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Preface

In this book we consider large and challenging multistage decision prob-
lems, which can be solved in principle by dynamic programming (DP for
short), but their exact solution is computationally intractable. We discuss
solution methods that rely on approximations to produce suboptimal poli-
cies with adequate performance. These methods are collectively referred to
as reinforcement learning, and also by alternative names such as approxi-
mate dynamic programming, and neuro-dynamic programming.

Our subject has benefited greatly from the interplay of ideas from
optimal control and from artificial intelligence. One of the aims of the
book is to explore the common boundary between these two fields and to
form a bridge that is accessible by workers with background in either field.

Our primary focus will be on approximation in value space. Here, the
control at each state is obtained by optimization of the cost over a limited
horizon, plus an approximation of the optimal future cost, starting from
the end of this horizon. The latter cost, which we generally denote by J̃ ,
is a function of the state where we may be at the end of the horizon. It
may be computed by a variety of methods, possibly involving simulation
and/or some given or separately derived heuristic/suboptimal policy. The
use of simulation often allows for implementations that do not require a
mathematical model, a major idea that has allowed the use of DP beyond
its classical boundaries.

We focus selectively on four types of methods for obtaining J̃ :

(a) Problem approximation: Here J̃ is the optimal cost function of a re-
lated simpler problem, which is solved by exact DP. Certainty equiv-
alent control and enforced decomposition schemes are discussed in
some detail.

(b) Rollout and model predictive control : Here J̃ is the cost function of
some known heuristic policy. The needed cost values to implement a
rollout policy are often calculated by simulation. While this method
applies to stochastic problems, the reliance on simulation favors de-

ix



x Preface

terministic problems, including challenging combinatorial problems
for which heuristics may be readily implemented. Rollout may also
be combined with adaptive simulation and Monte Carlo tree search,
which have proved very effective in the context of games such as
backgammon, chess, Go, and others.

Model predictive control was originally developed for continuous-
space optimal control problems that involve some goal state, e.g.,
the origin in a classical control context. It can be viewed as a special-
ized rollout method that is based on a suboptimal optimization for
reaching a goal state.

(c) Parametric cost approximation: Here J̃ is chosen from within a para-
metric class of functions, including neural networks, with the param-
eters “optimized” or “trained” by using state-cost sample pairs and
some type of incremental least squares/regression algorithm. Ap-
proximate policy iteration and its variants are covered in some detail,
including several actor-critic schemes. These involve policy evalu-
ation with temporal difference-based training methods, and policy
improvement that may rely on approximation in policy space.

(d) Aggregation: Here the cost function J̃ is the optimal cost function of
some approximation to the original problem, called aggregate prob-
lem, which has fewer states. The aggregate problem can be formu-
lated in a variety of ways, and may be solved by using exact DP
techniques. Its optimal cost function is then used as J̃ in a limited
horizon optimization scheme. Aggregation may also be used to pro-
vide local improvements to parametric approximation schemes that
involve neural networks or linear feature-based architectures.

We have adopted a gradual expository approach, which proceeds
along four directions:

(1) From exact DP to approximate DP : We first discuss exact DP algo-
rithms, explain why they may be difficult to implement, and then use
them as the basis for approximations.

(2) From finite horizon to infinite horizon problems : We first discuss fi-
nite horizon exact and approximate DP methodologies, which are in-
tuitive and mathematically simple in Chapters 1-3. We then progress
to infinite horizon problems in Chapters 4 and 5.

(3) From deterministic to stochastic models : We often discuss separately
deterministic and stochastic problems. The reason is that determinis-
tic problems are simpler and offer special advantages for some of our
methods.

(4) From model-based to model-free approaches : Reinforcement learning
methods offer a major potential benefit over classical DP approaches,
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which were practiced exclusively up to the early 90s: they can be im-
plemented by using a simulator/computer model rather than a math-
ematical model. In our presentation, we first discuss model-based
methods, and then we identify those methods that can be appropri-
ately modified to work with a simulator.

After the first chapter, each new class of methods is introduced as a
more sophisticated or generalized version of a simpler method introduced
earlier. Moreover, we illustrate some of the methods by means of examples,
which should be helpful in providing insight into their use, but may also
be skipped selectively and without loss of continuity. Detailed solutions
to some of the simpler examples are given, and may illustrate some of the
implementation details.

The mathematical style of this book is somewhat different from the
one of the author’s DP books [Ber12], [Ber17a], [Ber18a], and the 1996
neuro-dynamic programming (NDP) research monograph, written jointly
with John Tsitsiklis [BeT96]. While we provide a rigorous, albeit short,
mathematical account of the theory of finite and infinite horizon DP, and
some fundamental approximation methods, we rely more on intuitive ex-
planations and less on proof-based insights. Moreover, our mathematical
requirements are quite modest: calculus, elementary probability, and a
minimal use of matrix-vector algebra.

Several of the methods that we present are often successful in prac-
tice, but have less than solid performance properties. This is a reflection of
the state of the art in the field: there are no methods that are guaranteed
to work for all or even most problems, but there are enough methods to try
on a given problem with a reasonable chance of success in the end. For this
process to work, however, it is important to have proper intuition into the
inner workings of each type of method, as well as an understanding of its
analytical and computational properties. To quote a statement from the
preface of the NDP monograph [BeT96]: “It is primarily through an un-
derstanding of the mathematical structure of the NDP methodology that
we will be able to identify promising or solid algorithms from the bewil-
dering array of speculative proposals and claims that can be found in the
literature.”

Another statement from a recent NY Times article [Str18], in connec-
tion with DeepMind’s remarkable AlphaZero chess program, is also worth
quoting: “What is frustrating about machine learning, however, is that
the algorithms can’t articulate what they’re thinking. We don’t know why
they work, so we don’t know if they can be trusted. AlphaZero gives every
appearance of having discovered some important principles about chess,
but it can’t share that understanding with us. Not yet, at least. As human
beings, we want more than answers. We want insight. This is going to be
a source of tension in our interactions with computers from now on.” To
this we may add that human insight can only develop within some struc-
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ture of human thought, and it appears that mathematical reasoning with
algorithmic models is the most suitable structure for this purpose.

Dimitri P. Bertsekas

January 2019
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2 Exact Dynamic Programming Chap. 1

In this chapter, we provide some background on exact dynamic program-
ming (DP for short), with a view towards the suboptimal solution methods
that are the main subject of this book. These methods are known by
several essentially equivalent names: reinforcement learning, approximate

dynamic programming, and neuro-dynamic programming. In this book, we
will use primarily the most popular name: reinforcement learning (RL for
short).

We first consider finite horizon problems, which involve a finite se-
quence of successive decisions, and are thus conceptually and analytically
simpler. We defer the discussion of the more intricate infinite horizon
problems to Chapter 4 and later chapters. We also discuss separately de-
terministic and stochastic problems (Sections 1.1 and 1.2, respectively).
The reason is that deterministic problems are simpler and lend themselves
better as an entry point to the optimal control methodology. Moreover,
they have some favorable characteristics, which allow the application of a
broader variety of methods. For example, simulation-based methods are
greatly simplified and sometimes better understood in the context of de-
terministic optimal control.

Finally, in Section 1.3 we provide various examples of DP formula-
tions, illustrating some of the concepts of Sections 1.1 and 1.2. The reader
with substantial background in DP may wish to just scan Section 1.3 and
skip to the next chapter, where we start the development of the approxi-
mate DP methodology.

1.1 DETERMINISTIC DYNAMIC PROGRAMMING

All DP problems involve a discrete-time dynamic system that generates a
sequence of states under the influence of control. In finite horizon problems
the system evolves over a finite number N of time steps (also called stages).
The state and control at time k are denoted by xk and uk, respectively. In
deterministic systems, xk+1 is generated nonrandomly, i.e., it is determined
solely by xk and uk.

1.1.1 Deterministic Problems

A deterministic DP problem involves a discrete-time dynamic system of
the form

xk+1 = fk(xk, uk), k = 0, 1, . . . , N − 1, (1.1)

where

k is the time index,

xk is the state of the system, an element of some space,

uk is the control or decision variable, to be selected at time k from some
given set Uk(xk) that depends on xk,
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Sec. 1.1 Deterministic Dynamic Programming 3

......
Control uk

k Cost gk(xk, uk)
) xk xk+1 +1 xN

Stage k k Future Stages

) x0

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN )

Figure 1.1.1 Illustration of a deterministic N-stage optimal control problem.

Starting from state xk, the next state under control uk is generated nonrandomly,
according to

xk+1 = fk(xk, uk),

and a stage cost gk(xk, uk) is incurred.

fk is a function of (xk, uk) that describes the mechanism by which the
state is updated from time k to time k + 1.

N is the horizon or number of times control is applied,

The set of all possible xk is called the state space at time k. It can be
any set and can depend on k; this generality is one of the great strengths

of the DP methodology. Similarly, the set of all possible uk is called the
control space at time k. Again it can be any set and can depend on k.

The problem also involves a cost function that is additive in the sense
that the cost incurred at time k, denoted by gk(xk, uk), accumulates over
time. Formally, gk is a function of (xk, uk) that takes real number values,
and may depend on k. For a given initial state x0, the total cost of a control
sequence {u0, . . . , uN−1} is

J(x0;u0, . . . , uN−1) = gN(xN ) +

N−1
∑

k=0

gk(xk, uk), (1.2)

where gN(xN ) is a terminal cost incurred at the end of the process. This
cost is a well-defined number, since the control sequence {u0, . . . , uN−1}
together with x0 determines exactly the state sequence {x1, . . . , xN} via
the system equation (1.1). We want to minimize the cost (1.2) over all
sequences {u0, . . . , uN−1} that satisfy the control constraints, thereby ob-
taining the optimal value†

J*(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0;u0, . . . , uN−1),

as a function of x0. Figure 1.1.1 illustrates the main elements of the prob-
lem.

We will next illustrate deterministic problems with some examples.

† We use throughout “min” (in place of “inf”) to indicate minimal value over

a feasible set of controls, even when we are not sure that the minimum is attained

by some feasible control.
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4 Exact Dynamic Programming Chap. 1

Initial State Stage 0 Stage 1 Stage 2 Stage

s t u

s t u

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-
Artificial Terminal Node Terminal Arcs with Cost Equal to Ter-

Terminal Arcs with Cost Equal to Terminal Cost AB AC CA

Initial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 StageInitial State Stage 0 Stage 1 Stage 2 Stage N − 1 Stage1 Stage N
.

. . . .

.
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.

. . . .

.

. . . .

Figure 1.1.2 Transition graph for a deterministic finite-state system. Nodes

correspond to states xk. Arcs correspond to state-control pairs (xk , uk). An arc
(xk, uk) has start and end nodes xk and xk+1 = fk(xk, uk), respectively. We
view the cost gk(xk, uk) of the transition as the length of this arc. The problem
is equivalent to finding a shortest path from initial node s to terminal node t.

Discrete Optimal Control Problems

There are many situations where the state and control are naturally discrete
and take a finite number of values. Such problems are often conveniently
specified in terms of an acyclic graph specifying for each state xk the pos-
sible transitions to next states xk+1. The nodes of the graph correspond
to states xk and the arcs of the graph correspond to state-control pairs
(xk, uk). Each arc with start node xk corresponds to a choice of a single
control uk ∈ Uk(xk) and has as end node the next state fk(xk, uk). The
cost of an arc (xk, uk) is defined as gk(xk, uk); see Fig. 1.1.2. To handle the
final stage, an artificial terminal node t is added. Each state xN at stage
N is connected to the terminal node t with an arc having cost gN (xN ).

Note that control sequences correspond to paths originating at the
initial state (node s at stage 0) and terminating at one of the nodes corre-
sponding to the final stage N . If we view the cost of an arc as its length,
we see that a deterministic finite-state finite-horizon problem is equivalent

to finding a minimum-length (or shortest) path from the initial node s of

the graph to the terminal node t. Here, by a path we mean a sequence of
arcs such that given two successive arcs in the sequence the end node of
the first arc is the same as the start node of the second. By the length of
a path we mean the sum of the lengths of its arcs.†

† It turns out also that any shortest path problem (with a possibly nona-

cyclic graph) can be reformulated as a finite-state deterministic optimal control

problem, as we will see in Section 1.3.1. See also [Ber17], Section 2.1, and [Ber98]

for an extensive discussion of shortest path methods, which connects with our

discussion here.
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CCD
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CCB

CCD
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CDA

CCD

CBD

CBD

CDB

CDB

+1 Initial State A C AB AC CA CD ABC
+1 Initial State A C AB AC CA CD ABC

SC

Figure 1.1.3 The transition graph of the deterministic scheduling problem
of Example 1.1.1. Each arc of the graph corresponds to a decision leading
from some state (the start node of the arc) to some other state (the end node
of the arc). The corresponding cost is shown next to the arc. The cost of the
last operation is shown as a terminal cost next to the terminal nodes of the
graph.

Generally, combinatorial optimization problems can be formulated
as deterministic finite-state finite-horizon optimal control problem. The
following scheduling example illustrates the idea.

Example 1.1.1 (A Deterministic Scheduling Problem)

Suppose that to produce a certain product, four operations must be performed
on a certain machine. The operations are denoted by A, B, C, and D. We
assume that operation B can be performed only after operation A has been
performed, and operation D can be performed only after operation C has
been performed. (Thus the sequence CDAB is allowable but the sequence
CDBA is not.) The setup cost Cmn for passing from any operation m to any
other operation n is given. There is also an initial startup cost SA or SC for
starting with operation A or C, respectively (cf. Fig. 1.1.3). The cost of a
sequence is the sum of the setup costs associated with it; for example, the
operation sequence ACDB has cost

SA +CAC + CCD +CDB.

We can view this problem as a sequence of three decisions, namely the
choice of the first three operations to be performed (the last operation is
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determined from the preceding three). It is appropriate to consider as state
the set of operations already performed, the initial state being an artificial
state corresponding to the beginning of the decision process. The possible
state transitions corresponding to the possible states and decisions for this
problem are shown in Fig. 1.1.3. Here the problem is deterministic, i.e., at
a given state, each choice of control leads to a uniquely determined state.
For example, at state AC the decision to perform operation D leads to state
ACD with certainty, and has cost CCD. Thus the problem can be conveniently
represented in terms of the transition graph of Fig. 1.1.3. The optimal solution
corresponds to the path that starts at the initial state and ends at some state
at the terminal time and has minimum sum of arc costs plus the terminal
cost.

Continuous-Spaces Optimal Control Problems

Many classical problems in control theory involve a state that belongs to a
Euclidean space, i.e., the space of n-dimensional vectors of real variables,
where n is some positive integer. The following is representative of the class
of linear-quadratic problems , where the system equation is linear, the cost
function is quadratic, and there are no control constraints. In our example,
the states and controls are one-dimensional, but there are multidimensional
extensions, which are very popular (see [Ber17], Section 3.1).

Example 1.1.2 (A Linear-Quadratic Problem)

A certain material is passed through a sequence of N ovens (see Fig. 1.1.4).
Denote

x0: initial temperature of the material,

xk, k = 1, . . . , N : temperature of the material at the exit of oven k,

uk−1, k = 1, . . . , N : heat energy applied to the material in oven k.
In practice there will be some constraints on uk, such as nonnegativity.
However, for analytical tractability one may also consider the case where
uk is unconstrained, and check later if the solution satisfies some natural
restrictions in the problem at hand.

We assume a system equation of the form

xk+1 = (1− a)xk + auk, k = 0, 1, . . . , N − 1,

where a is a known scalar from the interval (0, 1). The objective is to get
the final temperature xN close to a given target T , while expending relatively
little energy. We express this with a cost function of the form

r(xN − T )2 +

N−1
∑

k=0

u
2
k,

where r > 0 is a given scalar.
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Initial Temperature

1 Oven 1 Oven 2 Final Temperature
Initial Temperature

u0

Oven 1 Oven 2 Final Temperature
Oven 1 Oven 2 Final Temperature

0 u1

Oven 1 Oven 2 Final Temperature

x1
Initial Temperature Initial Temperature

Initial Temperature x0 x2

Figure 1.1.4 The linear-quadratic problem of Example 1.1.2 for N = 2. The

temperature of the material evolves according to the system equation xk+1 =
(1− a)xk + auk, where a is some scalar with 0 < a < 1.

Linear-quadratic problems with no constraints on the state or the con-
trol admit a nice analytical solution, as we will see later in Section 1.3.6.
In another frequently arising optimal control problem there are linear con-
straints on the state and/or the control. In the preceding example it would
have been natural to require that ak ≤ xk ≤ bk and/or ck ≤ uk ≤ dk, where
ak, bk, ck, dk are given scalars. Then the problem would be solvable not only
by DP but also by quadratic programming methods. Generally determin-
istic optimal control problems with continuous state and control spaces
(in addition to DP) admit a solution by nonlinear programming methods,
such as gradient, conjugate gradient, and Newton’s method, which can be
suitably adapted to their special structure.

1.1.2 The Dynamic Programming Algorithm

The DP algorithm rests on a simple idea, the principle of optimality, which
roughly states the following; see Fig. 1.1.5.

Principle of Optimality

Let {u∗

0, . . . , u
∗

N−1} be an optimal control sequence, which together
with x0 determines the corresponding state sequence {x∗

1, . . . , x
∗

N} via
the system equation (1.1). Consider the subproblem whereby we start
at x∗

k at time k and wish to minimize the “cost-to-go” from time k to
time N ,

gk(x∗

k, uk) +

N−1
∑

m=k+1

gm(xm, um) + gN (xN ),

over {uk, . . . , uN−1} with um ∈ Um(xm), m = k, . . . , N − 1. Then the
truncated optimal control sequence {u∗

k, . . . , u
∗

N−1} is optimal for this
subproblem.

Stated succinctly, the principle of optimality says that the tail of an

optimal sequence is optimal for the tail subproblem. Its intuitive justifica-
tion is simple. If the truncated control sequence {u∗

k, . . . , u
∗

N−1} were not
optimal as stated, we would be able to reduce the cost further by switching
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Tail subproblem TimeFuture Stages Terminal Cost k N
k N

{

Cost 0 Cost

Optimal control sequence

Optimal control sequence {u∗

0
, . . . , u

∗

k
, . . . , u

∗

N−1
}

Tail subproblem Time x
∗

k
Tail subproblem Time

Figure 1.1.5 Illustration of the principle of optimality. The tail {u∗

k
, . . . , u∗

N−1}
of an optimal sequence {u∗

0, . . . , u
∗

N−1} is optimal for the tail subproblem that
starts at the state x∗

k
of the optimal trajectory {x∗

1, . . . , x
∗

N
}.

to an optimal sequence for the subproblem once we reach x∗

k (since the pre-
ceding choices u∗

0, . . . , u
∗

k−1 of controls do not restrict our future choices).
For an auto travel analogy, suppose that the fastest route from Los Angeles
to Boston passes through Chicago. The principle of optimality translates
to the obvious fact that the Chicago to Boston portion of the route is also
the fastest route for a trip that starts from Chicago and ends in Boston.

The principle of optimality suggests that the optimal cost function
can be constructed in piecemeal fashion going backwards: first compute
the optimal cost function for the “tail subproblem” involving the last stage,
then solve the “tail subproblem” involving the last two stages, and continue
in this manner until the optimal cost function for the entire problem is
constructed.

The DP algorithm is based on this idea: it proceeds sequentially, by
solving all the tail subproblems of a given time length, using the solution

of the tail subproblems of shorter time length. We illustrate the algorithm
with the scheduling problem of Example 1.1.1. The calculations are simple
but tedious, and may be skipped without loss of continuity. However, they
may be worth going over by a reader that has no prior experience in the
use of DP.

Example 1.1.1 (Scheduling Problem - Continued)

Let us consider the scheduling Example 1.1.1, and let us apply the principle of
optimality to calculate the optimal schedule. We have to schedule optimally
the four operations A, B, C, and D. The numerical values of the transition
and setup costs are shown in Fig. 1.1.6 next to the corresponding arcs.

According to the principle of optimality, the “tail” portion of an optimal
schedule must be optimal. For example, suppose that the optimal schedule
is CABD. Then, having scheduled first C and then A, it must be optimal to
complete the schedule with BD rather than with DB. With this in mind, we
solve all possible tail subproblems of length two, then all tail subproblems of
length three, and finally the original problem that has length four (the sub-
problems of length one are of course trivial because there is only one operation
that is as yet unscheduled). As we will see shortly, the tail subproblems of
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length k + 1 are easily solved once we have solved the tail subproblems of
length k, and this is the essence of the DP technique.

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

+1 Initial State A C AB AC CA CD ABC

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA

ACB ACD CAB CAD CDA
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+1 Initial State A C AB AC CA CD ABC
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Figure 1.1.6 Transition graph of the deterministic scheduling problem, with
the cost of each decision shown next to the corresponding arc. Next to each
node/state we show the cost to optimally complete the schedule starting from
that state. This is the optimal cost of the corresponding tail subproblem (cf.
the principle of optimality). The optimal cost for the original problem is equal
to 10, as shown next to the initial state. The optimal schedule corresponds
to the thick-line arcs.

Tail Subproblems of Length 2 : These subproblems are the ones that involve
two unscheduled operations and correspond to the states AB, AC, CA, and
CD (see Fig. 1.1.6).

State AB : Here it is only possible to schedule operation C as the next op-
eration, so the optimal cost of this subproblem is 9 (the cost of schedul-
ing C after B, which is 3, plus the cost of scheduling D after C, which
is 6).

State AC : Here the possibilities are to (a) schedule operation B and then
D, which has cost 5, or (b) schedule operation D and then B, which has
cost 9. The first possibility is optimal, and the corresponding cost of
the tail subproblem is 5, as shown next to node AC in Fig. 1.1.6.

