routes for each case.

B. Results

Fig. 5 shows the throughput of a variety of workloads on

our emulated configuration. Note that even the non-blocking

switch does not achieve normalized throughput of 1.0 because

sometimes two hosts transmit to the same destination, causing

unavoidable congestion. Although a fat tree is a rearrangeably

non-blocking topology, there is a significant gap between naive

ECMP forwarding and the hypothetical single non-blocking

switch due to collisions where multiple flows are hashed onto

the same link. This gap makes the case for traffic engineering:

with perfect flow scheduling it should be possible to approach

the throughput of a non-blocking switch.

Polling is generally ineffective at detecting short flows

(shown in Fig. 5(a)), because these flows are almost always

finished before the controller can detect them. Polling is much

more effective when elephant flows are longer than the polling

interval (in this case one second), as in Fig. 5(b).

OpenSample-MLE outperforms polling in a few cases, but

in general it suffers from the sampling bottleneck described

earlier; by the time it receives enough samples to be confident

that a flow is large, the flow is almost over. Thus OpenSample-

MLE schedules relatively few flows.

OpenSample-TCP performs significantly better than either

polling or OpenSample-MLE, because it detects and schedules

elephant flows earlier. In most cases it achieves performance

close to a non-blocking switch, even for fairly small (1MB)

flows. Often it outperforms the alternatives by 25-50%.

Table I gives an intuition of the source of the performance

gains. It shows both the total bytes transferred in the 30 s

duration of the experiment and the percentage of those bytes

that the traffic engineering manages to schedule for the stride8
benchmark. The fraction of bytes scheduled can be considered

a figure of merit for traffic engineering, since any bytes that

are not scheduled are more likely to be subject to congestion.

By this metric, OpenSample-TCP schedules over twice the

fraction of bytes as the polling system. We can also see that
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the reduced congestion allowed the workload to send twice as

much data in the same time, doubling throughput.

Fig. 6 provides deeper insight into the behavior of the

measurement systems in the context of traffic engineering.

Fig. 6(a) shows the fraction of bytes left in a flow at the

time it is detected by each measurement system and Fig. 6(b)

shows the fraction of the bytes left in a flow at the time

it is actually rerouted, i.e., after the new forwarding rules

have been installed. The results show that OpenSample-MLE

and OpenSample-TCP dramatically outperform Polling when

it comes to detecting short flows. When accounting for the

scheduling interval, the time needed to compute routes and

install the new routes, the advantage that OpenSample-MLE

had vanishes, but OpenSample-TCP is still able to significantly

outperform the alternatives.

In conclusion, OpenSample-TCP can detect elephant flows

far earlier than the alternatives and, when used to drive traffic

engineering, it enables the traffic engineering mechanism to

schedule up to 60% of the bytes that hosts send (for Stride8)

and to a 150% improvement in aggregate throughput (for

Stride4) when flow sizes are small.

C. Scalability

The OpenSample collector is currently implemented with

the assumption that a single machine running the collector will

gather samples from all the switches in the network4. Thus,

the rate of samples that it can handle will limit the number

of switches a single collector can monitor. Therefore, to

evaluate how many samples per second a single OpenSample

collector can handle, we implemented a benchmark tool by

modifying Cbench [31]. Cbench is a tool intended to measure

the performance of OpenFlow controllers by sending large

numbers of packet_in messages as if they were from a

collection of switches. Our modified version sends sFlow

datagrams rather than sending packet_in messages.

While we omit a full presentation of these results for varying

imposed loads, we found the OpenSample collector was able

to process more than 100,000 samples per second. This means

our current OpenSample implementation can handle samples

from at least 285 switches assuming each switch sends 350

samples per second. That implies a single OpenSample is able

to handle production data centers servicing 4K or 8K hosts

with 1:2 or 1:5 oversubscription ratio, respectively [6]. Further,

recent SDN controller efforts [32] have shown the ability to

process and respond to as many as 10 million events per

second. As a consequence, we believe that with more careful

engineering, we could handle as many as 28,500 switches with

a single collector, but we leave this to future work.

V. RELATED WORK

There has been a significant amount of work on WAN traffic

engineering, but much less work on traffic engineering on data

4While we believe that it is possible to build a hierarchical version of
OpenSample which uses multiple collectors to monitor more switches than a
single collector can handle and aggregates their different network views, we
leave this as a topic of future work.

center networks. Traffic engineering in data centers has only

become a topic of interest in recent years due to the adoption

of multipath topologies; without multiple paths there is nothing

to engineer.