State CA: Here the possibilities are to (a) schedule operation B and then
D, which has cost 3, or (b) schedule operation D and then B, which has
cost 7. The first possibility is optimal, and the corresponding cost of
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the tail subproblem is 3, as shown next to node CA in Fig. 1.1.6.

State CD : Here it is only possible to schedule operation A as the next
operation, so the optimal cost of this subproblem is 5.

Tail Subproblems of Length 3 : These subproblems can now be solved using
the optimal costs of the subproblems of length 2.

State A: Here the possibilities are to (a) schedule next operation B (cost
2) and then solve optimally the corresponding subproblem of length 2
(cost 9, as computed earlier), a total cost of 11, or (b) schedule next
operation C (cost 3) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 8.
The second possibility is optimal, and the corresponding cost of the tail
subproblem is 8, as shown next to node A in Fig. 1.1.6.

State C : Here the possibilities are to (a) schedule next operation A (cost
4) and then solve optimally the corresponding subproblem of length 2
(cost 3, as computed earlier), a total cost of 7, or (b) schedule next
operation D (cost 6) and then solve optimally the corresponding sub-
problem of length 2 (cost 5, as computed earlier), a total cost of 11.
The first possibility is optimal, and the corresponding cost of the tail
subproblem is 7, as shown next to node A in Fig. 1.1.6.

Original Problem of Length 4 : The possibilities here are (a) start with oper-
ation A (cost 5) and then solve optimally the corresponding subproblem of
length 3 (cost 8, as computed earlier), a total cost of 13, or (b) start with
operation C (cost 3) and then solve optimally the corresponding subproblem
of length 3 (cost 7, as computed earlier), a total cost of 10. The second pos-
sibility is optimal, and the corresponding optimal cost is 10, as shown next
to the initial state node in Fig. 1.1.6.

Note that having computed the optimal cost of the original problem
through the solution of all the tail subproblems, we can construct the optimal
schedule: we begin at the initial node and proceed forward, each time choosing
the optimal operation; i.e., the one that starts the optimal schedule for the
corresponding tail subproblem. In this way, by inspection of the graph and the
computational results of Fig. 1.1.6, we determine that CABD is the optimal
schedule.

Finding an Optimal Control Sequence by DP

We now state the DP algorithm for deterministic finite horizon problem by
translating into mathematical terms the heuristic argument underlying the
principle of optimality. The algorithm constructs functions

J*
N (xN ), J*

N−1(xN−1), . . . , J*
0 (x0),

sequentially, starting from J*
N , and proceeding backwards to J*

N−1, J
*
N−2,

etc.
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DP Algorithm for Deterministic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ), for all xN , (1.3)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

, for all xk.

(1.4)

Note that at stage k, the calculation in (1.4) must be done for all
states xk before proceeding to stage k − 1. The key fact about the DP
algorithm is that for every initial state x0, the number J*

0 (x0) obtained at
the last step, is equal to the optimal cost J*(x0). Indeed, a more general
fact can be shown, namely that for all k = 0, 1, . . . , N − 1, and all states
xk at time k, we have

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

J(xk;uk, . . . , uN−1), (1.5)

where

J(xk;uk, . . . , uN−1) = gN(xN ) +
N−1
∑

m=k

gm(xm, um), (1.6)

i.e., J*
k (xk) is the optimal cost for an (N − k)-stage tail subproblem that

starts at state xk and time k, and ends at time N .†
We can prove this by induction. The assertion holds for k = N in

view of the initial condition J*
N (xN ) = gN(xN ). To show that it holds for

all k, we use Eqs. (1.5) and (1.6) to write

J*
k (xk) = min

um∈Um(xm)
m=k,...,N−1

[

gN(xN ) +

N−1
∑

m=k

gm(xm, um)

]

= min
uk∈Uk(xk)

[

gk(xk, uk)

+ min
um∈Um(xm)

m=k+1,...,N−1

[

gN (xN ) +

N−1
∑

m=k+1

gm(xm, um)

]]

= min
uk∈Uk(xk)

[

gk(xk, uk) + J*
k+1

(

fk(xk, uk)
)

]

,

† Based on this fact, we call J∗

k (xk) the optimal cost-to-go at state xk and

time k, and refer to J∗

k as the optimal cost-to-go function or optimal cost function

at time k. In maximization problems the DP algorithm (1.4) is written with

maximization in place of minimization, and then J∗

k is referred to as the optimal

value function at time k.
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where for the last equality we use the induction hypothesis.†
Note that the algorithm solves every tail subproblem, i.e., the problem

of minimization of the cost accumulated additively starting from an inter-
mediate state up to the end of the horizon. Once the functions J*

0 , . . . , J
*
N

have been obtained, we can use the following algorithm to construct an op-
timal control sequence {u∗

0, . . . , u
∗

N−1} and corresponding state trajectory
{x∗

1, . . . , x
∗

N} for the given initial state x0.

Construction of Optimal Control Sequence {u∗

0, . . . , u
∗

N−1}

Set
u∗

0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J*
1

(

f0(x0, u0)
)

]

,

and
x∗

1 = f0(x0, u
∗

0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

u∗

k ∈ arg min
uk∈Uk(x

∗

k
)

[

gk(x∗

k, uk) + J*
k+1

(

fk(x∗

k, uk)
)

]

, (1.7)

and
x∗

k+1 = fk(x∗

k, u
∗

k). (1.8)

The same algorithm can be used to find an optimal control sequence
for any tail subproblem. Figure 1.1.6 traces the calculations of the DP
algorithm for the scheduling Example 1.1.1. The numbers next to the
nodes, give the corresponding cost-to-go values, and the thick-line arcs
give the construction of the optimal control sequence using the preceding
algorithm.

1.1.3 Approximation in Value Space

The preceding forward optimal control sequence construction is possible
only after we have computed J*

k (xk) by DP for all xk and k. Unfortu-
nately, in practice this is often prohibitively time-consuming, because of
the number of possible xk and k can be very large. However, a similar
forward algorithmic process can be used if the optimal cost-to-go functions
J*
k are replaced by some approximations J̃k. This is the basis for approx-

imation in value space, which will be central in our future discussions. It

† A subtle mathematical point here is that, through the minimization oper-

ation, the cost-to-go functions J∗

k may take the value −∞ for some xk. Still the

preceding induction argument is valid even if this is so.
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constructs a suboptimal solution {ũ0, . . . , ũN−1} in place of the optimal
{u∗

0, . . . , u
∗

N−1}, based on using J̃k in place of J*
k in the DP procedure

(1.7).

Approximation in Value Space - Use of J̃k in Place of J*
k

Start with

ũ0 ∈ arg min
u0∈U0(x0)

[

g0(x0, u0) + J̃1
(

f0(x0, u0)
)

]

,

and set
x̃1 = f0(x0, ũ0).

Sequentially, going forward, for k = 1, 2, . . . , N − 1, set

ũk ∈ arg min
uk∈Uk(x̃k)

[

gk(x̃k, uk) + J̃k+1

(

fk(x̃k, uk)
)

]

, (1.9)

and
x̃k+1 = fk(x̃k, ũk). (1.10)

The construction of suitable approximate cost-to-go functions J̃k is
a major focal point of the RL methodology. There are several possible
methods, depending on the context, and they will be taken up starting
with the next chapter.

Q-Factors and Q-Learning

The expression

Q̃k(xk, uk) = gk(xk, uk) + J̃k+1

(

fk(xk, uk)
)

,

which appears in the right-hand side of Eq. (1.9) is known as the (ap-
proximate) Q-factor of (xk, uk).† In particular, the computation of the
approximately optimal control (1.9) can be done through the Q-factor min-
imization

ũk ∈ arg min
uk∈Uk(x̃k)

Q̃k(x̃k, uk).

† The term “Q-learning” and some of the associated algorithmic ideas were

introduced in the thesis by Watkins [Wat89] (after the symbol “Q” that he used

to represent Q-factors). The term “Q-factor” was used in the book [BeT96], and

is maintained here. Watkins [Wat89] used the term “action value” (at a given

state), and the terms “state-action value” and “Q-value” are also common in the

literature.
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This suggests the possibility of using Q-factors in place of cost func-
tions in approximation in value space schemes. Methods of this type use
as starting point an alternative (and equivalent) form of the DP algorithm,
which instead of the optimal cost-to-go functions J*

k , generates the optimal

Q-factors , defined for all pairs (xk, uk) and k by

Q*
k(xk, uk) = gk(xk, uk) + J*

k+1

(

fk(xk, uk)
)

. (1.11)

Thus the optimal Q-factors are simply the expressions that are minimized
in the right-hand side of the DP equation (1.4). Note that this equation
implies that the optimal cost function J*

k can be recovered from the optimal
Q-factor Q*

k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk).

Moreover, using the above relation, the DP algorithm can be written in an
essentially equivalent form that involves Q-factors only

Q*
k(xk, uk) = gk(xk, uk) + min

uk+1∈Uk+1(fk(xk,uk))
Q*

k+1

(

fk(xk, uk), uk+1

)

.

We will discuss later exact and approximate forms of related algorithms in
the context of a class of RL methods known as Q-learning.

1.2 STOCHASTIC DYNAMIC PROGRAMMING

The stochastic finite horizon optimal control problem differs from the de-
terministic version primarily in the nature of the discrete-time dynamic
system that governs the evolution of the state xk. This system includes a
random “disturbance” wk, which is characterized by a probability distri-
bution Pk(· | xk, uk) that may depend explicitly on xk and uk, but not on
values of prior disturbances wk−1, . . . , w0. The system has the form

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1,

where as before xk is an element of some state space Sk, the control uk is an
element of some control space. The cost per stage is denoted gk(xk, uk, wk)
and also depends on the random disturbance wk; see Fig. 1.2.1. The control
uk is constrained to take values in a given subset U(xk), which depends on
the current state xk.

An important difference is that we optimize not over control sequences
{u0, . . . , uN−1}, but rather over policies (also called closed-loop control

laws , or feedback policies) that consist of a sequence of functions

π = {µ0, . . . , µN−1},
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...... ) xk k xk+1 +1 xN) x0

Random Transition

Random Transition xk+1 = fk(xk, uk, wk) Random cost

) Random Cost
) Random Cost gk(xk, uk, wk)

Future Stages Terminal Cost
Future Stages Terminal Cost gN(xN )

Figure 1.2.1 Illustration of an N-stage stochastic optimal control problem.
Starting from state xk, the next state under control uk is generated randomly,
according to

xk+1 = fk(xk, uk, wk),

where wk is the random disturbance, and a random stage cost gk(xk , uk, wk) is
incurred.

where µk maps states xk into controls uk = µk(xk), and satisfies the control
constraints, i.e., is such that µk(xk) ∈ Uk(xk) for all xk ∈ Sk. Such policies
will be called admissible. Policies are more general objects than control
sequences, and in the presence of stochastic uncertainty, they can result
in improved cost, since they allow choices of controls uk that incorporate
knowledge of the state xk. Without this knowledge, the controller cannot
adapt appropriately to unexpected values of the state, and as a result the
cost can be adversely affected. This is a fundamental distinction between
deterministic and stochastic optimal control problems.

Another important distinction between deterministic and stochastic
problems is that in the latter, the evaluation of various quantities such as
cost function values involves forming expected values, and this may necessi-
tate the use of Monte Carlo simulation. In fact several of the methods that
we will discuss for stochastic problems will involve the use of simulation.

Given an initial state x0 and a policy π = {µ0, . . . , µN−1}, the fu-
ture states xk and disturbances wk are random variables with distributions
defined through the system equation

xk+1 = fk
(

xk, µk(xk), wk

)

, k = 0, 1, . . . , N − 1.

Thus, for given functions gk, k = 0, 1, . . . , N , the expected cost of π starting
at x0 is

Jπ(x0) = E

{

gN (xN ) +

N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

,

where the expected value operation E{·} is over all the random variables
wk and xk. An optimal policy π∗ is one that minimizes this cost; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0),

where Π is the set of all admissible policies.
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The optimal cost depends on x0 and is denoted by J∗(x0); i.e.,

J∗(x0) = min
π∈Π

Jπ(x0).

It is useful to view J∗ as a function that assigns to each initial state x0 the
optimal cost J∗(x0), and call it the optimal cost function or optimal value

function, particularly in problems of maximizing reward.

Finite Horizon Stochastic Dynamic Programming

The DP algorithm for the stochastic finite horizon optimal control problem
has a similar form to its deterministic version, and shares several of its
major characteristics:

(a) Using tail subproblems to break down the minimization over multiple
stages to single stage minimizations.

(b) Generating backwards for all k and xk the values J*
k (xk), which give

the optimal cost-to-go starting at stage k at state xk.

(c) Obtaining an optimal policy by minimization in the DP equations.

(d) A structure that is suitable for approximation in value space, whereby
we replace J*

k by approximations J̃k, and obtain a suboptimal policy
by the corresponding minimization.

DP Algorithm for Stochastic Finite Horizon Problems

Start with
J*
N (xN ) = gN (xN ), (1.12)

and for k = 0, . . . , N − 1, let

J*
k (xk) = min

uk∈Uk(xk)
E
{

gk(xk, uk, wk)+J*
k+1

(

fk(xk, uk, wk)
)

}

. (1.13)

If u∗

k = µ∗

k(xk) minimizes the right side of this equation for each xk

and k, the policy π∗ = {µ∗

0, . . . , µ
∗

N−1} is optimal.

The key fact is that for every initial state x0, the optimal cost J*(x0)
is equal to the function J*

0 (x0), obtained at the last step of the above DP
algorithm. This can be proved by induction similar to the deterministic
case; we will omit the proof (see the discussion of Section 1.3 in the textbook
[Ber17]).†

As in deterministic problems, the DP algorithm can be very time-
consuming, in fact more so since it involves the expected value operation

† There are some technical/mathematical difficulties here, having to do with
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in Eq. (1.13). This motivates suboptimal control techniques, such as ap-
proximation in value space whereby we replace J*

k with easier obtainable

approximations J̃k. We will discuss this approach at length in subsequent
chapters.

Q-Factors for Stochastic Problems

We can define optimal Q-factors for stochastic problem, similar to the
case of deterministic problems [cf. Eq. (1.11)], as the expressions that are
minimized in the right-hand side of the stochastic DP equation (1.13).
They are given by

Q*
k(xk, uk) = E

{

gk(xk, uk, wk) + J*
k+1

(

fk(xk, uk, wk)
)

}

.

The optimal cost-to-go functions J*
k can be recovered from the optimal

Q-factors Q*
k by means of

J*
k (xk) = min

uk∈Uk(xk)
Q*

k(xk, uk),

and the DP algorithm can be written in terms of Q-factors as

Q*
k(xk, uk) =E

{

gk(xk, uk, wk)

+ min
uk+1∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), uk+1

)

}

.

Note that the expected value in the right side of this equation can be
approximated more easily by sampling and simulation than the right side
of the DP algorithm (1.13). This will prove to be a critical mathematical
point later when we discuss simulation-based algorithms for Q-factors.

1.3 EXAMPLES, VARIATIONS, AND SIMPLIFICATIONS

In this section we provide some examples to illustrate problem formulation
techniques, solution methods, and adaptations of the basic DP algorithm
to various contexts. As a guide for formulating optimal control problems in

the expected value operation in Eq. (1.13) being well-defined and finite. These

difficulties are of no concern in practice, and disappear completely when the

disturbance spaces wk can take only a finite number of values, in which case

all expected values consist of sums of finitely many real number terms. For a

mathematical treatment, see the relevant discussion in Chapter 1 of [Ber17] and

the book [BeS78].
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a manner that is suitable for DP solution, the following two-stage process
is suggested:

(a) Identify the controls/decisions uk and the times k at which these con-
trols are applied. Usually this step is fairly straightforward. However,
in some cases there may be some choices to make. For example in
deterministic problems, where the objective is to select an optimal
sequence of controls {u0, . . . , uN−1}, one may lump multiple controls
to be chosen together, e.g., view the pair (u0, u1) as a single choice.
This is usually not possible in stochastic problems, where distinct de-
cisions are differentiated by the information/feedback available when
making them.

(b) Select the states xk. The basic guideline here is that xk should en-
compass all the information that is known to the controller at time
k and can be used with advantage in choosing uk. In effect, at time
k the state xk should separate the past from the future, in the sense
that anything that has happened in the past (states, controls, and
disturbances from stages prior to stage k) is irrelevant to the choices
of future controls as long we know xk. Sometimes this is described
by saying that the state should have a “Markov property” to express
the similarity with states of Markov chains, where (by definition) the
conditional probability distribution of future states depends on the
past history of the chain only through the present state.

Note that there may be multiple possibilities for selecting the states,
because information may be packaged in several different ways that are
equally useful from the point of view of control. It is thus worth considering
alternative ways to choose the states; for example try to use states that
minimize the dimensionality of the state space. For a trivial example that
illustrates the point, if a quantity xk qualifies as state, then (xk−1, xk) also
qualifies as state, since (xk−1, xk) contains all the information contained
within xk that can be useful to the controller when selecting uk. However,
using (xk−1, xk) in place of xk, gains nothing in terms of optimal cost
while complicating the DP algorithm which would be defined over a larger
space. The concept of a sufficient statistic, which refers to a quantity
that summarizes all the essential content of the information available to
the controller, may be useful in reducing the size of the state space (see
the discussion in Section 3.1.1, and in [Ber17], Section 4.3). Section 1.3.6
provides an example, and Section 3.1.1 contains further discussion.

Generally minimizing the dimension of the state makes sense but there
are exceptions. A case in point is problems involving partial or imperfect

state information, where we collect measurements to use for control of some
quantity of interest yk that evolves over time (for example, yk may be the
position/velocity vector of a moving vehicle). If Ik is the collection of all
measurements up to time k, it is correct to use Ik as state. However,
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a better alternative may be to use as state the conditional probability
distribution Pk(yk | Ik), called belief state, which may subsume all the
information that is useful for the purposes of choosing a control. On the
other hand, the belief state Pk(yk | Ik) is an infinite-dimensional object,
whereas Ik may be finite dimensional, so the best choice may be problem-
dependent; see [Ber17] for further discussion of partial state information
problems.

We refer to DP textbooks for extensive additional discussions of mod-
eling and problem formulation techniques. The subsequent chapters do not
rely substantially on the material of this section, so the reader may selec-
tively skip forward to the next chapter and return to this material later as
needed.

1.3.1 Deterministic Shortest Path Problems

Let {1, 2, . . . , N, t} be the set of nodes of a graph, and let aij be the cost of
moving from node i to node j [also referred to as the length of the arc (i, j)
that joins i and j]. Node t is a special node, which we call the destination.
By a path we mean a sequence of arcs such that the end node of each arc
in the sequence is the start node of the next arc. The length of a path from
a given node to another node is the sum of the lengths of the arcs on the
path. We want to find a shortest (i.e., minimum length) path from each
node i to node t.

We make an assumption relating to cycles, i.e., paths of the form
(i, j1), (j1, j2), . . . , (jk, i) that start and end at the same node. In particular,
we exclude the possibility that a cycle has negative total length. Otherwise,
it would be possible to decrease the length of some paths to arbitrarily small
values simply by adding more and more negative-length cycles. We thus
assume that all cycles have nonnegative length. With this assumption, it is
clear that an optimal path need not take more than N moves, so we may
limit the number of moves to N . We formulate the problem as one where
we require exactly N moves but allow degenerate moves from a node i to

itself with cost aii = 0. We also assume that for every node i there exists

at least one path from i to t.
We can formulate this problem as a deterministic DP problem with N

stages, where the states at any stage 0, . . . , N−1 are the nodes {1, . . . , N},
the destination t is the unique state at stageN , and the controls correspond
to the arcs (i, j), including the self arcs (i, i). Thus at each state i we select
a control (i, j) and move to state j at cost aij .

We can write the DP algorithm for our problem, with the optimal
cost-to-go functions J*

k having the meaning

J*
k (i) = optimal cost of getting from i to t in N − k moves,
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Figure 1.3.1 (a) Shortest path problem data. The destination is node 5. Arc
lengths are equal in both directions and are shown along the line segments con-
necting nodes. (b) Costs-to-go generated by the DP algorithm. The number along
stage k and state i is J∗

k
(i). Arrows indicate the optimal moves at each stage and

node. The optimal paths are 1 → 5, 2 → 3 → 4 → 5, 3 → 4 → 5, 4 → 5.

for i = 1, . . . , N and k = 0, . . . , N − 1. The cost of the optimal path from
i to t is J*

0 (i). The DP algorithm takes the intuitively clear form

optimal cost from i to t in N − k moves

= min
All arcs (i,j)

[

aij + (optimal cost from j to t in N − k − 1 moves)
]

,

or
J*
k (i) = min

All arcs (i,j)

[

aij + J*
k+1(j)

]

, k = 0, 1, . . . , N − 2,

with
J*
N−1(i) = ait, i = 1, 2, . . . , N.

This algorithm is also known as the Bellman-Ford algorithm for shortest
paths.

The optimal policy when at node i after k moves is to move to a node
j∗ that minimizes aij + J*

k+1(j) over all j such that (i, j) is an arc. If the
optimal path obtained from the algorithm contains degenerate moves from
a node to itself, this simply means that the path involves in reality less
than N moves.

Note that if for some k > 0, we have

J*
k (i) = J*

k+1(i), for all i,

then subsequent DP iterations will not change the values of the cost-to-go
[J*

k−m(i) = J*
k (i) for all m > 0 and i], so the algorithm can be terminated

with J*
k (i) being the shortest distance from i to t, for all i.
To demonstrate the algorithm, consider the problem shown in Fig.