Miura et al. [33] describe cases where parallel workloads

can generate traffic patterns that cause congestion in data

center networks that use single-path routing. They show that it

is possible to increase network utilization by hand-optimizing

routing tables, but do not provide any algorithmic solution.

The first practical data center traffic engineering work we

know of is Hedera [1]. They found that congestion can

occur even in full-bisection-bandwidth networks due to routing

collisions—ECMP reduces collisions compared to single-path

routing but does not eliminate them. They provide algorithms

to estimate demand of network-limited flows and to schedule

flows in a Clos network. They poll switch counters every

five seconds to detect congestion and elephant flows and they

use OpenFlow to reroute flows. Our work is significantly

influenced by Hedera, while also taking into consideration the

realities and limits of existing switches.

DevoFlow [7] addresses many inefficiencies of OpenFlow

by “devolving” control of some things, such as microflow

creation and multipath, to switches. They also propose using

sFlow sampling but do not implement it using real hardware.

Helios [29] discusses building a fast control loop for hybrid

optical/electrical data center networks and is able to complete

a full control loop in approximately 100 ms, but does so by

minimizing the number of installed flows to read and they

make use of a proprietary RPC mechanism rather than a

standard measurement mechanism like sFlow.

MicroTE [8] characterizes several data center workloads,

finding similar collision-induced congestion as Hedera and De-

voFlow. They modify servers to perform network measurement

and report data to a central controller every second, which

infers congestion based on server-level information. They also

describe optimizations such as server-based aggregation to

reduce the overhead of network monitoring. Like Hedera and

DevoFlow, MicroTE uses OpenFlow to perform rerouting.

Mahout [2] has similar goals to OpenSample, but seeks to

provide low-latency elephant flow detection by using queue

depth at end-hosts rather than using network-based measure-

ments. When using switches with support for packet sampling,

OpenSample offers a more resource-efficient measurement

platform and is potentially more deployable, since changing

switch configuration is likely easier than installing new soft-

ware on all end-hosts.

Multipath TCP [34] (MPTCP) allows a single TCP connec-

tion to be split into multiple subflows that take different paths.

Each subflow uses TCP congestion control to monitor and

respond to congestion and MPTCP dynamically shunts data

to less-congested paths. This can be viewed as a monitoring

and traffic engineering system that is implemented entirely on

end hosts using local knowledge.

OpenSketch [4] proposes configurable network measure-

ment hardware that can calculate approximate “sketches” of

common statistics, such as heavy hitters and flow size distri-
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bution. If implemented in switches, OpenSketch could enable

even faster traffic engineering by efficiently and rapidly detect-

ing elephant flows directly in switches. Although OpenSketch

enables software-defined measurement in the same way that

OpenFlow enabled software-defined forwarding, it is based on

a clean-slate redesign of portions of the switch hardware.

InMon sFlow-RT [35] is similar to the network analyzer

component of OpenSample. Although it is designed to in-

tegrate with an OpenFlow controller, its traffic engineering

capabilities are not clearly documented.

VI. CONCLUSIONS AND FUTURE WORK

We have presented OpenSample, a working prototype of a

low-latency, sampling-based measurement platform, and a data

center traffic engineering application based on OpenSample.

Our primary contribution is lowering the latency to gather ac-

curate measurements of network load and elephant flows from

1–5 seconds to 100 milliseconds. Faster detection of elephant

flows allows traffic engineering to better schedule the network,

yielding increased throughput—up to 150% in some cases. In

general, workloads that cause more congestion benefit more

from our work and our improvement over prior efforts is

more significant for smaller flows. OpenSample works with

unmodified Ethernet switches, making it deployable without

waiting for new hardware or modifying end-host software.

We believe that there is significant opportunity for future

work in this space as well. We hope to explore dynamically

adapting per-port sampling ratio based on observations and

combining both maximum likelihood and sequence-number–

based estimations for improved accuracy. Lastly, merchant

silicon vendors may introduce ASICs that support sampling

entirely in the data plane allowing for very high sampling ratio,

i.e., N=64, even with 10 Gbps links. This opens the possibility

of control loops that operate as fast as 100μs.
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