1.3.1(a) where the costs aij with i 6= j are shown along the connecting line
segments (we assume that aij = aji). Figure 1.3.1(b) shows the optimal
cost-to-go J*

k (i) at each i and k together with the optimal paths.
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Figure 1.3.2 Example of a DP formulation of the traveling salesman problem.
The travel times between the four cities A, B, C, and D are shown in the matrix at
the bottom. We form a graph whose nodes are the k-city sequences and correspond
to the states of the kth stage. The transition costs/travel times are shown next to
the arcs. The optimal costs-to-go are generated by DP starting from the terminal
state and going backwards towards the initial state, and are shown next to the
nodes. There are two optimal sequences here (ABDCA and ACDBA), and they
are marked with thick lines. Both optimal sequences can be obtained by forward
minimization [cf. Eq. (1.7)], starting from the initial state x0.

1.3.2 Discrete Deterministic Optimization

Discrete optimization problems can be formulated as DP problems by
breaking down each feasible solution into a sequence of decisions/controls;
as illustrated by the scheduling Example 1.1.1. This formulation will often
lead to an intractable DP computation because of an exponential explosion
of the number of states. However, it brings to bear approximate DP meth-
ods, such as rollout and others that we will discuss in future chapters. We
illustrate the reformulation by means of an example and then we generalize.
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Example 1.3.1 (The Traveling Salesman Problem)

An important model for scheduling a sequence of operations is the classical
traveling salesman problem. Here we are given N cities and the travel time
between each pair of cities. We wish to find a minimum time travel that visits
each of the cities exactly once and returns to the start city. To convert this
problem to a DP problem, we form a graph whose nodes are the sequences
of k distinct cities, where k = 1, . . . , N . The k-city sequences correspond to
the states of the kth stage. The initial state x0 consists of some city, taken
as the start (city A in the example of Fig. 1.3.2). A k-city node/state leads
to a (k+1)-city node/state by adding a new city at a cost equal to the travel
time between the last two of the k+1 cities; see Fig. 1.3.2. Each sequence of
N cities is connected to an artificial terminal node t with an arc of cost equal
to the travel time from the last city of the sequence to the starting city, thus
completing the transformation to a DP problem.

The optimal costs-to-go from each node to the terminal state can be
obtained by the DP algorithm and are shown next to the nodes. Note, how-
ever, that the number of nodes grows exponentially with the number of cities
N . This makes the DP solution intractable for large N . As a result, large
traveling salesman and related scheduling problems are typically addressed
with approximation methods, some of which are based on DP, and will be
discussed as part of our subsequent development.

Let us now extend the ideas of the preceding example to the general
discrete optimization problem:

minimize G(u)

subject to u ∈ U,

where U is a finite set of feasible solutions and G(u) is a cost function.
We assume that each solution u has N components; i.e., it has the form
u = (u1, . . . , uN ), where N is a positive integer. We can then view the
problem as a sequential decision problem, where the components u1, . . . , uN

are selected one-at-a-time. A k-tuple (u1, . . . , uk) consisting of the first k
components of a solution is called an k-solution. We associate k-solutions
with the kth stage of the finite horizon DP problem shown in Fig. 1.3.3.
In particular, for k = 1, . . . , N , we view as the states of the kth stage all
the k-tuples (u1, . . . , uk). The initial state is an artificial state denoted s.
From this state we may move to any state (u1), with u1 belonging to the
set

U1 =
{

ũ1 | there exists a solution of the form (ũ1, ũ2, . . . , ũN) ∈ U
}

.

Thus U1 is the set of choices of u1 that are consistent with feasibility.
More generally, from a state (u1, . . . , uk), we may move to any state

of the form (u1, . . . , uk, uk+1), with uk+1 belonging to the set

Uk+1(u1, . . . , uk) =
{

ũk+1 | there exists a solution of the form

(u1, . . . , uk, ũk+1, . . . , ũN) ∈ U
}

.
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Figure 1.3.3. Formulation of a discrete optimization problem as a DP problem
with N + 1 stages. There is a cost G(u) only at the terminal stage on the arc
connecting an N-solution u = (u1, . . . , uN ) to the artificial terminal state. Al-
ternative formulations may use fewer states by taking advantage of the problem’s
structure.

At state (u1, . . . , uk) we must choose uk+1 from the set Uk+1(u1, . . . , uk).
These are the choices of uk+1 that are consistent with the preceding choices
u1, . . . , uk, and are also consistent with feasibility. The terminal states
correspond to the N -solutions u = (u1, . . . , uN ), and the only nonzero cost
is the terminal cost G(u). This terminal cost is incurred upon transition
from u to an artificial end state; see Fig. 1.3.3.

Let J*
k (u1, . . . , uk) denote the optimal cost starting from the k-solution

(u1, . . . , uk), i.e., the optimal cost of the problem over solutions whose first
k components are constrained to be equal to ui, i = 1, . . . , k, respectively.
The DP algorithm is described by the equation

J*
k (u1, . . . , uk) = min

uk+1∈Uk+1(u1,...,uk)
J*
k+1(u1, . . . , uk, uk+1), (1.14)

with the terminal condition

J*
N (u1, . . . , uN ) = G(u1, . . . , uN).

The algorithm (1.14) executes backwards in time: starting with the known
function J*

N = G, we compute J*
N−1, then J*

N−2, and so on up to computing

J*
1 . An optimal solution (u∗

1, . . . , u
∗

N ) is then constructed by going forward
through the algorithm

u∗

k+1 ∈ arg min
uk+1∈Uk+1(u

∗

1
,...,u∗

k
)
J*
k+1(u

∗

1, . . . , u
∗

k, uk+1), k = 0, . . . , N − 1,

(1.15)
first compute u∗

1, then u∗

2, and so on up to u∗

N ; cf. Eq. (1.7).
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Of course here the number of states typically grows exponentially with
N , but we can use the DP minimization (1.15) as a starting point for the use
of approximation methods. For example we may try to use approximation
in value space, whereby we replace J*

k+1 with some suboptimal J̃k+1 in Eq.
(1.15). One possibility is to use as

J̃k+1(u∗

1, . . . , u
∗

k, uk+1),

the cost generated by a heuristic method that solves the problem sub-
optimally with the values of the first k + 1 decision components fixed at
u∗

1, . . . , u
∗

k, uk+1. This is called a rollout algorithm, and it is a very simple
and effective approach for approximate combinatorial optimization. It will
be discussed later in this book, in Chapter 2 for finite horizon stochastic
problems, and in Chapter 4 for infinite horizon problems, where it will be
related to the method of policy iteration.

Finally, let us mention that shortest path and discrete optimization
problems with a sequential character can be addressed by a variety of ap-
proximate shortest path methods. These include the so called label cor-

recting, A∗, and branch and bound methods for which extensive accounts
can be found in the literature [the author’s DP textbook [Ber17] (Chapter
2) contains a substantial account, which connects with the material of this
section].

1.3.3 Problems with a Terminal State

Many DP problems of interest involve a terminal state, i.e., a state t that
is cost-free and absorbing in the sense that

gk(t, uk, wk) = 0, fk(t, uk, wk) = t, for all uk ∈ Uk(t), k = 0, 1, . . . .

Thus the control process essentially terminates upon reaching t, even if
this happens before the end of the horizon. One may reach t by choice if
a special stopping decision is available, or by means of a transition from
another state.

Generally, when it is known that an optimal policy will reach the
terminal state within at most some given number of stages N , the DP
problem can be formulated as an N -stage horizon problem.† The reason
is that even if the terminal state t is reached at a time k < N , we can
extend our stay at t for an additional N − k stages at no additional cost.
An example is the deterministic shortest path problem that we discussed
in Section 1.3.1.

† When an upper bound on the number of stages to termination is not known,

the problem must be formulated as an infinite horizon problem, as will be dis-

cussed in a subsequent chapter.
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Discrete deterministic optimization problems generally have a close
connection to shortest path problems as we have seen in Section 1.3.2. In
the problem discussed in that section, the terminal state is reached after
exactly N stages (cf. Fig. 1.3.3), but in other problems it is possible that
termination can happen earlier. The following well known puzzle is an
example.

Example 1.3.2 (The Four Queens Problem)

Four queens must be placed on a 4 × 4 portion of a chessboard so that no
queen can attack another. In other words, the placement must be such that
every row, column, or diagonal of the 4×4 board contains at most one queen.
Equivalently, we can view the problem as a sequence of problems; first, placing
a queen in one of the first two squares in the top row, then placing another
queen in the second row so that it is not attacked by the first, and similarly
placing the third and fourth queens. (It is sufficient to consider only the first
two squares of the top row, since the other two squares lead to symmetric
positions; this is an example of a situation where we have a choice between
several possible state spaces, but we select the one that is smallest.)

We can associate positions with nodes of an acyclic graph where the
root node s corresponds to the position with no queens and the terminal
nodes correspond to the positions where no additional queens can be placed
without some queen attacking another. Let us connect each terminal position
with an artificial terminal node t by means of an arc. Let us also assign to
all arcs cost zero except for the artificial arcs connecting terminal positions
with less than four queens with the artificial node t. These latter arcs are
assigned a cost of 1 (see Fig. 1.3.4) to express the fact that they correspond
to dead-end positions that cannot lead to a solution. Then, the four queens
problem reduces to finding a minimal cost path from node s to node t, with
an optimal sequence of queen placements corresponding to cost 0.

Note that once the states/nodes of the graph are enumerated, the prob-
lem is essentially solved. In this 4 × 4 problem the states are few and can
be easily enumerated. However, we can think of similar problems with much
larger state spaces. For example consider the problem of placing N queens
on an N × N board without any queen attacking another. Even for moder-
ate values of N , the state space for this problem can be extremely large (for
N = 8 the number of possible placements with exactly one queen in each
row is 88 = 16, 777, 216). It can be shown that there exist solutions to this
problem for all N ≥ 4 (for N = 2 and N = 3, clearly there is no solution).

There are also several variants of the N queens problem. For example
finding the minimal number of queens that can be placed on an N ×N board
so that they either occupy or attack every square; this is known as the queen

domination problem. The minimal number can be found in principle by DP,
and it is known for some N (for example the minimal number is 5 for N = 8),
but not for all N (see e.g., the paper by Fernau [Fe10]).
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Length = 0 Dead-End Position Solution
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Artificial Terminal Node

Artificial Terminal Node

Artificial Terminal Node t

t Length = 1 t Length = 1

Figure 1.3.4 Discrete optimization formulation of the four queens problem.
Symmetric positions resulting from placing a queen in one of the rightmost
squares in the top row have been ignored. Squares containing a queen have
been darkened. All arcs have length zero except for those connecting dead-end
positions to the artificial terminal node.

1.3.4 Forecasts

Consider a situation where at time k the controller has access to a forecast
yk that results in a reassessment of the probability distribution of wk and
possibly of future disturbances. For example, yk may be an exact prediction
of wk or an exact prediction that the probability distribution of wk is a
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specific one out of a finite collection of distributions. Forecasts of interest
in practice are, for example, probabilistic predictions on the state of the
weather, the interest rate for money, and the demand for inventory.

Generally, forecasts can be handled by introducing additional states
corresponding to the information that the forecasts provide. We will illus-
trate the process with a simple example.

Assume that at the beginning of each stage k, the controller receives
an accurate prediction that the next disturbance wk will be selected ac-
cording to a particular probability distribution out of a given collection of
distributions {P1, . . . , Pm}; i.e., if the forecast is i, then wk is selected ac-
cording to Pi. The a priori probability that the forecast will be i is denoted
by pi and is given.

The forecasting process can be represented by means of the equation

yk+1 = ξk,

where yk+1 can take the values 1, . . . ,m, corresponding to the m possible
forecasts, and ξk is a random variable taking the value i with probability
pi. The interpretation here is that when ξk takes the value i, then wk+1

will occur according to the distribution Pi.
By combining the system equation with the forecast equation yk+1 =

ξk, we obtain an augmented system given by

(

xk+1

yk+1

)

=

(

fk(xk, uk, wk)
ξk

)

.

The new state is

x̃k = (xk, yk).

The new disturbance is

w̃k = (wk, ξk),

and its probability distribution is determined by the distributions Pi and
the probabilities pi, and depends explicitly on x̃k (via yk) but not on the
prior disturbances.

Thus, by suitable reformulation of the cost, the problem can be cast
as a stochastic DP problem. Note that the control applied depends on
both the current state and the current forecast. The DP algorithm takes
the form

J*
N (xN , yN) = gN (xN ),

J*
k (xk, yk) = min

uk∈Uk(xk)
E
wk

{

gk(xk, uk, wk)

+

m
∑

i=1

piJ*
k+1

(

fk(xk, uk, wk), i
) ∣

∣ yk

}

,

(1.16)
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Figure 1.3.5 Cost structure of the parking problem. The driver may park at
space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free, or continue to the
next space k+ 1 at no cost. At space N (the garage) the driver must park at
cost C.

where yk may take the values 1, . . . ,m, and the expectation over wk is
taken with respect to the distribution Pyk .

It should be clear that the preceding formulation admits several ex-
tensions. One example is the case where forecasts can be influenced by
the control action (e.g., pay extra for a more accurate forecast) and in-
volve several future disturbances. However, the price for these extensions
is increased complexity of the corresponding DP algorithm.

1.3.5 Problems with Uncontrollable State Components

In many problems of interest the natural state of the problem consists of
several components, some of which cannot be affected by the choice of
control. In such cases the DP algorithm can be simplified considerably,
and be executed over the controllable components of the state. Before
describing how this can be done in generality, let us consider an example.

Example 1.3.3 (Parking)

A driver is looking for inexpensive parking on the way to his destination. The
parking area contains N spaces, and a garage at the end. The driver starts
at space 0 and traverses the parking spaces sequentially, i.e., from space k

he goes next to space k + 1, etc. Each parking space k costs c(k) and is free
with probability p(k) independently of whether other parking spaces are free
or not. If the driver reaches the last parking space and does not park there,
he must park at the garage, which costs C. The driver can observe whether a
parking space is free only when he reaches it, and then, if it is free, he makes
a decision to park in that space or not to park and check the next space. The
problem is to find the minimum expected cost parking policy.

We formulate the problem as a DP problem with N stages, correspond-
ing to the parking spaces, and an artificial terminal state t that corresponds
to having parked; see Fig. 1.3.5. At each stage k = 0, . . . , N − 1, in addition
to t, we have two states (k, F ) and (k, F ), corresponding to space k being free
or taken, respectively. The decision/control is to park or continue at state
(k, F ) [there is no choice at states (k, F ) and the garage].

kalou
Highlight

kalou
Cross-Out
y_{k+1}
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Let us now derive the form of DP algorithm, denoting

J∗

k (F ): The optimal cost-to-go upon arrival at a space k that is free.

J∗

k (F ): The optimal cost-to-go upon arrival at a space k that is taken.

J∗

N (t) = C: The cost-to-go upon arrival at the garage.

J∗

k (t) = 0: The terminal cost-to-go.

The DP algorithm for k = 0, . . . , N − 1 takes the form

J
∗

k (F ) =

{

min
[

c(k), p(k + 1)J∗

k+1(F ) +
(

1− p(k + 1)
)

J∗

k+1(F )
]

if k < N − 1,

min
[

c(N − 1), C
]

if k = N − 1,

J
∗

k (F ) =

{

p(k + 1)J∗

k+1(F ) +
(

1− p(k + 1)
)

J∗

k+1(F ) if k < N − 1,
C if k = N − 1,

(we omit here the obvious equations for the terminal state t and the garage
state N).

While this algorithm is easily executed, it can be written in a simpler
and equivalent form, which takes advantage of the fact that the second compo-
nent (F or F ) of the state is uncontrollable. This can be done by introducing
the scalars

Ĵk = p(k)J∗

k (F ) +
(

1− p(k)
)

J
∗

k (F ), k = 0, . . . , N − 1,

which can be viewed as the optimal expected cost-to-go upon arriving at space
k but before verifying its free or taken status.

Indeed, from the preceding DP algorithm, we have

ĴN−1 = p(N − 1)min
[

c(N − 1), C
]

+
(

1− p(N − 1)
)

C,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

From this algorithm we can also obtain the optimal parking policy, which is
to park at space k = 0, . . . , N − 1 if it is free and c(k) ≤ Ĵk+1.

Figure 1.3.6 provides a plot for Ĵk for the case where

p(k) ≡ 0.05, c(k) = N − k, C = 100, N = 200. (1.17)

The optimal policy is to travel to space 165 and then to park at the first
available space. The reader may verify that this type of policy, characterized
by a single threshold distance, is optimal assuming that c(k) is monotonically
decreasing with k.

We will now formalize the procedure illustrated in the preceding ex-
ample. Let the state of the system be a composite (xk, yk) of two compo-
nents xk and yk. The evolution of the main component, xk, is affected by
the control uk according to the equation

xk+1 = fk(xk, yk, uk, wk),
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Figure 1.3.6 Optimal cost-to-go and optimal policy for the parking problem with
the data in Eq. (1.17). The optimal policy is to travel from space 0 to space 165
and then to park at the first available space.

where the probability distribution Pk(wk | xk, yk, uk) is given. The evolu-
tion of the other component, yk, is governed by a given conditional distri-
bution Pk(yk | xk) and cannot be affected by the control, except indirectly
through xk. One is tempted to view yk as a disturbance, but there is a
difference: yk is observed by the controller before applying uk, while wk

occurs after uk is applied, and indeed wk may probabilistically depend on
uk.

We will formulate a DP algorithm that is executed over the control-
lable component of the state, with the dependence on the uncontrollable
component being “averaged out” similar to the preceding example. In par-
ticular, let J*

k (xk, yk) denote the optimal cost-to-go at stage k and state
(xk, yk), and define

Ĵk(xk) = E
yk

{

J*
k (xk, yk) | xk

}

.

We will derive a DP algorithm that generates Ĵk(xk).

Indeed, we have

Ĵk(xk) = Eyk

{

J*
k (xk, yk) | xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk ,xk+1,yk+1

{

gk(xk, yk, uk, wk)

+ J*
k+1(xk+1, yk+1)

∣

∣ xk, yk, uk

} ∣

∣ xk

}

= Eyk

{

min
uk∈Uk(xk,yk)

Ewk ,xk+1

{

gk(xk, yk, uk, wk)

+ Eyk+1

{

J*
k+1(xk+1, yk+1)

∣

∣ xk+1

} ∣

∣ xk, yk, uk

}

∣

∣ xk

}

,
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and finally

Ĵk(xk) = E
yk

{

min
uk∈Uk(xk,yk)

E
wk

{

gk(xk, yk, uk, wk)

+ Ĵk+1

(

fk(xk, yk, uk, wk)
)

}
∣

∣

∣
xk

}

.

(1.18)

The advantage of this equivalent DP algorithm is that it is executed
over a significantly reduced state space. For example, if xk takes n possible
values and yk takes m possible values, then DP is executed over n states
instead of nm states. Note, however, that the minimization in the right-
hand side of the preceding equation yields an optimal control law as a
function of the full state (xk, yk).

As an example, consider the augmented state resulting from the in-
corporation of forecasts, as described earlier in Section 1.3.4. Then, the
forecast yk represents an uncontrolled state component, so that the DP al-
gorithm can be simplified as in Eq. (1.18). In particular, using the notation
of Section 1.3.4, by defining

Ĵk(xk) =
m
∑

i=1

piJ*
k (xk, i), k = 0, 1, . . . , N − 1,

and
ĴN (xN ) = gN (xN ),

we have, using Eq. (1.16),

Ĵk(xk) =

m
∑

i=1

pi min
uk∈Uk(xk)

E
wk

{

gk(xk, uk, wk)

+ Ĵk+1

(

fk(xk, uk, wk)
) ∣

∣ yk = i
}

,

which is executed over the space of xk rather than xk and yk. This is a
simpler algorithm than the one of Eq. (1.16).

Uncontrollable state components often occur in arrival systems, such
as queueing, where action must be taken in response to a random event
(such as a customer arrival) that cannot be influenced by the choice of
control. Then the state of the arrival system must be augmented to include
the random event, but the DP algorithm can be executed over a smaller
space, as per Eq. (1.18). Here is another example of similar type.

Example 1.3.4 (Tetris)

Tetris is a popular video game played on a two-dimensional grid. Each square
in the grid can be full or empty, making up a “wall of bricks” with “holes”
and a “jagged top” (see Fig. 1.3.7). The squares fill up as blocks of different
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Figure 1.3.7 Illustration of a tetris board.

shapes fall from the top of the grid and are added to the top of the wall. As a
given block falls, the player can move horizontally and rotate the block in all
possible ways, subject to the constraints imposed by the sides of the grid and
the top of the wall. The falling blocks are generated independently according
to some probability distribution, defined over a finite set of standard shapes.
The game starts with an empty grid and ends when a square in the top row
becomes full and the top of the wall reaches the top of the grid. When a
row of full squares is created, this row is removed, the bricks lying above this
row move one row downward, and the player scores a point. The player’s
objective is to maximize the score attained (total number of rows removed)
within N steps or up to termination of the game, whichever occurs first.

We can model the problem of finding an optimal tetris playing strategy
as a stochastic DP problem. The control, denoted by u, is the horizontal
positioning and rotation applied to the falling block. The state consists of
two components:

(1) The board position, i.e., a binary description of the full/empty status
of each square, denoted by x.

(2) The shape of the current falling block, denoted by y.

There is also an additional termination state which is cost-free. Once the
state reaches the termination state, it stays there with no change in cost.

The shape y is generated according to a probability distribution p(y),
independently of the control, so it can be viewed as an uncontrollable state
component. The DP algorithm (1.18) is executed over the space of x and has
the intuitive form

Ĵk(x) =
∑

y

p(y)max
u

[

g(x, y, u) + Ĵk+1

(

f(x, y, u)
)

]

, for all x,

where

g(x, y, u) is the number of points scored (rows removed),
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f(x, y, u) is the board position (or termination state),

when the state is (x, y) and control u is applied, respectively. Note, however,
that despite the simplification in the DP algorithm achieved by eliminating
the uncontrollable portion of the state, the number of states x is enormous,
and the problem can only be addressed by suboptimal methods, which will
be discussed later in this book.

1.3.6 Partial State Information and Belief States

We have assumed so far that the controller has access to the exact value of
the current state xk, so a policy consists of a sequence of functions µk(xk),
k = 0, . . . , N − 1. However, in many practical settings this assumption is
unrealistic, because some components of the state may be inaccessible for
measurement, the sensors used for measuring them may be inaccurate, or
the cost of obtaining accurate measurements may be prohibitive.

Often in such situations the controller has access to only some of
the components of the current state, and the corresponding measurements
may also be corrupted by stochastic uncertainty. For example in three-
dimensional motion problems, the state may consist of the six-tuple of posi-
tion and velocity components, but the measurements may consist of noise-
corrupted radar measurements of the three position components. This
gives rise to problems of partial or imperfect state information, which have
received a lot of attention in the optimization and artificial intelligence lit-
erature (see e.g., [Ber17], Ch. 4). Even though there are DP algorithms for
partial information problems, these algorithms are far more computation-
ally intensive than their perfect information counterparts. For this reason,
in the absence of an analytical solution, partial information problems are
typically solved suboptimally in practice.

On the other hand it turns out that conceptually, partial state infor-
mation problems are no different than the perfect state information prob-
lems we have been addressing so far. In fact by various reformulations, we
can reduce a partial state information problem to one with perfect state
information (see [Ber17], Ch. 4). The most common approach is to replace
the state xk with a belief state, which is the probability distribution of xk

given all the observations that have been obtained by the controller up to
time k (see Fig. 1.3.8). This probability distribution can in principle be
computed, and it can serve as “state” in an appropriate DP algorithm. We
illustrate this process with a simple example.

Example 1.3.5 (Treasure Hunting)

In a classical problem of search, one has to decide at each of N periods
whether to search a site that may contain a treasure. If a treasure is present,
the search reveals it with probability β, in which case the treasure is removed
from the site. Here the state xk has two values: either a treasure is present in
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k Controller

Controller µk

) xk

k Observations

“Future” System x

xk+1 = fk(xk, uk, wk)

k Control uk = µk(pk)

Figure 1.3.8 Schematic illustration of a control system with imperfect state
observations. The belief state pk is the conditional probability distribution of xk

given all the observations up to time k.

the site or it is not. The control uk takes two values: search and not search. If
the site is searched, we obtain an observation, which takes one of two values:
treasure found or not found. If the site is not searched, no information is
obtained.

Denote

pk : probability a treasure is present at the beginning of period k.

This is the belief state at time k and it evolves according to the equation

pk+1 =







pk if the site is not searched at time k,
0 if the site is searched and a treasure is found,

pk(1−β)

pk(1−β)+1−pk
if the site is searched but no treasure is found.

(1.19)
The third relation above follows by application of Bayes’ rule (pk+1 is equal to
the kth period probability of a treasure being present and the search being un-
successful, divided by the probability of an unsuccessful search). The second
relation holds because the treasure is removed after a successful search.

Let us view pk as the state of a “belief system” given by Eq. (1.19),
and write a DP algorithm, assuming that the treasure’s worth is V , that each
search costs C, and that once we decide not to search at a particular time,
then we cannot search at future times. The algorithm takes the form

J
∗

k (pk) = max

[

J
∗

k+1(pk),

− C + pkβV + (1− pkβ)Ĵk+1

(

pk(1− β)

pk(1− β) + 1− pk

)

]

,

(1.20)
with ĴN (pN) = 0.

This DP algorithm can be used to obtain an analytical solution. In
particular, it is straightforward to show by induction that the functions Ĵk
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Figure 1.3.9 Cost structure and transitions of the bidirectional parking problem.
The driver may park at space k = 0, 1, . . . , N − 1 at cost c(k), if the space is free,
can move to k − 1 at cost β−

k
or can move to k + 1 at cost β+

k
. At space N (the

garage) the driver must park at cost C.

satisfy Ĵk(pk) ≥ 0 if pk ∈ [0, 1] and

Ĵk(pk) = 0 if pk ≤
C

βV
.

From this it follows that it is optimal to search at period k if and only if

C

βV
≤ pk.

Thus, it is optimal to search if and only if the expected reward from the next
search, pkβV , is greater or equal to the cost C of the search - a myopic policy
that focuses on just the next stage.

Of course the preceding example is extremely simple, involving a state
xk that takes just two values. As a result, the belief state pk takes val-
ues within the interval [0, 1]. Still there are infinitely many values in this
interval, and if a computational solution were necessary, the belief state
would have to be discretized and the DP algorithm (1.20) would have to
be adapted to the discretization.

In problems where the state xk can take a finite but large number
of values, say n, the belief states comprise an n-dimensional simplex, so
discretization becomes problematic. As a result, alternative suboptimal so-
lution methods are often used in partial state information problems. Some
of these methods will be described in future chapters.

The following is a simple example of a partial state information prob-
lem whose belief state has large enough size to make an exact DP solution
impossible.

Example 1.3.6 (Bidirectional Parking)

Let us consider a more complex version of the parking problem of Example
1.3.3. As in that example, a driver is looking for inexpensive parking on the
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way to his destination, along a line of N parking spaces with a garage at the
end. The difference is that the driver can move in either direction, rather
than just forward towards the garage. In particular, at space i, the driver
can park at cost c(i) if i is free, can move to i− 1 at a cost β−

i or can move
to i + 1 at a cost β+

i . Moreover, the driver records the free/taken status of
the spaces previously visited and may return to any of these spaces; see Fig.
1.3.9.

Let us assume that the probability p(i) of a space i being free changes
over time, i.e., a space found free (or taken) at a given visit may get taken
(or become free, respectively) by the time of the next visit. The initial prob-
abilities p(i), before visiting any spaces, are known, and the mechanism by
which these probabilities change over time is also known to the driver. As an
example, we may assume that at each time period, p(i) increases by a certain
known factor with some probability ξ and decreases by another known factor
with the complementary probability 1− ξ.

Here the belief state is the vector of current probabilities

(

p(1), . . . , p(N)
)

,

and it is updated at each time based on the new observation: the free/taken
status of the space visited at that time. Thus the belief state can be computed
exactly by the driver, given the parking status observations of the spaces
visited thus far. While it is possible to state an exact DP algorithm that is
defined over the set of belief states, and we will do so later, the algorithm is
impossible to execute in practice.† Thus the problem can only be solved with
approximations.

Example 1.3.7 (Bidirectional Parking - Sufficient Statistics)

It is instructive to consider a simple special case of the preceding bidirectional
parking example. This is the case where the spaces do not change status,
during the parking process. Thus a space that was earlier observed to be
free, remains free for the driver to return at a later time, while taken spaces
remain taken. The state is now simplified: it consists of the driver’s current
position, and the free/taken status of all the spaces visited thus far. This is
still a very large state space, but it turns out that there is a much simpler
sufficient statistic (cf. the discussion in the introduction to this section): this
is the free/taken status of the driver’s current position, together with the
location of the best space found to be free earlier ; “best” empty space here
means that it has minimal parking cost plus travel cost to reach it from the
current position.

† The problem as stated is an infinite horizon problem because there is noth-
ing to prevent the driver from moving forever in the parking lot without ever
parking. We can convert the problem to a similarly difficult finite horizon prob-
lem by restricting the number of moves to a given upper limit N > N , and
requiring that if the driver is at distance of k spaces from the garage at time
N − k, then driving in the direction away from the garage is not an option.
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The number of stages of the DP algorithm is N [counting a decision at
stage k to park at an earlier seen empty space i ≤ k as a single stage with
cost equal to the parking cost c(i) plus the travel cost from k to i]. The DP
algorithm may be executed over the space of earlier seen empty spaces ik at
stage k, which consists of the integer values 0, 1, . . . , k, plus an extra state
denoted -1, which corresponds to all spaces seen so far being taken.

To state this DP algorithm, let t(k, i) denote the cost of traveling from
space k to space i ≤ k plus the cost c(i) of parking at i, with t(k,−1) = ∞. Let
also fk(i, F ) and fk(i, F ) denote the two possible values of the next location
of best space found to be free after space k+ 1 is visited, given that the best
space was i after space k was visited,

fk(i, F ) =

{

i if t(k + 1, i) < c(k + 1),
k + 1 if t(k + 1, i) ≥ c(k + 1),

fk(i, F ) = i,

corresponding to space k + 1 being free or taken (F or F , respectively). The
DP algorithm has the form

ĴN−1(iN−1) = min
[

t(N − 1, iN−1), C
]

,

and for k = 0, . . . , N − 2,

Ĵk(ik) = p(k)min
[

t(k, ik), E
{

Ĵk+1(ik+1)
}]

+
(

1− p(k)
)

E
{

Ĵk+1(ik+1)
}

,

where we denote by E
{

Ĵk+1(ik+1)
}

the expected value of the cost-to-go at
the next state ik+1:

E
{

Ĵk+1(ik+1)
}

= p(k + 1)Ĵk+1

(

fk(ik, F )
)

+
(

1− p(k + 1)
)

Ĵk+1

(

fk(ik, F )
)

.

This algorithm should be compared with its one-directional counterpart of
Example 1.3.3, which has the form

ĴN−1 = min
[

c(N − 1), C
]

,

Ĵk = p(k)min
[

c(k), Ĵk+1

]

+
(

1− p(k)
)

Ĵk+1, k = 0, . . . , N − 2.

1.3.7 Linear Quadratic Optimal Control

In a few exceptional special cases the DP algorithm yields an analytical
solution, which can be used among other purposes, as a starting point
for approximate DP schemes. Prominent among such cases are various
linear quadratic optimal control problems, which involve a linear (possibly
multidimensional) system, a quadratic cost function, and no constraints
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on the control. Let us illustrate this with the deterministic scalar linear
quadratic Example 1.1.2. We will apply the DP algorithm for the case of
just two stages (N = 2), and illustrate the method for obtaining a nice
analytical solution.

As defined in Example 1.1.2, the terminal cost is

g2(x2) = r(x2 − T )2.

Thus the DP algorithm starts with

J*
2 (x2) = g2(x2) = r(x2 − T )2,

[cf. Eq. (1.3)].
For the next-to-last stage, we have [cf. Eq. (1.4)]

J*
1 (x1) = min

u1

[

u2
1 + J*

2 (x2)
]

= min
u1

[

u2
1 + J*

2

(

(1 − a)x1 + au1

)

]

.

Substituting the previous form of J*
2 , we obtain

J*
1 (x1) = min

u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2
]

. (1.21)

This minimization will be done by setting to zero the derivative with respect
to u1. This yields

0 = 2u1 + 2ra
(

(1− a)x1 + au1 − T
)

,

and by collecting terms and solving for u1, we obtain the optimal temper-
ature for the last oven as a function of x1:

µ∗

1(x1) =
ra
(

T − (1− a)x1

)

1 + ra2
. (1.22)

By substituting the optimal u1 in the expression (1.21) for J*
1 , we

obtain

J*
1 (x1) =

r2a2
(

(1 − a)x1 − T
)2

(1 + ra2)2
+ r

(

(1− a)x1 +
ra2
(

T − (1− a)x1

)

1 + ra2
− T

)2

=
r2a2

(

(1 − a)x1 − T
)2

(1 + ra2)2
+ r

(

ra2

1 + ra2
− 1

)2
(

(1 − a)x1 − T
)2

=
r
(

(1− a)x1 − T
)2

1 + ra2
.

We now go back one stage. We have [cf. Eq. (1.4)]

J*
0 (x0) = min

u0

[

u2
0 + J*

1 (x1)
]

= min
u0

[

u2
0 + J*

1

(

(1 − a)x0 + au0

)

]

,
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and by substituting the expression already obtained for J*
1 , we have

J*
0 (x0) = min

u0

[

u2
0 +

r
(

(1 − a)2x0 + (1 − a)au0 − T
)2

1 + ra2

]

.

We minimize with respect to u0 by setting the corresponding derivative to
zero. We obtain

0 = 2u0 +
2r(1− a)a

(

(1− a)2x0 + (1 − a)au0 − T
)

1 + ra2
.

This yields, after some calculation, the optimal temperature of the first
oven:

µ∗

0(x0) =
r(1 − a)a

(

T − (1− a)2x0

)

1 + ra2
(

1 + (1− a)2
) . (1.23)

The optimal cost is obtained by substituting this expression in the formula
for J*

0 . This leads to a straightforward but lengthy calculation, which in
the end yields the rather simple formula

J*
0 (x0) =

r
(

(1− a)2x0 − T
)2

1 + ra2
(

1 + (1− a)2
) .

This completes the solution of the problem.
Note that the algorithm has simultaneously yielded an optimal policy

{µ∗

0, µ
∗

1} via Eqs. (1.23) and (1.22): a rule that tells us the optimal oven
temperatures u0 = µ∗

0(x0) and u1 = µ∗

1(x1) for every possible value of the
states x0 and x1, respectively. Thus the DP algorithm solves all the tail
subproblems and provides a feedback policy.

A noteworthy feature in this example is the facility with which we
obtained an analytical solution. A little thought while tracing the steps of
the algorithm will convince the reader that what simplifies the solution is
the quadratic nature of the cost and the linearity of the system equation.
Indeed, it can be shown in generality that when the system is linear and the
cost is quadratic, the optimal policy and cost-to-go function are given by
closed-form expressions, regardless of the number of stages N (see [Ber17],
Section 3.1).

Stochastic Linear Quadratic Problems - Certainty Equivalence

Let us now introduce a zero-mean stochastic additive disturbance in the
linear system equation. Remarkably, it turns out that the optimal policy
remains unaffected. To see this, assume that the material’s temperature
evolves according to

xk+1 = (1− a)xk + auk + wk, k = 0, 1,
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where w0 and w1 are independent random variables with given distribution,
zero mean

E{w0} = E{w1} = 0,

and finite variance. Then the equation for J*
1 [cf. Eq. (1.4)] becomes

J*
1 (x1) = min

u1
E
w1

{

u2
1 + r

(

(1− a)x1 + au1 + w1 − T
)2
}

= min
u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2

+ 2rE{w1}
(

(1 − a)x1 + au1 − T
)

+ rE{w2
1}
]

.

Since E{w1} = 0, we obtain

J*
1 (x1) = min

u1

[

u2
1 + r

(

(1− a)x1 + au1 − T
)2
]

+ rE{w2
1}.

Comparing this equation with Eq. (1.21), we see that the presence of w1 has
resulted in an additional inconsequential constant term, rE{w2

1}. There-
fore, the optimal policy for the last stage remains unaffected by the presence
of w1, while J*

1 (x1) is increased by rE{w2
1}. It can be seen that a similar

situation also holds for the first stage. In particular, the optimal cost is
given by the same expression as before except for an additive constant that
depends on E{w2

0} and E{w2
1}.

Generally, if the optimal policy is unaffected when the disturbances
are replaced by their means, we say that certainty equivalence holds. This
occurs in several types of problems involving a linear system and a quadratic
cost; see [Ber17], Sections 3.1 and 4.2. For other problems, certainty equiv-
alence can be used as a basis for problem approximation, e.g., assume
that certainty equivalence holds (i.e., replace stochastic quantities by some
typical values, such as their expected values) and apply exact DP to the
resulting deterministic optimal control problem (see Section 2.3.2).

1.4 REINFORCEMENT LEARNING AND OPTIMAL CONTROL
- SOME TERMINOLOGY

There has been intense interest in DP-related approximations in view of
their promise to deal with the curse of dimensionality (the explosion of the
computation as the number of states increases is dealt with the use of ap-
proximate cost functions) and the curse of modeling (a simulator/computer
model may be used in place of a mathematical model of the problem). The
current state of the subject owes much to an enormously beneficial cross-
fertilization of ideas from optimal control (with its traditional emphasis on
sequential decision making and formal optimization methodologies), and
from artificial intelligence (and its traditional emphasis on learning through
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observation and experience, heuristic evaluation functions in game-playing
programs, and the use of feature-based and other representations).

The boundaries between these two fields are now diminished thanks
to a deeper understanding of the foundational issues, and the associated
methods and core applications. Unfortunately, however, there have been
substantial differences in language and emphasis in RL-based discussions
(where artificial intelligence-related terminology is used) and DP-based dis-
cussions (where optimal control-related terminology is used). This includes
the typical use of maximization/value function/reward in the former field
and the use of minimization/cost function/cost per stage in the latter field,
and goes much further.

The terminology used in this book is standard in DP and optimal
control, and in an effort to forestall confusion of readers that are accus-
tomed to either the RL or the optimal control terminology, we provide
a list of selected terms commonly used in RL, and their optimal control
counterparts.

(a) Agent = Decision maker or controller.

(b) Action = Decision or control.

(c) Environment = System.

(d) Reward of a stage = (Opposite of) Cost of a stage.

(e) State value = (Opposite of) Cost starting from a state.

(f) Value (or reward, or state-value) function = (Opposite of) Cost
function.

(g) Maximizing the value function = Minimizing the cost function.

(h) Action (or state-action) value = Q-factor (or Q-value) of a state-
control pair.

(i) Planning = Solving a DP problem with a known mathematical
model.

(j) Learning = Solving a DP problem in model-free fashion.

(k) Self-learning (or self-play in the context of games) = Solving a DP
problem using policy iteration.

(l) Deep reinforcement learning = Approximate DP using value
and/or policy approximation with deep neural networks.

(m) Prediction = Policy evaluation.

(n) Generalized policy iteration = Optimistic policy iteration.

(o) State abstraction = Aggregation.

(p) Learning a model = System identification.

(q) Episodic task or episode = Finite-step system trajectory.
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(r) Continuing task = Infinite-step system trajectory.

(s) Backup = Applying the DP operator at some state.

(t) Sweep = Applying the DP operator at all states.

(u) Greedy policy with respect to a cost function J = Minimizing
policy in the DP expression defined by J .

(v) Afterstate = Post-decision state.

Some of the preceding terms will be introduced in future chapters. The
reader may then wish to return to this section as an aid in connecting with
the relevant RL literature.

Notation

Unfortunately the confusion arising from different terminology has been
exacerbated by the use of different notations. The present textbook follows
Bellman’s notation [Bel67], and more generally the “standard” notation of
the Bellman/Pontryagin optimal control era. This notation is consistent
with the author’s other DP books.

A summary of our most prominently used symbols is as follows:

(a) x: state.

(b) u: control.

(c) J : cost function.

(d) g: cost per stage.

(e) f : system function.

(f) i: discrete state.

(g) pij(u): transition probability from state i to state j under control u.

The x-u-J notation is standard in optimal control textbooks (e.g., the
classical books by Athans and Falb [AtF66], and Bryson and Ho [BrH75],
as well as the more recent book by Liberzon [Lib11]). The notations f

and g are also used most commonly in the literature of the early optimal
control period as well as later. The discrete system notations i and pij(u)
are very common in the discrete-state Markov decision problem and oper-
ations research literature, where discrete state problems have been treated
extensively.

1.5 NOTES AND SOURCES

Our discussion of exact DP in this chapter has been brief since our focus in
this book will be on approximate DP and RL. The author’s DP textbooks
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[Ber12], [Ber17] provide an extensive discussion of exact DP and its appli-
cations to discrete and continuous spaces problems. The mathematical as-
pects of exact DP are discussed in the monograph by Bertsekas and Shreve
[BeS78], particularly the probabilistic/measure-theoretic issues associated
with stochastic optimal control. The author’s abstract DP monograph
[Ber18a] aims at a unified development of the core theory and algorithms
of total cost sequential decision problems, and addresses simultaneously
stochastic, minimax, game, risk-sensitive, and other DP problems, through
the use of abstract DP operators. The book by Puterman [Put94] pro-
vides a detailed treatment of finite-state Markovian decision problems, and
particularly the infinite horizon case.

The approximate DP and RL literature has expanded tremendously
since the connections between DP and RL became apparent in the late 80s
and early 90s. We will restrict ourselves to mentioning textbooks, research
monographs, and broad surveys, which supplement our discussions and col-
lectively provide a guide to the literature. The author wishes to apologize
in advance for the many omissions of important research references.

Two books were written on our subject in the 1990s, setting the tone
for subsequent developments in the field. One in 1996 by Bertsekas and
Tsitsiklis [BeT96], which reflects a decision, control, and optimization view-
point, and another in 1998 by Sutton and Barto, which reflects an artificial
intelligence viewpoint (a 2nd edition, [SuB18], was published in 2018). We
refer to the former book and also to the author’s DP textbooks [Ber12],
[Ber17] for a broader discussion of some of the topics of the present book,
including algorithmic convergence issues and more general DP models.

More recent books are the 2003 book by Gosavi (a much expanded
2nd edition [Gos15] appeared in 2015), which emphasizes simulation-based
optimization and RL algorithms, Cao [Cao07], which emphasizes a sensi-
tivity approach to simulation-based methods, Chang, Fu, Hu, and Mar-
cus [CFH07], which emphasizes finite-horizon/limited lookahead schemes
and adaptive sampling, Busoniu et. al. [BBD10], which focuses on func-
tion approximation methods for continuous space systems and includes a
discussion of random search methods, Powell [Pow11], which emphasizes re-
source allocation and operations research applications, Vrabie, Vamvouda-
kis, and Lewis [VVL13], which discusses neural network-based methods,
on-line adaptive control, and continuous-time optimal control applications,
and Liu et al. [LWW17], which explores the interface between reinforce-
ment learning and optimal control. The book by Haykin [Hay08] discusses
approximate DP in the broader context of neural network-related subjects.
The book by Borkar [Bor08] is an advanced monograph that addresses rig-
orously many of the convergence issues of iterative stochastic algorithms
in approximate DP, mainly using the so called ODE approach. The book
by Meyn [Mey07] is broader in its coverage, but touches upon some of the
approximate DP algorithms that we discuss.

Influential early surveys were written, from an artificial intelligence
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viewpoint, by Barto, Bradtke, and Singh [BBS95] (which dealt with the
methodologies of real-time DP and its antecedent, real-time heuristic search
[Kor90], and the use of asynchronous DP ideas [Ber82], [Ber83], [BeT89]
within their context), and by Kaelbling, Littman, and Moore [KLM96]
(which focused on general principles of reinforcement learning).

Several survey papers in the volumes by Si, Barto, Powell, and Wun-
sch [SBP04], and Lewis and Liu [LeL12], and the special issue by Lewis,
Liu, and Lendaris [LLL08] describe approximation methodology that we
will not be covering in this book: linear programming-based approaches
(De Farias [DeF04]), large-scale resource allocation methods (Powell and
Van Roy [PoV04]), and deterministic optimal control approaches (Ferrari
and Stengel [FeS04], and Si, Yang, and Liu [SYL04]). The volume by White
and Sofge [WhS92] contains several surveys that describe early work in the
field.

More recent surveys and short monographs are Borkar [Bor09] (a
methodological point of view that explores connections with other Monte
Carlo schemes), Lewis and Vrabie [LeV09] (a control theory point of view),
Werbos [Web09] (which reviews potential connections between brain intel-
ligence, neural networks, and DP), Szepesvari [Sze10] (which provides a de-
tailed description of approximation in value space from a RL point of view),
Deisenroth, Neumann, and Peters [DNP11], and Grondman et al. [GBL12]
(which focus on policy gradient methods), Browne et al. [BPW12] (which
focuses on Monte Carlo Tree Search), Mausam and Kolobov [MaK12] (which
deals with Markovian decision problems from an artificial intelligence view-
point), Schmidhuber [Sch15], Arulkumaran et al. [ADB17], and Li [Li17]
(which deal with reinforcement learning schemes that are based on the use
of deep neural networks), the author’s [Ber05a] (which focuses on rollout
algorithms and model predictive control), [Ber11a] (which focuses on ap-
proximate policy iteration), and [Ber18b] (which focuses on aggregation
methods), and Recht [Rec18] (which focuses on continuous spaces optimal
control). The blogs and video lectures by A. Rahimi and B. Recht provide
interesting views on the current state of the art of machine learning, rein-
forcement learning, and their relation to optimization and optimal control.
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As we noted in Chapter 1, the exact solution of optimal control problems by
DP is often impossible. To a great extent, the reason lies in what Bellman
has called the “curse of dimensionality.” This refers to a rapid increase
of the required computation and memory storage as the problem’s size in-
creases. Moreover, there are many circumstances where the structure of the
given problem is known well in advance, but some of the problem data, such
as various system parameters, may be unknown until shortly before control
is needed, thus seriously constraining the amount of time available for the
DP computation. These difficulties motivate suboptimal control schemes
that strike a reasonable balance between convenient implementation and
adequate performance.

Approximation in Value Space

There are two general approaches for DP-based suboptimal control. The
first is approximation in value space, where we approximate the optimal
cost-to-go functions J*

k with some other functions J̃k. We then replace J*
k

in the DP equation with J̃k. In particular, at state xk, we use the control
obtained from the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

. (2.1)

This defines a suboptimal policy {µ̃0, . . . , µ̃N−1}. There are several possi-
bilities for selecting or computing the functions J̃k, which are discussed in
this chapter, and also in subsequent chapters.

Note that the expected value expression appearing in the right-hand
side of Eq. (2.1) can be viewed as an approximate Q-factor

Q̃k(xk, uk) = E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,

and the minimization in Eq. (2.1) can be written as

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk),

(cf. Section 1.2). This also suggests a variant of approximation in value
space, which is based on using Q-factor approximations that may be ob-
tained directly, i.e., without the intermediate step of obtaining the cost
function approximations J̃k. In what follows in this chapter, we will focus
on cost function approximation, but we will occasionally digress to discuss
direct Q-factor approximation.

Approximation in value space based on the minimization (2.1) is com-
monly referred to as one-step lookahead , because the future costs are ap-
proximated by J̃k+1, after a single step. An important variation ismultistep

lookahead , whereby we minimize over ℓ > 1 stages with the future costs
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approximated by a function J̃k+ℓ. For example, in two-step lookahead the
function J̃k+1 is given by

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+ J̃k+2

(

fk+1(xk+1, uk+1, wk+1)
)

}

,

where J̃k+2 is some approximation of the optimal cost-to-go function J*
k+2.

Actually, as the preceding two-step lookahead case illustrates, one
may view ℓ-step lookahead as the special case of one-step lookahead where
the lookahead function is the optimal cost function of an (ℓ− 1)-stage DP
problem with a terminal cost at the end of the ℓ−1 stages, which is equal to
J̃k+ℓ. However, it is often important to discuss ℓ-step lookahead separately,
in order to address special implementation issues that do not arise in the
context of one-step lookahead.

In our initial discussion of approximation in value space of Section 2.1,
we will focus on one-step lookahead. There are straightforward extensions
of the main ideas to the multistep context, which we will discuss in Section
2.2.

Approximation in Policy Space

The major alternative to approximation in value space is approximation in

policy space, whereby we select the policy by using optimization over a suit-
ably restricted class of policies, usually a parametric family of some form.
An important advantage of this approach is that the computation of con-
trols during on-line operation of the system is often much easier compared
with the minimization (2.1). However, this advantage can also be gained
by combining approximation in value space with policy approximation in
a two-stage scheme:

(a) Obtain the approximately optimal cost-to-go functions J̃k, thereby
defining a corresponding suboptimal policy µ̃k, k = 0, . . . , N − 1, via
the one-step lookahead minimization (2.1).

(b) Approximate µ̃k, k = 0, . . . , N − 1, using a training set consisting
of a large number q of sample pairs

(

xs
k, u

s
k

)

, s = 1, . . . , q, where
us
k = µ̃k(xs

k). For example, introduce a parametric family of policies
µk(xk, rk), k = 0, . . . , N − 1, of some form, where rk is a parameter,
such as a family represented by a neural net, and then estimate the
parameters rk using some form of regression, e.g.,

rk ∈ argmin
r

q
∑

s=1

∥

∥us
k − µk(xs

k, r)
∥

∥

2
.

In this chapter we discuss primarily approximation in value space, al-
though some of the ideas are also relevant to approximation in policy space.

kalou
Highlight



4 Approximation in Value Space Chap. 2

We focus on finite horizon problems, postponing the discussion of infinite
horizon problems for Chapter 4 and later. However, the finite horizon
ideas are relevant to the infinite horizon setting, and many of the methods
of the present chapter and Chapter 3 also apply with small modifications
to infinite horizon problems.

Model-Based Versus Model-Free Implementation

An important attribute of the solution process is whether an analytical
model or Monte Carlo simulation is used to compute expected values such
as those arising in one-step and multistep lookahead expressions. We dis-
tinguish between two cases:

(a) In the model-based case, we assume that the conditional probability
distribution of wk, given (xk, uk), is available in essentially closed
form. By this we mean that the value of pk(wk | xk, uk) is available
for any triplet (xk, uk, wk). Moreover, the functions gk and fk are
also available. In a model-based solution process, expected values,
such as the one in the lookahead expression of Eq. (2.1), are obtained
with algebraic calculations as opposed to Monte Carlo simulation.

(b) In the model-free case, the calculation of the expected value in the
expression of Eq. (2.1), and other related expressions, is done with
Monte Carlo simulation. There may be two reasons for this.

(1) A mathematical model of the probabilities pk(wk | xk, uk) is not
available, but instead there is a computer program/simulator
that for any given state xk and control uk, simulates sample
probabilistic transitions to a successor state xk+1, and gener-
ates the corresponding transition costs. In this case the ex-
pected value can be computed approximately by Monte Carlo
simulation.†

(2) The probabilities pk(wk | xk, uk) are available for any triplet
(xk, uk, wk), but for reasons of computational efficiency we pre-
fer to compute the expected value in the expression (2.1) by
using sampling and Monte Carlo simulation. Thus the expected
value is computed as in the case where there is no mathematical
model, but instead there is a computer simulator.‡

† The term Monte Carlo simulation mostly refers to the use of a software

simulator. However, a hardware or a combined hardware/software simulator

may also be used in some practical situations to generate samples that are used

for Monte Carlo averaging.

‡ The idea of using Monte Carlo simulation to compute complicated integrals

or even sums of many numbers is used widely in various types of numerical compu-

tations. It encompasses efficient Monte Carlo techniques known as Monte Carlo
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Steps “Future”

Simple choices Parametric approximation Problem approximation

Steps “Future” First Step

Simple choices Parametric approximation Problem approximation

Aggregation

Aggregation Adaptive simulation Monte-Carlo Tree Search

Approximate Min Approximate

Approximate Min Approximate E{·}

min
uk

E
{

gk(xk, uk, wk)+J̃k+1(xk+1)
}

{·} Approximate Cost-to-Go J̃k+1

Certainty equivalence Monte Carlo tree search

Certainty equivalence Monte Carlo tree search

Rollout, Model Predictive Control

Parametric approximation Neural nets

Parametric approximation Neural nets Discretization

Figure 2.1.1 Schematic illustration of various options for approximation in value
space with one-step lookahead. The lookahead function values J̃k+1(xk+1) ap-
proximate the optimal cost-to-go values J∗

k+1
(xk+1), and can be computed by a

variety of methods. There may be additional approximations in the minimization

over uk and in the computation of the expected value over wk; see Section 2.1.1.

In summary, the use of sampling and Monte Carlo simulation is the

defining attribute for a method to be model-based or model-free in the ter-

minology of this book . In particular, a model-free method is one that can
be applied both when there is a mathematical model and when there is
not. This view of a model-free approach aims to avoid ambiguities in cases
where a model is available, but a model-free method is used anyway for
reasons of convenience or computational efficiency.

Note that for deterministic problems there is no expected value to
compute, so these problems typically come under the model-based cate-
gory, even if values of the functions gk and fk become available through
complicated computer calculations. Still however, Monte Carlo simulation
may enter the solution process of a deterministic problem for a variety of
reasons. For example the games of chess and Go are perfectly deterministic,
but the AlphaGo and AlphaZero programs (Silver et al. [SHM16], [SHS17])
use randomized policies and rely heavily on Monte Carlo tree search tech-
niques, which will be discussed later in Section 2.4. The same is true for
some policy gradient methods, which will be discussed in Chapter 4.

2.1 GENERAL ISSUES OF APPROXIMATION IN VALUE SPACE

There are two major issues in a value space approximation scheme, and
each of the two can be considered separately from the other:

(1) Obtaining J̃k, i.e., the method to compute the lookahead functions
J̃k that are involved in the lookahead minimization (2.1). There are

integration and importance sampling ; see textbooks such as [Liu01], [AsG10],

[RoC10] for detailed developments.
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6 Approximation in Value Space Chap. 2

quite a few approaches here (see Fig. 2.1.1). Several of them are
discussed in this chapter, and more will be discussed in subsequent
chapters.

(2) Control selection, i.e., the method to perform the minimization (2.1)
and implement the suboptimal policy µ̃k. Again there are several
exact and approximate methods for control selection, some of which
will be discussed in this chapter (see Fig. 2.1.1).

In this section we will provide a high level discussion of these issues.

2.1.1 Methods for Computing Approximations in Value Space

Regarding the computation of J̃k, we will consider four types of methods:

(a) Problem approximation (Section 2.3): Here the functions J̃k in Eq.
(2.1) are obtained as the optimal or nearly optimal cost functions
of a simplified optimization problem, which is more convenient for
computation. Simplifications may include, exploiting decomposable
structure, ignoring various types of uncertainties, and reducing the
size of the state space. The latter form of simplification is known as
aggregation, and is discussed separately in Chapter 5.

(b) On-line approximate optimization (Section 2.4): These methods often
involve the use of a suboptimal policy or heuristic, which is applied
on-line when needed to approximate the true optimal cost-to-go val-
ues. The suboptimal policy may be obtained by any other method,
e.g., problem approximation. Rollout algorithms and model predictive

control are prime examples of these methods.

(c) Parametric cost approximation (Chapter 3): Here the functions J̃k
in Eq. (2.1) are obtained from a given parametric class of functions
J̃k(xk, rk), where rk is a parameter vector, selected by a suitable algo-
rithm. The parametric class is typically obtained by using prominent
characteristics of xk called features , which can be obtained either
through insight into the problem at hand, or by using training data
and some form of neural network.

(d) Aggregation (Chapter 5): This is a special but rather sophisticated
form of problem approximation. A simple example is to select a set
of representative states for each stage, restrict the DP algorithm to
these states only, and approximate the costs-to-go of other states by
interpolation between the optimal costs-to-go of the representative
states. In another example of aggregation, the state space is divided
into subsets, and each subset is viewed as a state of an “aggregate DP
problem.” The functions J̃k are then derived from the optimal cost
functions of the aggregate problem. The state space partition can be
arbitrary, but is often determined by using features (states with “sim-
ilar” features are grouped together). Moreover, aggregation can be
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Sec. 2.1 General Issues of Approximation in Value Space 7

combined in complementary fashion with the methods (a)-(c) above,
and can use as a starting point an approximate cost-to-go function
produced by any one of these methods; e.g., apply a parametric ap-
proximation method and enhance the resulting cost function through
local corrections obtained by aggregation.

Additional variations of the above methods are obtained when used in
combination with approximate minimization over uk in Eq. (2.1), and also
when the expected value over wk is computed approximately via a certainty
equivalence approximation (cf. Section 2.3.2) or adaptive simulation and
Monte Carlo tree search (Sections 2.1.2 and 2.4.2).

2.1.2 Off-Line and On-Line Methods

In approximation in value space an important consideration is whether
the cost-to-go functions J̃k+1 and the suboptimal control functions µ̃k,
k = 0, . . . , N − 1, of Eq. (2.1) are computed off-line (i.e., before the control
process begins, and for all xk and k), or on-line (i.e., after the control
process begins, when needed, and for just the states xk to be encountered).

Usually, for challenging problems, the controls µ̃k(xk) are computed
on-line, since their storage may be difficult for a large state space. However,
the on-line or off-line computation of J̃k+1 is an important design choice.
We thus distinguish between:

(i) Off-line methods , where the entire function J̃k+1 in Eq. (2.1) is com-
puted for every k, before the control process begins. The values
J̃k+1(xk+1) are either stored in memory or can be obtained with
a simple and fast computation, as needed in order to compute con-
trols by one-step lookahead. The advantage of this is that most of the
computation is done off-line, before the first control is applied at time
0. Once the control process starts, no extra computation is needed
to obtain J̃k+1(xk+1) for implementing the corresponding suboptimal
policy.

(ii) On-line methods , where most of the computation is performed just
after the current state xk becomes known, the values J̃k(xk+1) are
computed only at the relevant next states xk+1, and are used to com-
pute the control to be applied via Eq. (2.1). These methods require
the computation of a control only for the N states actually encoun-
tered in the control process. In contrast with the off-line approxima-
tion methods, these methods are well-suited for on-line replanning,
whereby the problem data may change over time.

Examples of typically off-line schemes are neural network and other para-
metric approximations, as well as aggregation. Examples of typically on-
line schemes are rollout and model predictive control. Schemes based on
problem approximation may be either on-line or off-line depending on other
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problem-related factors. Of course there are also problem-dependent hy-
brid methods, where significant computation is done off-line to expedite
the on-line computation of needed values of J̃k+1.

2.1.3 Model-Based Simplification of the Lookahead Minimization

We will now consider ways to facilitate the calculation of the suboptimal
control µ̃k(xk) at state xk via the minimization of the one-step lookahead
expression

E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

, (2.2)

once the cost-to-go approximating functions J̃k+1 have been selected. In
this section, we will assume that we have a mathematical model, i.e., that
the functions gk and fk are available in essentially closed form, and that the
conditional probability distribution of wk, given (xk, uk), is also available.
In particular, Monte Carlo simulation is not used to compute the expected
value in Eq. (2.2). We will address the model-free case in the next section.

Important issues here are the computation of the expected value (if
the problem is stochastic) and the minimization over uk ∈ Uk(xk) in Eq.
(2.2). Both of these operations may involve substantial work, which is of
particular concern when the minimization is to be performed on-line.

One possibility to eliminate the expected value from the expression
(2.2) is (assumed) certainty equivalence. Here we choose a typical value w̃k

of wk, and use the control µ̃k(xk) that solves the deterministic problem

min
uk∈Uk(xk)

[

gk(xk, uk, w̃k) + J̃k+1

(

fk(xk, uk, w̃k)
)

]

. (2.3)

The approach of turning a stochastic problem into a deterministic one
by replacing uncertain quantities with single typical values highlights the
possibility that J̃k may itself be obtained by using deterministic methods.
We will discuss this approach and its variations in greater detail later in
this chapter (see Section 2.3).

Let us now consider the issue of algorithmic minimization over Uk(xk)
in Eqs. (2.2) and (2.3). If Uk(xk) is a finite set, the minimization can be
done by brute force, through exhaustive computation and comparison of
the relevant cost expressions. This of course can be very time consum-
ing, particularly for multistep lookahead, but parallel computation can
be used with great effect for this purpose [as well as for the calculation
of the expected value in the expression (2.2)]. For some discrete control
problems, integer programming techniques may also be used. Moreover,
for deterministic problems with multistep lookahead, sophisticated exact
or approximate shortest path methods may be considered; several methods
of this type are available, such as label correcting methods, A∗ methods,
and their variants (see the author’s books [Ber98] and [Ber17] for detailed
accounts, which are consistent with the context of this chapter).
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Sec. 2.1 General Issues of Approximation in Value Space 9

When the control constraint set is infinite, it may be replaced by a
finite set through discretization. However, a more efficient alternative may
be to use continuous space nonlinear programming techniques. This possi-
bility can be attractive for deterministic problems, which lend themselves
better to continuous space optimization; an example is the model predictive
control context (see Section 2.5).

For stochastic problems and either one-step or multistep lookahead
and continuous control spaces, the methodology of stochastic programming,
which bears a close connection with linear and nonlinear programming
methods, may be useful. We refer to the textbook [Ber17] for a discussion
of its application to the approximate DP context, and references to the
relevant literature. Still another possibility to simplify the one-step looka-
head minimization (2.2) is based on Q-factor approximation, which is also
suitable for model-free policy implementation, as we discuss next.

2.1.4 Model-Free Q-Factor Approximation in Value Space

One of the major aims of this book is to address stochastic model-free

situations, i.e., methods where a mathematical model [the system functions
fk, the probability distribution of wk, and the one-stage cost functions gk]
is not used because it is either hard to construct, or simply inconvenient.
We assume instead that the system and cost structure can be simulated in
software far more easily (think, for example, control of a queueing network
with complicated but well-defined service disciplines at the queues).†

In this section, we will review some of the high-level ideas of pass-
ing from model-based to model-free policy implementations for stochastic
problems. In particular, we assume that:

(a) There is a computer program/simulator that for any given state xk

and control uk, simulates sample probabilistic transitions to a succes-
sor state xk+1, and generates the corresponding transition costs.

(b) A cost function approximation J̃k+1 is available. Approaches to ob-
tain J̃k+1 in model-free fashion will be discussed in the context of
specific methods later. For example J̃k+1 may be obtained by solving
a simpler problem for which a model is available, or it may be sepa-
rately obtained without a mathematical model, by using a simulator.

We want to use the functions J̃k+1 and the simulator to compute or
approximate the Q-factors

E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

, (2.4)

for all uk ∈ Uk(xk), and then find the minimal Q-factor and corresponding
one-step lookahead control.

† Another possibility is to use the real system to provide the next state and

transition cost, but we will not deal explicitly with this case in this book.
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10 Approximation in Value Space Chap. 2

Given a state xk, we may use the simulator to compute these Q-factors
for all the pairs (xk, uk), uk ∈ Uk(xk), and then select the minimizing con-
trol. However, in many cases this can be very time-consuming. To deal
with this difficulty, we may introduce a parametric family/approximation
architecture of Q-factor functions, Q̃k(xk, uk, rk), where rk is the parameter
vector and use a least squares fit/regression to approximate the expected
value that is minimized in Eq. (2.2). One possibility is to use a neural net-
work parametric architecture; see Chapter 3, where we will discuss methods
for selecting and training parametric architectures. The steps are as fol-
lows:

Summary of Q-Factor Approximation Based on Approxima-
tion in Value Space

Assume that the value of J̃k+1(xk+1) is available for any given xk+1:

(a) Use the simulator to collect a large number of “representative”
sample state-control-successor states-stage cost quadruplets

(xs
k, u

s
k, x

s
k+1, g

s
k),

and corresponding sample Q-factors

βs
k = gsk + J̃k+1(xs

k+1), s = 1, . . . , q. (2.5)

Here xs
k+1 is the simulator’s output of the next state

xs
k+1 = fk(xs

k, u
s
k, w

s
k)

that corresponds to some disturbance ws
k. This disturbance also

determines the one-stage-cost sample

gsk = gk(xs
k, u

s
k, w

s
k).

The simulator need not output ws
k; only the sample next state

xs
k+1 and sample cost gsk are needed (see Fig. 2.1.2).

(b) Determine the parameter vector r̄k by the least-squares regres-
sion

r̄k ∈ argmin
rk

q
∑

s=1

(

Q̃k(xs
k, u

s
k, rk)− βs

k

)2
. (2.6)
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k
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s

k+1
Sample Q-Factor

Sample Q-Factor βs

k
= g

s

k
+ J̃k+1(x

s

k+1
)

) J̃k+1

Figure 2.1.2 Schematic illustration of the simulator used for a model-free Q-
factor approximation, assuming approximate cost functions J̃k+1 are known. The
input to the simulator are sample state-control pairs (xs

k
, us

k
), and the outputs are

a next state sample xs
k+1

and cost sample gs
k
. These correspond to a disturbance

ws
k
according to

xs
k+1 = fk(x

s
k, u

s
k, w

s
k), gsk = gk(x

s
k, u

s
k, w

s
k).

The actual value of ws
k

need not be output by the simulator. The sample Q-
factors βs

k
are generated according to Eq. (2.5), and are used in the least squares

regression (2.6) to yield a parametric Q-factor approximation Q̃k and the policy

implementation (2.7).

(c) Use the policy

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk, r̄k). (2.7)

Note some important points about the preceding procedure:

(1) It is model-free in the sense that it is based on Monte Carlo simu-
lation. Moreover, it does not need the functions fk and gk, and the
probability distribution of wk to generate the policy µ̃k through the
least squares regression (2.6) and the Q-factor minimization (2.7).
The simulator to collect the samples (2.5) and the cost function ap-
proximation J̃k+1 suffice.

(2) Two approximations are potentially required: One to compute J̃k+1,
which is needed for the samples βs

k [cf. Eq. (2.5)], and another to com-

pute Q̃k through the regression (2.6). The approximation methods
to obtain J̃k+1 and Q̃k may be unrelated.

(3) The policy µ̃k obtained through the minimization (2.7) is not the
same as the one obtained through the minimization (2.2). There are
two reasons for this. One is the approximation error introduced by
the Q-factor architecture Q̃k, and the other is the simulation error
introduced by the finite-sample regression (2.6). We have to accept
these sources of error as the price to pay for the convenience of not
requiring a mathematical model for policy implementation.
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Let us also mention a variant of the least squares minimization in
Eq. (2.6), which is to use a regularized minimization where a quadratic
regularization term is added to the least squares objective. This term is
a multiple of the squared deviation ‖r − r̂‖2 of r from some initial guess
r̂. Moreover, in some cases, a nonquadratic minimization may be used in
place of Eq. (2.6) to determine r̄k, but in this book we will focus on least
squares exclusively.

2.1.5 Approximation in Policy Space on Top of Approximation
in Value Space

A common approach for approximation in policy space, is to introduce a
parametric family of policies µ̃k(xk, rk), where rk is a parameter vector.
The parametrization may involve a neural network as we will discuss in
Chapter 3. Alternatively, the parametrization may involve problem-specific
features, exploiting the special structure of the problem at hand.

A general scheme for parametric approximation in policy space is to
obtain a large number of sample state-control pairs (xs

k, u
s
k), s = 1, . . . , q,

such that for each s, us
k is a “good” control at state xs

k. We can then choose
the parameter rk by solving the least squares/regression problem

min
rk

q
∑

s=1

∥

∥us
k − µ̃k(xs

k, rk)
∥

∥

2
(2.8)

(possibly with added regularization). In particular, we may determine
us
k using a human or a software “expert” that can choose “near-optimal”

controls at given states, so µ̃k is trained to match the behavior of the expert.
Methods of this type are commonly referred to as supervised learning in
artificial intelligence (see also the discussion in Section 4.11).

A special case of the above procedure, which connects with approxi-
mation in value space, is to generate the sample state-control pairs (xs

k, u
s
k)

through a one-step lookahead minimization of the form

us
k ∈ arg min

u∈Uk(xk)
E
{

gk(xs
k, u, wk) + J̃k+1

(

fk(xs
k, u, wk)

)

}

, (2.9)

where J̃k+1 is a suitable (separately obtained) approximation in value
space; cf. Eq. (2.2), or an approximate Q-factor based minimization

us
k ∈ arg min

uk∈Uk(x
s
k
)
Q̃k(xs

k, uk, r̄k), (2.10)

[cf. Eq. (2.7)]. In this case, we collect the sample state-control pairs
(xs

k, u
s
k), s = 1, . . . , q, by using approximation in value space through Eq.

(2.9) or Eq. (2.10), and then apply approximation in policy space through
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Eq. (2.8) (i.e., approximation in policy space is built on top of approxima-
tion in value space).

A major advantage of schemes based on the minimization (2.8) is
that once the parametrized policy is obtained, the on-line implementation
of the policy is fast and does not involve extensive calculations such as
minimizations of the form (2.9) or (2.10). This advantage is generally
shared by schemes that are based on approximation in policy space.

2.1.6 When is Approximation in Value Space Effective?

An important question is what constitutes good approximating functions
J̃k in a one-step lookahead scheme. An answer that suggests itself is that
J̃k should be “close” to the optimal cost-to-go function J*

k for all k. This
guarantees a certain degree of quality of the approximation scheme, but
is neither necessary nor is it satisfied by all or even most good practical
schemes.

For example if the approximating values J̃k(xk) differ from the op-
timal values J*

k (xk) uniformly by the same constant, the policy obtained
by the approximation in value space scheme is optimal. This suggests that
a better condition might be that relative values of J̃k and J*

k should be
“close” to each other, i.e.,

J̃k(xk)− J̃k+ℓ(x′

k) ≈ J*
k (xk)− J*

k (x
′

k),

for all pairs of states xk and x′

k. Still, however, this guideline neglects the
role of the first stage cost (or the cost of the first ℓ stages in the case of
ℓ-step lookahead).

A more accurate predictor of good quality of the suboptimal policy
obtained is that the Q-factor approximation error Qk(xk, u) − Q̃k(xk, u)
changes gradually as u changes, where Qk and Q̃k denote the exactly op-
timal Q-factor and its approximation, respectively. For a heuristic expla-
nation, suppose that approximation in value space generates a control ũk

at a state xk where another control uk is optimal. Then we have

Q̃k(xk, uk)− Q̃k(xk, ũk) ≥ 0, (2.11)

since ũk minimizes Q̃k(xk, ·), and

Qk(xk, ũk)−Qk(xk, uk) ≥ 0, (2.12)

since uk minimizes Qk(xk, ·). If ũk is far from optimal, the Q-factor differ-
ence in Eq. (2.12) will be large, and by adding Eq. (2.11), it follows that
the expression

(

Qk(xk, ũk)− Q̃k(xk, ũk)
)

−
(

Qk(xk, uk)− Q̃k(xk, uk)
)
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u u

) Qk(xk, u)
) Qk(xk, u)

Q̃k(xk, u) Q̃k(xk, u)

) uk ) ukũk
ũk

Qk(xk, u)− Q̃k(xk, u) Qk(xk, u)− Q̃k(xk, u)

∈

∑
(

Good approximation Poor Approximation

( )

Good approximation Poor Approximation

Figure 2.1.3 Schematic illustration of the “slope” of the Q-factor approximation
error as a predictor of quality of an approximation in value space scheme. At a
given state xk, let uk be optimal, so that it minimizes Qk(xk, u) over u ∈ Uk(xk),
and let ũk be generated by approximation in value space, so that it minimizes
Q̃k(xk , u) over u ∈ Uk(xk). In the figure on the right the approximation error
Qk(xk , u) − Q̃k(xk, u) changes gradually (i.e., has small “slope”), and ũk is a
good choice, because Qk(xk , ũk) is close the optimal Qk(xk, uk). In the figure
on the left the approximation error Qk(xk , u) − Q̃k(xk, u) changes fast (i.e., has
large “slope”), and ũk is a poor choice. In the extreme case where the Q-factors
Qk(xk , u) and Q̃k(xk, u) differ by a constant, minimization of either one of them

yields the same result.

will be even larger. This is not likely to happen if the approximation error
Qk(xk, u)− Q̃k(xk, u) changes gradually (i.e., has small “slope”) for u in a
neighborhood that includes uk and ũk (cf. Fig. 2.1.3). In many practical
settings, as u changes, the corresponding changes in the approximate Q-
factors Q̃k(xk, u) tend to have “similar” form to the changes in the exact Q-
factors Qk(xk, u), thus providing some explanation for the observed success
of approximation in value space in practice.

Of course, one would like to have quantitative tests to check the
quality of either the approximate cost functions J̃k and Q-factors Q̃k, or
the suboptimal policies obtained. However, general tests of this type are
not available, and it is often hard to assess how a particular suboptimal
policy compares to the optimal, except on a heuristic, problem-dependent
basis. Unfortunately, this is a recurring difficulty in approximate DP/RL.

2.2 MULTISTEP LOOKAHEAD

The approximation in value space scheme that we have discussed so far
is known as one-step lookahead, since it involves solving a one-step min-
imization problem at each time k [cf. Eq. (2.1)]. A more ambitious, but
also computationally more intensive scheme is multistep lookahead .

As an example, in two-step lookahead we apply at time k and state
xk, the control µ̃k(xk) attaining the minimum in Eq. (2.1), where now
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min
uk,µk+1,...,µk+ℓ−1

E

{

gk(xk, uk, wk) +

k+ℓ−1
∑

m=k+1

gk
(

xm, µm(xm), wm

)

+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future” Steps “Future”
DP minimization

At State xk

... MCTS Lookahead Minimization Cost-to-go Approximation
Lookahead Minimization Cost-to-go Approximation

Lookahead Minimization Cost-to-go Approximation

Figure 2.2.1 Illustration of approximation in value space with ℓ-step lookahead.

J̃k+1 is obtained itself on the basis of a one-step lookahead approximation.
In other words, for all possible states xk+1 that can be generated via the
system equation starting from xk,

xk+1 = fk(xk, uk, wk),

we have

J̃k+1(xk+1) = min
uk+1∈Uk+1(xk+1)

E
{

gk+1(xk+1, uk+1, wk+1)

+ J̃k+2

(

fk+1(xk+1, uk+1, wk+1)
)

}

,

where J̃k+2 is some approximation of the optimal cost-to-go function J*
k+2.

Thus two-step lookahead amounts to solving a two-stage version of

the DP problem with xk as the initial state and J̃k+2 as the terminal cost

function. Given xk, the solution of this DP problem yields a two-stage
policy that consists of the single control uk for the first lookahead stage,
plus a control µk+1(xk+1) for each value of xk+1 = fk(xk, uk, wk) that can
occur at the second lookahead stage k + 1. However, once this two-stage
policy is computed, the controls µk+1(xk+1) are discarded, and only uk is
used as the control applied by the two-step lookahead policy at xk. At the
next stage, this process is repeated, i.e., we solve a two-stage DP problem
with xk+1 as the initial state and J̃k+3 as the terminal cost function.

Policies with lookahead of ℓ > 2 stages are similarly defined: at state
xk, we solve an ℓ-stage version of the DP problem with xk as the initial
state and J̃k+ℓ as the terminal cost function, and use the first control
of the ℓ-stage policy thus obtained, while discarding the others; see Fig.
2.2.1. Of course, in the final stages where k > N − ℓ, we should shorten
the size of lookahead to N − k. Note that the simplifications in the one-
step lookahead minimization discussed in Section 2.1.2 (assumed certainty
equivalence, adaptive sampling, etc), and model-free policy implementation
(Section 2.1.3) extend to multistep lookahead.
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2.2.1 Multistep Lookahead and Rolling Horizon

There are several ways to compute the lookahead functions J̃k+ℓ in ℓ-
step lookahead, similar to the one-step lookahead case. However, there is
also another possibility: with sufficiently long lookahead, we may capture
enough of the character of the DP problem at hand so that a sophisticated
choice of J̃k+ℓ may not be needed.

In particular, we may set J̃k+ℓ(xk+ℓ) ≡ 0, or set

J̃k+ℓ(xk+ℓ) = gN (xk+ℓ).

The idea is to use a sufficiently large number of lookahead steps ℓ to ensure
a reasonably faithful approximation of the optimal Q-factors Qk or cost-to-
go functions J*

k+ℓ within a constant.† This is also referred to as the rolling

horizon approach, but essentially it is the same as multistep lookahead
with a simplified cost-to-go approximation. Note that the idea of a rolling
horizon is well-suited and applies with few modifications to infinite horizon
problems as well.‡

Typically, as the size ℓ of the lookahead is chosen larger, the need for

a good choice of J̃k+ℓ tends to diminish. The reason is that the effective
cost-to-go approximation in ℓ-step lookahead consists of two components:

(a) The cost of an (ℓ − 1) step problem involving the last (ℓ − 1) stages
of the ℓ-step lookahead.

(b) The terminal cost approximation J̃k+ℓ.

Since the (ℓ− 1)-step problem is treated by exact optimization, the overall
approximation will be accurate if the contribution of the terminal cost
approximation is relatively insignificant. This is likely to be true with
large enough ℓ.

Thus, one is tempted to conjecture that if ℓ is increased, then the
performance of the lookahead policy is improved. This, however, need
not be true always, essentially because beyond the next ℓ stages, the policy
may be “blind” to the presence of particularly “favorable” or “unfavorable”
states. The following example is an illustration.

† See the discussion in Section 2.1.4. Generally, rolling horizon schemes tend

to work well if the probability distribution of the state k+ℓ steps ahead is roughly

independent of the current state and control, or is concentrated around “low cost”

states.

‡ For infinite horizon problems the cost-to-go approximations J̃k will typi-

cally be the same at all stages k, i.e., J̃k ≡ J̃ for some J̃ . As a result, the limited

lookahead approach produces a stationary policy. In the case of discounted prob-

lems with an infinite horizon (see Chapter 4), a simple approach is to use a rolling

horizon that is long enough so that the tail cost is negligible and can be replaced

by zero, but it is also possible to use a small number of lookahead stages ℓ, as

long as we compensate with a terminal cost function approximation J̃ .
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Current State Current Stage 1 2
r x Initial

Low Cost u

High Cost u
′

u Optimal trajectory

High Cost Suboptimal
x0

0 x4

4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

4 0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

0 1 2 1 10 2-Step lookahead 3-Step lookahead 2 Stages 3 Stages

0 1 2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

0 1 2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

Figure 2.2.2 The 4-stage deterministic shortest problem of Example 2.2.1,
illustrating how using a longer lookahead with a cost function approximation
J̃k(xk) ≡ 0 may degrade the performance of the policy obtained.

Example 2.2.1

This is an oversimplified example that demonstrates a pitfall of the multi-
step lookahead and rolling horizon approaches with approximate cost-to-go
functions

J̃k(xk) ≡ 0.

It may happen that with longer lookahead the quality of the suboptimal
control obtained is degraded.

Consider the 4-stage deterministic shortest problem of Fig. 2.2.2. At
the initial state there are two possible controls, denoted u and u′. At all other
states there is only one control available, so a policy is specified by just the
initial choice between controls u and u′. The costs of the four transitions
on the upper and the lower path are shown next to the corresponding arcs
(0, 1, 2, 1 for the upper path and 0, 2, 0, 10 on the lower path). From the initial
state, 2-step lookahead with terminal cost approximation J̃2 = 0, compares
0 + 1 with 0 + 2 and prefers the optimal control u, while 3-step lookahead
with terminal cost approximation J̃3 = 0, compares 0 + 1 + 2 with 0 + 2 + 0
and prefers the suboptimal control u′. Thus using a longer lookahead yields
worse performance. The problem here has to do with large cost changes at the
“edge” of the lookahead (a cost of 0 just after the 2-step lookahead, followed
by a cost of 10 just after the 3-step lookahead).

2.2.2 Multistep Lookahead and Deterministic Problems

Generally, the implementation of multistep lookahead can be prohibitively
time-consuming for stochastic problems, because it requires at each step
the solution of a stochastic DP problem with a horizon that is equal to
the size of the lookahead. However, when the problem is deterministic, the
lookahead problems are also deterministic, and can be solved by shortest



18 Approximation in Value Space Chap. 2

...

...

Certainty equivalence Monte Carlo tree search Lookahead tree

Certainty equivalence Monte Carlo tree search Lookahead tree xk
Cost Function Approximation

Cost Function Approximation

Cost Function Approximation J̃k+ℓ

Certainty equivalence Monte Carlo tree search Lookahead tree ℓ Steps

xk

Shortest path problem

Figure 2.2.3 Multistep lookahead for a deterministic finite-state problem. The
lookahead minimization is equivalent to a shortest path problem.

path methods for a finite spaces problem, or even for an infinite spaces prob-
lem after some form of discretization. This makes deterministic problems
particularly good candidates for the use of long-step lookahead in conjunc-
tion with the rolling horizon approach that we discussed in the preceding
section.

Similarly, for a continuous-spaces deterministic optimal control prob-
lem, the lookahead minimization may be conveniently solvable by nonlinear
programming methods. This idea finds wide application in the context of
model predictive control (see the discussion in Section 2.5).

Partially Deterministic Form of Multistep Lookahead

When the problem is stochastic, one may consider a hybrid, partially de-
terministic approach: at state xk, allow for a stochastic disturbance wk at

the current stage, but fix the future disturbances wk+1, . . . , wk+ℓ−1, up to

the end of the lookahead horizon, to some typical values . This allows us
to bring to bear deterministic methods in the computation of approximate
costs-to-go beyond the first stage.

In particular, with this approach, the needed values J̃k+1(xk+1) will
be computed by solving an ℓ− 1-step deterministic shortest path problem
involving the typical values of the disturbances wk+1, . . . , wk+ℓ−1. Then
the values J̃k+1(xk+1) will be used to compute the approximate Q-factors
of pairs (xk, uk) using the formula

Q̃k(xk, uk) = E
{

gk(xk, uk, wk) + J̃k+1

(

fk(xk, uk, wk)
)

}

,
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which incorporates the first stage uncertainty. Finally, the control chosen
by such a scheme at time k will be

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk);

cf. Eq. (2.7).
The idea of fixing uncertain quantities to typical values for approxi-

mation purposes is generally referred to as (assumed) certainty equivalence,
and will be discussed at length in Section 2.3.2. The idea of using multi-
step lookahead for deterministic problems will also be reexamined in the
context of the rollout algorithm in Section 2.4.1.

2.3 PROBLEM APPROXIMATION

A key issue in implementing a limited lookahead policy is the choice of
the cost-to-go approximation at the end of the lookahead. In this section,
we discuss the problem approximation approach whereby we approximate
the optimal cost function J*

k with some function J̃k derived from a related
but simpler problem (for example the optimal cost-to-go function of that
problem). In the following subsections we consider two approaches:

(1) Simplifying the structure of the problem through enforced decomposi-

tion, e.g., replacing coupling constraints with simpler decoupled con-
straints or with Lagrange multiplier-related penalties.

(2) Simplifying the probabilistic structure of the problem, e.g., replacing
stochastic disturbances with deterministic ones.

Another approach that can be viewed as problem approximation is aggrega-
tion, whereby the original problem is approximated with a related “aggre-
gate” problem that has smaller dimension or fewer states. This problem is
solved exactly to yield a cost-to-go approximation for the original problem.
Aggregation is also related to the feature-based parametric approximation
ideas of Chapter 3, and will be discussed in Chapter 5.

2.3.1 Enforced Decomposition

The simplification/approximation approach is often well-suited for prob-
lems involving a number of subsystems that are coupled through the system
equation, or the cost function, or the control constraints, but the degree of
coupling is “relatively weak.” It is difficult to define precisely what consti-
tutes “weak coupling,” but in specific problem contexts, usually this type
of structure is easily recognized. For such problems it is often sensible to
introduce approximations by artificially decoupling the subsystems in some
way, thereby creating either a simpler problem or a simpler cost calculation,
where subsystems can be dealt with in isolation.
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There are a number of different ways to effect enforced decomposition,
and the best approach is often problem-dependent. Generally, for a deter-
ministic problem, enforced decomposition can be applied both off-line and
on-line to produce a suboptimal control sequence. For a stochastic prob-
lem, it can be applied with off-line computation of the approximate cost-to-
go functions J̃k and on-line computation of the corresponding suboptimal
policy. We will illustrate these two possibilities with various application
contexts in what follows.

Optimization of One Subsystem at a Time

When a problem involves multiple subsystems, a potentially interesting
approximation approach is to optimize one subsystem at a time. In this
way the control computation at time k may become simpler.

As an example consider an N -stage deterministic problem, where the
control uk at state xk consists of n components, uk = {u1

k, . . . , u
n
k}, with

ui
k corresponding to the ith subsystem. Then to compute a cost-to-go

approximation at a given state xk, one may optimize over the control se-
quence of a single subsystem, while keeping the controls of the remaining
subsystems at some nominal values. Thus, upon arriving at xk, we first
optimize over the control sequence {u1

k, u
1
k+1, . . . , u

1
N−1} of the first subsys-

tem, then optimize over the controls of the second subsystem, and so on,
while keeping the controls of the other subsystem at the latest “optimal”
values computed.

There are several possible variations; for example to make the order
in which the subsystems are considered subject to optimization as well, or
to repeat cycling through the subsystems multiple times, each time using
the results of the latest computation as nominal values of subsystem con-
trols. This is similar to a “coordinate descent” approach, used in other
optimization contexts.

Additional variations are obtained when we use approximate mini-
mization over uk in Eq. (2.1), and also when the expected value over wk is
computed approximately via adaptive simulation or a certainty equivalence
approximation (cf. Section 2.1.2).

Example 2.3.1 (Vehicle Routing)

Consider n vehicles that move along the arcs of a given graph. Each node of
the graph has a known “value” and the first vehicle that will pass through
the node will collect its value, while vehicles that pass subsequently through
the node do not collect any value. This may serve as a model of a situation
where there are various valuable tasks to be performed at the nodes of a
transportation network, and each task can be performed at most once and
by a single vehicle. We assume that each vehicle starts at a given node and
after at most a given number of arc moves, it must return to some other
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1 2 3 4 5 6 7 8 9
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1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 Vehicle 1 Vehicle 2

1 2 3 4 5 6 7 8 9 Vehicle 1 Vehicle 2

Figure 2.3.1 Schematic illustration of the vehicle routing problem and the one-
vehicle-at-a-time approach. As an example, given the position pair xk = (1, 4) of
the two vehicles and the current valuable tasks at positions 6 and 9, we consider
moves to all possible positions pairs xk+1:

(2, 2), (2, 3), (2, 6), (2, 7), (3, 2), (3, 3), (3, 6), (3, 7).

From each of these pairs, we first compute the best route of vehicle 1 assuming
vehicle 2 does not move, and then the best route vehicle 2, taking into account
the previously computed route of vehicle 1. We then select the pair xk+1 that
results in optimal value, and move the vehicles to the corresponding positions.

given node. The problem is to find a route for each vehicle satisfying these
constraints, so that the total value collected by the vehicles is maximized.

This is a difficult combinatorial problem that in principle can be ap-
proached by DP. In particular, we can view as state the n-tuple of current
positions of the vehicles together with the list of nodes that have been visited
by some vehicle in the past, and have thus “lost” their value. Unfortunately,
the number of these states is enormous (it increases exponentially with the
number of nodes and the number of vehicles). The version of the problem
that involves a single vehicle, while still difficult in principle, can often be
solved in reasonable time either exactly by DP or fairly accurately using a
suitable heuristic. Thus a one-step lookahead policy suggests itself, with the
value-to-go approximation obtained by solving single vehicle problems.

In particular, in a one-step lookahead scheme, at a given time k and
from a given state xk we consider all possible n-tuples of moves by the n

vehicles. At the resulting state xk+1 corresponding to each n-tuple of vehicle
moves, we approximate the optimal value-to-go with the value corresponding
to a suboptimal set of paths. These paths are obtained as follows: we fix an
order of the vehicles and we calculate a path for the first vehicle, starting at
xk+1, assuming the other vehicles do not move. (This is done either optimally
by DP, or near optimally using some heuristic.) Then we calculate a path for
the second vehicle, taking into account the value collected by the first vehicle,



22 Approximation in Value Space Chap. 2

and we similarly continue: for each vehicle, we calculate in the given order a
path, taking into account the value collected by the preceding vehicles. We
end up with a set of paths that have a certain total value associated with
them. This is the value J̃k+1(xk+1) associated with the successor state xk+1.
We repeat with all successor states xk+1 corresponding to all the n-tuples of
vehicle moves that are possible at xk. We then use as suboptimal control at
xk the n-tuple of moves that yields the best value; see Fig. 2.3.1.

There are several enhancements and variations of the scheme just de-
scribed. For example, we can consider multiple alternative orders for optimiz-
ing paths one-at-a-time, and choose the n-tuple of moves that corresponds to
the best value obtained. Other variations may include travel costs between
nodes of the graph, and constraints on how many tasks can be performed by
each vehicle.

Constraint Decoupling by Constraint Relaxation

Let us now consider problems involving coupled subsystems where the cou-
pling comes only through the control constraint. Typical cases involve the
allocation of a limited resource to a set of subsystems whose system equa-
tions are completely decoupled from each other. We will illustrate with
examples a few enforced decomposition approaches to deal with such situ-
ations. The first approach is constraint relaxation, whereby the constraint
set is replaced by another constraint set that does not involve coupling.

Example 2.3.2 (Restless Multiarmed Bandit Problems)

An interesting DP model, generally referred to as the multiarmed bandit prob-

lem, involves n projects of which only one can be worked on at any time
period. Each project i is characterized at time k by its state xi

k. If project
i is worked on at time k, one receives an expected reward Ri(xi

k), and the
state xi

k then evolves according to the equation

x
i
k+1 = f

i(xi
k, w

i
k), if i is worked on at time k,

where wi
k is a random disturbance with probability distribution depending

on xi
k but not on prior disturbances. If project i is not worked on, its state

changes according to

x
i
k+1 = f

i
(xi

k, w
i
k),

where f
i
is a given function and wi

k is a random disturbance with distribution

depending on xi
k but not on prior disturbances. Furthermore, a reward R

i
(xi

k)

is earned, where R
i
is a given function. The projects are coupled through the

control constraint (only one of the projects may be worked on at any one
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period). † A suboptimal enforced decomposition approach is to consider the
n single project problems where a single project is worked on through the
entire remaining horizon, and add the contributions of the n problems to
form an optimal reward approximation.

In particular, suppose that the optimal reward function J∗

k (x
1, . . . , xn)

is approximated by a separable function of the form

n
∑

i=1

J̃
i
k(x

i),

where each J̃ i
k is a function that quantifies the contribution of the ith project

to the total reward. The corresponding one-step lookahead policy selects at
time k the project i that maximizes

R
i(xi) +

∑

j 6=i

R
j
(xj) +E

{

J̃
i
k+1

(

f
i(xi

, w
i)
)}

+
∑

j 6=i

E

{

J̃
j

k+1

(

f
j
(xj

, w
j)
)

}

,

which can also be written as

R
i(xi)−R

i
(xi) + E

{

J̃
i
k+1

(

f
i(xi

, w
i)
)

−J̃
i
k+1

(

f
i
(xi

, w
i)
)

}

+

n
∑

j=1

{

R
j
(xj) + E

{

J̃
j

k+1

(

f
j
(xj

, w
j)
)}

}

.

Noting that the last term in the above expression does not depend on i, it
follows that the one-step lookahead policy takes the form

work on project i if m̃
i
k(x

i) = max
j

{

m̃
j

k(x
j)
}

,

where for all i,

m̃
i
k(x

i) = R
i(xi)−R

i
(xi) + E

{

J̃
i
k+1

(

f
i(xi

, w
i)
)

−J̃
i
k+1

(

f
i
(xi

, w
i)
)}

.

† In the classical and simplest version of the problem, the state of a project
that is not worked on remains unchanged and produces no reward, i.e.,

x
i
k+1 = x

i
k, R

i
(xi

k) = 0, if i is not worked on at time k.

This problem admits optimal policies with a nice structure that can be compu-
tationally exploited. The problem has a long history and is discussed in many
sources; we refer to [Ber12] and the references quoted there. In particular, in
favorable instances of the problem, optimal policies have the character of an in-

dex rule, which is structurally similar to the decoupled suboptimal decision rules
discussed in this section, and has been analyzed extensively, together with its
variations and special cases. The term “restless” in the title of the present ex-
ample, introduced by Whittle [Whi88], refers to the fact that the states of the
projects that are not worked on may change.
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An important question for the implementation of the preceding subop-
timal control scheme is the determination of the separable reward function
terms J̃ i

k+1. There are several possibilities here, and the best choice may
strongly depend on the problem’s structure. One possibility is to compute
J̃ i
k+1 as the optimal cost-to-go function for a problem involving just project i,

i.e., assuming that none of the other projects j 6= i will be worked on for the
remaining periods k+1, . . . , N−1. This corresponds to restricting the control
constraint set of the problem, and involves a single-project optimization that
may be tractable.

An alternative possibility is to use a separable parametric approxima-
tion of the form

n
∑

i=1

J̃
i
k+1(x

i
k+1, r

i
k+1),

where rik+1 are vectors of “tunable” parameters. The values of rik+1 can be
obtained by some “training” algorithm such as the ones to be discussed in
Chapter 3.

Constraint Decoupling by Lagrangian Relaxation

Another approach to deal with coupled constraints is to replace them with
linear Lagrange multiplier-related penalty functions that are added to the
cost function. We illustrate this approach with an extension of the preced-
ing multiarmed bandit Example 2.3.2.

Example 2.3.3 (Separable Lower Bound Approximation in
Multiarmed Bandit Problems)

Let us consider a version of the multiple projects Example 2.3.2 involving a
more general form of control. Here there are n subsystems, with a control ui

k

applied to subsystem i at time k. Instead of the requirement that only one
subsystem is worked on at any one time, we assume a control constraint of
the form

uk = (u1
k, . . . , u

n
k ) ∈ U, k = 0, 1, . . . ,

where the set U is given (Example 2.3.2 is obtained as the special case where
U consists of the union of the coordinate vectors, i.e., those whose compo-
nents are equal to 0, except for one component that is equal to 1). The ith
subsystem is described by

x
i
k+1 = f

i(xi
k, u

i
k, w

i
k), i = 1, . . . , n, k = 0, 1, . . . ,

where xi
k is the state taking values in some space, ui

k is the control, wi
k is a

random disturbance, and f i is a given function. We assume that wi
k is selected

according to a probability distribution that may depend on xi
k and ui

k, but
not on prior disturbances or the disturbances w

j

k of the other subsystems
j 6= i. The cost incurred at the kth stage by the ith subsystem is

g
i(xi

k, u
i
k, w

i
k), (2.13)
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where gi is a given one-stage cost function. For notational convenience, we
assume stationarity of the system equation and the cost per stage, but the
approach to be discussed applies to the nonstationary case as well.

One possibility for a separable approximation of the problem is to re-
place the constraint uk ∈ U by a smaller or larger decoupled constraint, i.e.,
requiring that

u
i
k ∈ U

i
, i = 1, . . . , n, k = 0, 1, . . . ,

where the subsets U1, . . . , Un satisfy U1×· · ·×Un ⊂ U or U ⊂ U1×· · ·×Un,
respectively.

We discuss another possibility for the case where the constraint set U

includes linear inequality constraints. As a simple example, let us focus on a
constraint set U of the form

U =

{

(u1
, . . . , u

n)
∣

∣

∣
u
i
∈ U

i
⊂ ℜ, i = 1, . . . , n,

n
∑

i=1

c
i
u
i
≤ b

}

, (2.14)

where c1, . . . , cn, and b are some scalars. † Here we replace the coupling
constraint

n
∑

i=1

c
i
u
i
k ≤ b, k = 0, 1, . . . , (2.15)

by a “relaxed” (larger) constraint whereby we require that

N−1
∑

k=0

n
∑

i=1

c
i
u
i
k ≤ Nb. (2.16)

Roughly speaking, the constraint (2.16) requires that the coupling constraint
(2.15) is satisfied “on the average,” over the N stages.

We may now obtain a lower bound approximation of the optimal cost of
our problem by assigning a scalar Lagrange multiplier λ ≥ 0 to the constraint
(2.16), and add a Lagrangian term

λ

(

N−1
∑

k=0

n
∑

i=1

c
i
u
i
k −Nb

)

(2.17)

to the cost function. This amounts to replacing the kth stage cost (2.13) by

g
i(xi

k, u
i
k, w

i
k) + λc

i
u
i
k,

while replacing the coupling constraint (2.14) with the decoupled constraint

u
i
k ∈ U

i
, i = 1, . . . , n,

† More general cases, where ui and b are multi-dimensional, and ci are re-
placed by matrices of appropriate dimension, can be handled similarly, albeit
with greater computational complications.
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cf. Eq. (2.14). This is a lower bound approximation, as is typical in Lagrange
multiplier-based decomposition approaches in linear and nonlinear program-
ming (see e.g., [BeT97], [Ber16b]). To see this, note that for every feasible
solution of the original problem, the Lagrangian term (2.17) makes a nonpos-
itive contribution when added to the cost function, while with the constraint
relaxed, the resulting optimal cost can only be reduced further.

With the subsystems now decoupled, we may solve each single subsys-
tem problem separately, thereby obtaining a separable lower bound approxi-
mation

n
∑

i=1

J̃
i
k(x

i
k, λ)

for every k = 1, . . . , N − 1. This approximation can in turn be used to
obtain a suboptimal one-step lookahead policy. Note that we may also try to
optimize the approximation over λ, either by ad hoc experimentation or by a
more systematic optimization method.† Another possibility is to use a more
general Lagrangian term of the form

(

N−1
∑

k=0

λk

n
∑

i=1

c
i
u
i
k −Nb

)

,

in place of the term (2.17), where λ0, . . . , λN−1 ≥ 0 are time-varying scalar
multipliers.

2.3.2 Probabilistic Approximation - Certainty Equivalent
Control

We will now consider problem approximation based on modifying the un-
derlying probabilistic structure. The most common example of this type is
the certainty equivalent controller (CEC). It replaces the stochastic distur-
bances with deterministic variables that are fixed at some “typical” values.
Thus it acts as if a form of the certainty equivalence principle were holding,
cf. the discussion of linear quadratic problems in Section 1.3.7.

The advantage of the CEC is that it involves a much less demanding
computation than the stochastic DP algorithm: it requires the solution of
a deterministic optimal control problem at each stage. This problem yields
an optimal control sequence, the first component of which is used at the
current stage, while the remaining components are discarded. Thus the
CEC is able to deal with stochastic and even partial information problems
by using the more flexible and potent methodology of deterministic optimal
control.

† Maximization of the lower bound approximation over λ is an interesting
possibility. This is common in duality-based optimization. Generally the ap-
proach of this example falls within the framework of Lagrangian relaxation, a
decomposition method that is based on the use of Lagrange multipliers and du-
ality theory; see e.g., [BeT97], [Ber15a], [Ber16a].
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We will describe the CEC for the stochastic DP problem of Section
1.2. Suppose that for every state-control pair (xk, uk) we have selected a
“typical” value of the disturbance, which we denote by w̃k(xk, uk). For
example the expected values

w̃k(xk, uk) = E{wk | xk, uk},

can serve as typical values, if the disturbance spaces are convex subsets of
Euclidean spaces [so that they include w̃k(xk, uk)].

To implement the CEC at state xk and stage k we solve a deter-
ministic optimal control problem obtained from the original problem by
replacing all uncertain quantities by their typical values. In particular, we
solve the problem

min
xi+1=fi(xi,ui,w̃i(xi,ui))

ui∈Ui(xi), i=k,...,N−1

[

gN (xN ) +
N−1
∑

i=k

gi
(

xi, ui, w̃i(xi, ui)
)

]

. (2.18)

If {ũk, . . . , ũN−1} is the optimal control sequence for this problem, we use
the first control in this sequence and discard the remaining controls:

µ̃k(xk) = ũk.

An alternative implementation of the CEC is to compute off-line an
optimal policy

{

µd
0(x0), . . . , µd

N−1(xN−1)
}

for the deterministic problem

minimize gN(xN ) +

N−1
∑

k=0

gk
(

xk, µk(xk), w̃k(xk, uk)
)

subject to xk+1 = fk
(

xk, µk(xk), w̃k(xk, uk)
)

, µk(xk) ∈ Uk, k ≥ 0,
(2.19)

by using the DP algorithm. Then the control input µ̃k(Ik) applied by the
CEC at time k is given by

µ̃k(Ik) = µd
k(xk).

The two variants of the CEC just given are equivalent in terms of per-
formance. The main difference is that the first variant is well-suited for
on-line replanning, while the second variant is more suitable for an off-line
implementation.

Finally, let us note that the CEC can be extended to imperfect state
observation problems, where the state xk is not known at time k, but
instead an estimate of xk is available, which is based on measurements
that have been obtained up to time xk. In this case, we find a suboptimal
control similarly, as in Eqs. (2.18) and (2.19), but with xk replaced by the
estimate, as if this estimate were exact.
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Certainty Equivalent Control with Heuristics

Even though the CEC approach simplifies a great deal the computations,
it still requires the optimal solution of a deterministic tail subproblem
at each stage [cf. Eq. (2.18)]. This problem may still be difficult, and a
more convenient approach may be to solve it suboptimally using a heuris-
tic algorithm. In particular, given the state xk at time k, we may use
some (easily implementable) heuristic to find a suboptimal control sequence
{ũk, ũk+1, . . . , ũN−1} for the problem of Eq. (2.18), and then use ũk as the
control for stage k.

An important enhancement of this idea is to use minimization over
the first control uk and to use the heuristic only for the remaining stages
k+1, . . . , N − 1. To implement this variant of the CEC, we must apply at
time k a control ũk that minimizes over uk ∈ Uk(xk) the expression

gk
(

xk, uk, w̃k(xk, uk)
)

+Hk+1(xk+1), (2.20)

where
xk+1 = fk

(

xk, uk, w̃k(xk, uk)
)

, (2.21)

and Hk+1 is the cost-to-go function corresponding to the heuristic, i.e.,
Hk+1(xk+1) is the cost incurred over the remaining stages k+1, . . . , N − 1
starting from a state xk+1, using the heuristic. This is a hybrid approach:
it resembles one-step lookahead with lookahead function Hk+1, and it re-
sembles certainty equivalence in that the uncertain quantities have been
replaced by their typical values.

Note that for any next state xk+1, it is not necessary to have a closed-
form expression for the heuristic cost-to-go Hk+1(xk+1). Instead we can
generate this cost by running the heuristic from xk+1 and computing the
corresponding cost. Thus all the possible next states xk+1 must be com-
puted for all possible values of the control uk, and then the heuristic must
be run from each of these xk+1 to calculate Hk+1(xk+1), which is needed
in the minimization of the expression (2.20).

Example 2.3.4 (Parking with Probability Estimates)

Consider the one-directional parking problem of Example 1.3.3, where a driver
is looking for a parking space along a line of N spaces, with a garage at the
end of the line (position N). The driver starts at space 0 and traverses
the parking spaces sequentially, i.e., continues to subsequent spaces, up to a
decision to park in space k at cost c(k), if space k is free, or upon reaching the
garage where parking is mandatory at cost C. In Example 1.3.3, we assumed
that space k is free with a given and fixed probability p(k), independently of
whether other parking spaces are free or not.

Assume instead that p(k) is an estimate that is based on the driver’s
observations of the status of preceding spaces. For example, this estimation
process may involve exploiting probabilistic relations that may exist between



Sec. 2.3 Problem Approximation 29

the parking statuses of different spaces. In particular, let us assume that
the driver, upon arrival at space k, can estimate the belief state of the spaces
that lie ahead, i.e., the vector of conditional probabilities

(

p(k+1), . . . , p(N)
)

given the observations of the spaces 0, . . . , k.
The problem now becomes very hard to solve by exact DP, because the

state space is infinite: at time k the state consists of the free/taken status
of the current position k, plus the belief state of the spaces that lie ahead.
However, a simple suboptimal approach to the problem can be based on cer-
tainty equivalence: at time k, we fix the free/taken probabilities of the spaces
that lie ahead to their current belief values, and act as if these values will
not change in the future. Then upon reaching space k, the fast DP algo-
rithm of Example 1.3.3 can be used to solve on-line the corresponding fixed
probabilities problem, and to find the corresponding suboptimal decision.

As an illustration, let p(k) be estimated by using the ratio R(k) of the
number of free spaces encountered up to reaching space k divided by the total
number k + 1. Knowing R(k), the driver adjusts the probabilities p(m) for
m > k to the level

p̂
(

m,R(k)
)

= γp(m) + (1− γ)R(k),

where γ is a known constant between 0 and 1. The problem can then be
solved by exact DP, by using as state at time k the free/taken status of space
k together with the ratio R(k) [in the terminology of Section 1.3, R(k) is a
sufficient statistic, which contains all the relevant information for the purposes
of control]. The number of possible values of R(k) grows exponentially with
k, so the solution by exact DP may become intractable for large N . However,
by applying the probabilistic approximation approach of this example, the
corresponding suboptimal policy may be easily obtained and implemented
on-line.

Partial Certainty Equivalent Control

In the preceding descriptions of the CEC all future and present uncertain
quantities are fixed at their typical values. A useful variation is to fix at
typical values only some of these quantities. For example, a partial state in-
formation problem may be treated as one of perfect state information, using
an estimate x̃k of xk as if it were exact, while fully taking into account the
stochastic nature of the disturbances. Thus, if

{

µ
p
0(x0), . . . , µ

p
N−1(xN−1)

}

is an optimal policy obtained from the DP algorithm for the stochastic
perfect state information problem

minimize E

{

gN(xN ) +

N−1
∑

k=0

gk
(

xk, µk(xk), wk

)

}

subject to xk+1 = fk
(

xk, µk(xk), wk

)

, µk(xk) ∈ Uk, k = 0, . . . , N − 1,

then the control input applied by this variant of CEC at time k is µp
k(x̃k),

where x̃k is the estimate of xk given the information available up to time
k. Let us provide an example.
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Example 2.3.5 (The Unscrupulous Innkeeper)

Consider an innkeeper who charges one of m different rates r1, . . . , rm for a
room as the day progresses, depending on whether he has many or few va-
cancies, so as to maximize his expected total income during the day. A quote
of a rate ri is accepted with probability pi and is rejected with probability
1− pi, in which case the customer departs, never to return during that day.
When the number y of customers that will ask for a room during the rest
of the day (including the customer currently asking for a room) is known
and the number of vacancies is x, the optimal expected income J̃(x, y) of the
innkeeper is given by the DP algorithm

J̃(x, y) = max
i=1,...,m

[

pi
(

ri + J̃(x− 1, y − 1)
)

+ (1− pi)J̃(x, y − 1)
]

, (2.22)

for all x ≥ 1 and y ≥ 1, with initial conditions

J̃(x, 0) = J̃(0, y) = 0, for all x and y.

This algorithm can be used to obtain the values of J̃(x, y) for all pairs (x, y).
Consider now the case where the innkeeper does not know y at the times

of decision, but instead only maintains a probability distribution for y. Then,
it can be seen that the problem becomes a difficult partial state information
problem. The exact DP algorithm should then be executed over the set of
the pairs of x and the belief state of y. Yet a reasonable partially stochastic
CEC is based on approximating the optimal cost-to-go of subsequent decisions
with J̃(x− 1, ỹ − 1) or J̃(x, ỹ − 1), where the function J̃ is calculated by the
preceding recursion (2.22) and ỹ is an estimate of y, such as the closest integer
to the expected value of y. In particular, according to this one-step lookahead
policy, when the innkeeper has a number of vacancies x ≥ 1, he quotes to the
current customer the rate that maximizes

pi
(

ri + J̃(x− 1, ỹ − 1) − J̃(x, ỹ − 1)
)

.

Thus in this suboptimal scheme, the innkeeper acts as if the estimate ỹ were
exact.

Other Variations of Certainty Equivalent Control

It is also possible to use more general approaches to implement one-step
lookahead control based on simplification of the probabilistic structure of
the problem. The possibilities are highly problem-dependent by nature, but
we may distinguish a few general techniques, which we illustrate through
examples.
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Example 2.3.6 (Decoupling Disturbance Distributions)

Let us consider a CEC approach in the context of enforced decomposition (cf.
Section 2.3.1) when the subsystems are coupled only through the disturbance.
In particular, consider n subsystems of the form

x
i
k+1 = f

i(xi
k, u

i
k, w

i
k), i = 1, . . . , n.

Here the ith subsystem has its own state xi
k, control u

i
k, and cost per stage

gi(xi
k, u

i
k, w

i
k), but the probability distribution of wi

k depends on the full state
xk = (x1

k, . . . , x
n
k ).

A natural form of suboptimal control is to solve at each stage k and for
each i, the ith subsystem optimization problem where the probability distri-

bution of the future disturbances wi
k+1, . . . , w

i
N−1 is “decoupled,” in the sense

that it depends only on the corresponding “local” states xi
k+1, . . . , x

i
N−1. This

distribution may be derived by using some nominal values x̃
j

k+1, . . . , x̃
j
N−1,

j 6= i, of the future states of the other subsystems, and these nominal values
may in turn depend on the full current state xk. The first control ui

k in the
optimal policy thus obtained is applied at the ith subsystem in stage k, and
the remaining portion of this policy is discarded.

Example 2.3.7 (Approximation Using Scenarios)

We noted earlier the possibility to approximate the optimal cost-to-go with
a CEC approach, whereby for a given state xk+1 at time k + 1, we fix the
remaining disturbances at some nominal values w̃k+1, . . . , w̃N−1, and we com-
pute an optimal control or heuristic-based trajectory starting from xk+1 at
time k + 1.

This CEC approximation involves a single nominal trajectory of the
remaining uncertainty. To strengthen this approach, it is natural to consider
multiple trajectories of the uncertainty, called scenarios, and to construct an
approximation to the optimal cost-to-go that involves, for every one of the
scenarios, the cost of either an optimal or a heuristic policy.

Mathematically, we assume that we have a method, which at a given
state xk+1, generates q uncertainty sequences

w
s(xk+1) = (ws

k+1, . . . , w
s
N−1), s = 1, . . . , q.

These are the scenarios considered at state xk+1. The optimal cost J∗

k+1(xk+1)
is then approximated by

J̃k+1(xk+1, r) =

q
∑

s=1

rsCs(xk+1), (2.23)

where r = (r1, . . . , rq) is a probability distribution, i.e., a vector of nonnega-
tive parameters that add to 1, and Cs(xk+1) is the cost corresponding to an
occurrence of the scenario ws(xk+1), when starting from state xk+1 and using
either an optimal or a given heuristic policy.
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min
uk,µk+1,...,µk+ℓ−1

E

{

gk(xk, uk, wk) +

k+ℓ−1
∑

m=k+1

gk
(

xm, µm(xm), wm

)

+ J̃k+ℓ(xk+ℓ)

}

First ℓ Steps “Future”
DP minimization

At State xk

... MCTS Lookahead Minimization Cost-to-go Approximation

Heuristic Cost“Future”

Heuristic Cost

Obtained with by running the Run the Base Policy

2 1 10 2-step lookahead 3-step lookahead 2 Stages 3 Stages

Figure 2.4.1 Schematic illustration of rollout with ℓ-step lookahead. The approx-
imate cost J̃k+ℓ(xk+ℓ) is obtained by running a heuristic algorithm/base policy
from state xk+ℓ.

There may be several problem-dependent ways to generate the scenar-
ios, possibly including randomization and/or simulation. The parameters
r1, . . . , rq may depend on the time index, and may be interpreted as “aggre-
gate probabilities” that encode the aggregate effect on the cost-to-go function
of uncertainty sequences that are similar to the scenario ws(xk+1). They may
be computed using some ad hoc scheme, or some more systematic approach.
The idea of simplifying the probabilistic model of the system, possibly us-
ing a model-free Monte-Carlo type of process, is also related to the rollout
approach that is the subject of the next section.

2.4 ROLLOUT

The principal aim of rollout is policy improvement , i.e., start with a sub-
optimal/heuristic policy, called the base policy (or sometimes, the default

policy), and produce an improved policy by limited lookahead minimiza-
tion with use of the heuristic at the end. This policy is called the rollout

policy, and the fact that it is indeed “improved” will be established, under
various conditions, in what follows in this section and also in Chapter 4.

In its purest one-step lookahead form, rollout can be defined very
simply: it is approximation in value space with the approximate cost-to-go
values J̃k+1(xk+1) calculated by running the base policy, starting from each
possible next state xk+1. There is also an ℓ-step lookahead generalization,
where the heuristic is used to obtain the approximate cost-to-go values
J̃k+ℓ(xk+ℓ) from each possible next state xk+ℓ (see Fig. 2.4.1). In a variant
for problems involving a long horizon, the run of the base policy may be
“truncated,” i.e., it may be used for a limited number of steps, with some
cost function approximation at the end to take into account the cost of the
remaining steps.

The choice of base policy is of course important for the performance
of the rollout approach. However, experimental evidence has shown that
the choice of base policy may not be crucial for many contexts, and in
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kalou
Highlight

kalou
Highlight
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fact surprisingly good rollout performance may be attained even with a
relatively poor base heuristic, particularly with a long lookahead.

Note also here a connection and overlap between the rollout and prob-
lem approximation approaches. Suppose that we use as base heuristic an
optimal policy for the approximating problem. Then the one-step (or mul-

tistep) rollout policy is the same as the one obtained by one-step (or mul-

tistep, respectively) lookahead with terminal cost function approximation

equal to the optimal cost of the approximating problem.
In Chapter 4 within the context of infinite horizon problems, we will

view there the method of policy iteration as a perpetual rollout algorithm,
whereby a sequence of suboptimal policies is generated, each one being a
rollout policy obtained by using the preceding one as a base policy. In this
chapter, however, we focus on a one-time policy improvement starting from
a given base policy.

We will describe rollout first for finite-state deterministic problems
and one-step lookahead, and then for stochastic problems, in Sections 2.4.1
and 2.4.2, respectively. We will discuss rollout for infinite-spaces problems,
including model predictive control in Section 2.5. We will also discuss the
use of rollout in combination with some other approximation scheme. This
is to use one-step or multistep lookahead with the cost function approxi-
mation consisting of two parts:

(a) Rollout with the given base policy over a limited horizon.

(b) A terminal cost function approximation at the end of the rollout hori-
zon, such as an estimate of the true cost function of the policy.

We will reconsider schemes of this type in Chapter 4, Section 4.5.3, in the
context of infinite horizon problems.

2.4.1 On-Line Rollout for Deterministic Finite-State Problems

Let us consider a deterministic DP problem with a finite number of controls
and a given initial state (so the number of states is also finite). Given a
state xk at time k, rollout considers all the tail subproblems that start at
every possible next state xk+1, and solves them suboptimally by using some
algorithm, referred to as base heuristic.† Thus when at xk, rollout generates
on-line the next states xk+1 that correspond to all uk ∈ Uk(xk), and uses
the base heuristic to compute the sequence of states {xk+1, . . . , xN} and
controls {uk+1, . . . , uN−1} such that

xi+1 = fi(xi, ui), i = k, . . . , N − 1.

† For deterministic problems we prefer to use the term “base heuristic” rather

than “base policy” for reasons to be explained later in this section, in the context

of the notion of sequential consistency.
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Figure 2.4.2 Schematic illustration of rollout with one-step lookahead for a de-
terministic problem. At state xk, for every pair (xk, uk), uk ∈ Uk(xk), the base
heuristic generates a Q-factor Q̃k(xk, uk) [cf. Eq. (2.25)], and selects the control
µ̃k(xk) with minimal Q-factor.

The rollout algorithm then applies the control that minimizes over uk ∈
Uk(xk) the tail cost expression for stages k to N :

gk(xk, uk)+gk+1(xk+1, uk+1)+ · · ·+gN−1(xN−1, uN−1)+gN (xN ). (2.24)

Equivalently, and more succinctly, the rollout algorithm applies at
state xk the control µ̃k(xk) given by the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk),

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

, (2.25)

with Hk+1(xk+1) denoting the cost of the base heuristic starting from state
xk+1 [i.e., Hk+1(xk+1) is the sum of all the terms in Eq. (2.24), except
the first]; see Fig. 2.4.2. The rollout process defines a suboptimal policy
π̃ = {µ̃0, . . . , µ̃N−1}, referred to as the rollout policy.

Example 2.4.1 (Traveling Salesman Problem)

Let us consider the traveling salesman problem, whereby a salesman wants
to find a minimum mileage/cost tour that visits each of N given cities c =
0, . . . , N−1 exactly once and returns to the city he started from (cf. Example
1.3.1). With each pair of distinct cities c, c′, we associate a traversal cost
g(c, c′). Note that we assume that we can go directly from every city to every
other city. There is no loss of generality in doing so because we can assign
a very high cost g(c, c′) to any pair of cities (c, c′) that is precluded from
participation in the solution. The problem is to find a visit order that goes
through each city exactly once and whose sum of costs is minimum.
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Figure 2.4.3 Schematic illustration of rollout with the nearest neighbor
heuristic for the traveling salesman problem. The initial state x0 consists
of a single city. The final state xN is a complete tour of N cities, containing
each city exactly once.

There are many heuristic approaches for solving the traveling salesman
problem. For illustration purposes, let us focus on the simple nearest neighbor
heuristic, which constructs a sequence of partial tours, i.e., sequences of or-
dered collections of distinct cities. Here, we select a single city c0 and at each
iteration, we add to the current partial tour a city that does not close a cycle
and minimizes the cost of the enlargement. In particular, after k iterations,
we have a sequence {c0, . . . , ck} consisting of distinct cities, and at the next
iteration, we add a new city ck+1 that minimizes g(ck, ck+1) over all cities
ck+1 6= c0, . . . , ck. After the nearest neighbor heuristic selects city cN−1, a
complete tour is formed with total cost

g(c0, c1) + · · ·+ g(cN−2, cN−1) + g(cN−1, c0). (2.26)

We can formulate the traveling salesman problem as a DP problem as
we discussed in Example 1.3.1. We choose a starting city, say c0, as the
initial state x0. Each state xk corresponds to a partial tour (c0, c1, . . . , ck)
consisting of distinct cities. The states xk+1, next to xk, are sequences of the
form (c0, c1, . . . , ck, ck+1) which correspond to adding one more unvisited city
ck+1 6= c0, c1, . . . , ck. The terminal states xN are the complete tours of the
form (c0, c1, . . . , cN−1, c0), and the cost of the corresponding sequence of city
choices is the cost of the corresponding complete tour. Thus a state trajectory
yields a complete tour with total cost given by Eq. (2.26).

Let us now use as a base heuristic the nearest neighbor method. The
corresponding rollout algorithm operates as follows: After k < N − 1 iter-
ations, we have a state xk, i.e., sequence {c0, . . . , ck} consisting of distinct
cities. At the next iteration, we add one more city as follows: We run the
nearest neighbor heuristic starting from each of the sequences of the form
{c0, . . . , ck, c} where c 6= c1, . . . , ck. We then select as next city ck+1 the city
c that yielded the minimum cost tour under the nearest neighbor heuristic;
see Fig. 2.4.3.
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Cost Improvement with a Rollout Algorithm - Sequential
Consistency

The definition of the rollout algorithm leaves open the choice of the base
heuristic. There are several types of suboptimal solution methods that can
be used as base heuristics, such as greedy algorithms, local search, genetic
algorithms, tabu search, and others. Clearly we want to choose a base
heuristic that strikes a good balance between quality of solutions produced
and computational tractability.

Intuitively, we expect that the rollout policy’s performance is no worse
than the one of the base heuristic. Since rollout optimizes over the first
control before applying the heuristic, it makes sense to conjecture that it
performs better than applying the heuristic without the first control opti-
mization. However, some special conditions must hold in order to guarantee
this cost improvement property. We provide two such conditions, sequen-
tial consistency and sequential improvement , and then show how to modify
the algorithm to deal with the case where these conditions are not satisfied.

We say that the base heuristic is sequentially consistent if it has the
property that when it generates the sequence

{xk, xk+1, . . . , xN}

starting from state xk, it also generates the sequence

{xk+1, . . . , xN}

starting from state xk+1. In other words, the base heuristic is sequentially
consistent if it “stays the course”: when the starting state xk is moved
forward to the next state xk+1 of its state trajectory, the heuristic will not
deviate from the remainder of the trajectory.

As an example, the reader may verify that the nearest neighbor
heuristic described in the traveling salesman Example 2.4.1 is sequentially
consistent. Similar examples include the use of many types of greedy heuris-
tics (see [Ber17], Section 6.4). Generally most heuristics used in practice
satisfy the sequential consistency condition at “most” states xk. However,
some heuristics of interest may violate this condition at some states.

Conceptually, it is important to note that sequential consistency is
equivalent to the heuristic being a legitimate DP policy. By this we mean
that there exists a policy {µ0, . . . , µN−1} such that the sequence generated
by the base heuristic starting from any state xk is the same as the one gen-
erated by {µ0, . . . , µN−1} starting from the same state xk. To see this, note
that a policy clearly has the sequential consistency property, and conversely,
a sequentially consistent base heuristic defines a policy: the one that moves
from xk to the state xk+1 that lies on the path {xk, xk+1, . . . , xN} generated
by the base heuristic.
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Based on this fact, we can show that the rollout algorithm obtained

with a sequentially consistent base heuristic yields an improved cost over

the base heuristic. In particular, let us consider the rollout policy π̃ =
{µ̃0, . . . , µ̃N−1}, and let Jk,π̃(xk) denote the cost obtained with π̃ starting
from xk. We claim that

Jk,π̃(xk) ≤ Ĵk(xk), for all xk and k, (2.27)

where Ĵk(xk) denotes the cost of the base heuristic starting from xk.
We prove this inequality by induction. Clearly it holds for k = N ,

since JN,π̃ = HN = gN . Assume that it holds for index k + 1. For any
state xk, let uk be the control applied by the base heuristic at xk. Then
we have

Jk,π̃(xk) = gk
(

xk, µ̃k(xk)
)

+ Jk+1,π̃

(

fk
(

xk, µ̃k(xk)
)

)

≤ gk
(

xk, µ̃k(xk)
)

+Hk+1

(

fk(xk, µ̃k(xk))
)

= min
uk∈Uk(xk)

[

gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

]

≤ gk
(

xk, uk

)

+Hk+1

(

fk(xk, uk)
)

= Hk(xk),

(2.28)

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.

(d) The third equality is the DP equation for the policy that corresponds
to the base heuristic (this is the step where we need sequential con-
sistency).

This completes the induction proof of the cost improvement property (2.27).

Sequential Improvement

We will now show that the rollout policy has no worse performance than its
base heuristic under a condition that is weaker than sequential consistency.
Let us recall that the rollout algorithm π̃ = {µ̃0, . . . , µ̃N−1} is defined by
the minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk)

where Q̃k(xk, uk) is the approximate Q-factor defined by

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

,
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[cf. Eqs. (2.25)], and Hk+1(xk+1) denotes the cost of the base heuristic
starting from state xk+1.

We say that the base heuristic is sequentially improving, if for all xk

and k, we have

min
uk∈Uk(xk)

[

gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

]

≤ Hk(xk). (2.29)

In words, the sequential improvement property (2.29) states that

Best heuristic Q-factor at xk ≤ Heuristic cost at xk. (2.30)

To show that a sequentially improving heuristic yields policy improve-
ment, simply note that from the calculation of Eq. (2.28), replacing the last
two steps (that rely on sequential consistency) with Eq. (2.29), we have

Jk,π̃(xk) ≤ Hk(xk), for all xk and k.

Thus the rollout algorithm obtained with a sequentially improving base
heuristic, will improve or at least will perform no worse than the base
heuristic, from every starting state xk. Note that when the heuristic is se-
quentially consistent it is also sequentially improving, since in this case Eq.
(2.29) is satisfied with equality. This also follows from the interpretation
(2.30), since for a sequentially consistent heuristic, the heuristic cost is the
Q-factor of the heuristic at xk.

Empirically, it has been observed that the cost improvement obtained
by rollout with a sequentially improving heuristic is typically considerable
and often dramatic. Generally, however, it is hard to provide solid theo-
retical support for this observation. Several case studies support the con-
sistently good performance of rollout (at least in the pure form described
in this section); see the end of chapter references. The textbook [Ber17],
Section 6.4, provides some detailed worked-out examples. The price for
the performance improvement is extra computation that is typically equal
to the computation time of the base heuristic times a factor that is a low
order polynomial of the problem size.

On the other hand the sequential improvement condition may not
hold for a given base heuristic. It is thus important to know that any

heuristic can be made to be sequentially improving with a simple modifica-

tion, as we explain next.

The Fortified Rollout Algorithm

We will describe a variant of the rollout algorithm that implicitly uses
a sequentially improving base heuristic, so that it has the sequential im-
provement property (2.29). This variant, called the fortified rollout al-

gorithm, starts at x0, and generates step-by-step a sequence of states
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{x0, x1, . . . , xN} and corresponding sequence of controls. Upon reaching
state xk it stores the trajectory

P k = {x0, u0, . . . , uk−1, xk}

that has been constructed up to stage k, called permanent trajectory, and
it also stores a tentative trajectory

T k = {xk, uk, xk+1, uk+1, . . . , uN−1, xN}

with corresponding cost

C(T k) = gk(xk, uk)+gk+1(xk+1, uk+1)+· · ·+gN−1(xN−1, uN−1)+gN (xN ).

The tentative trajectory is such that P k ∪T k is the best end-to-end trajec-
tory computed up to stage k of the algorithm. Initially, T 0 is the trajectory
generated by the base heuristic starting at the initial state x0. The idea
now is to deviate from the rollout algorithm at every state xk where the
base heuristic produces a trajectory with larger cost than T k, and use T k

instead.
In particular, upon reaching state xk, we run the rollout algorithm

as earlier, i.e., for every uk ∈ Uk(xk) and next state xk+1 = fk(xk, uk), we
run the base heuristic from xk+1, and find the control ũk that gives the
best trajectory, denoted

T̃k = {xk, ũk, x̃k+1, ũk+1, . . . , ũN−1, x̃N}

with corresponding cost

C(T̃k) = gk(xk, ũk)+gk+1(x̃k+1, ũk+1)+ · · ·+gN−1(x̃N−1, ũN−1)+gN(x̃N ).

Whereas the ordinary rollout algorithm would choose control ũk and move
to x̃k+1, the fortified algorithm compares C(T k) and C(T̃k), and depending
on which of the two is smaller, chooses uk or ũk and moves to xk+1 or to
x̃k+1, respectively. In particular, if C(T k) ≤ C(T̃k) the algorithm sets the
next state and corresponding tentative trajectory to

xk+1 = xk+1, T k+1 = {xk+1, uk+1, . . . , uN−1, xN},

and if C(T k) > C(T̃k) it sets the next state and corresponding tentative
trajectory to

xk+1 = x̃k+1, T k+1 = {x̃k+1, ũk+1, . . . , ũN−1, x̃N}.

In other words the fortified rollout at xk follows the current tentative
trajectory T k unless a lower cost trajectory T̃k is discovered by running the
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Figure 2.4.4 Schematic illustration of fortified rollout. After k steps, we have
constructed the permanent trajectory

P k = {x0, u0, . . . , uk−1, xk},

and the tentative trajectory

T k = {xk, uk , xk+1, uk+1, . . . , uN−1, xN}

such that P k ∪T k is the best end-to-end trajectory computed so far. We now run
the rollout algorithm at xk, i.e., we find the control ũk that minimizes over uk

the sum of gk(xk, uk) plus the heuristic cost from the state xk+1 = fk(xk, uk),
and the corresponding trajectory

T̃k = {xk , ũk, x̃k+1, ũk+1, . . . , ũN−1, x̃N}.

If the cost of the end-to-end trajectory Pk∪T̃k is lower than the cost of Pk∪T k, we
use we add (ũk, x̃k+1) to the permanent trajectory and set the tentative trajectory
to

Tk+1 = {x̃k+1, ũk+1, . . . , ũN−1, x̃N}.

Otherwise we add (uk, xk+1) to the permanent trajectory and set the tentative
trajectory to

Tk+1 = {xk+1, uk+1, . . . , uN−1, xN}.

Note that the fortified rollout will produce a different result than the ordinary
rollout if the heuristic when started from xk+1 constructs a trajectory that is
different than the tail portion of the tentative trajectory that starts at xk+1.

base heuristic from all possible next states xk+1. It follows that at every
state the trajectory that consists of the union of the permanent and the
tentative trajectories, has lower cost than the initial tentative trajectory,
which is the one produced by the base heuristic starting from x0. Moreover,
it can be seen that if the base heuristic is sequentially improving, the rollout
algorithm and its fortified version coincide. Experimental evidence suggests
that it is important to use the fortified version if the base heuristic is not
sequentially improving.



Sec. 2.4 Rollout 41

Finally we note that the fortified rollout may be viewed as the ordi-
nary rollout algorithm applied to a modified version of the original problem
and modified base heuristic that has the sequential improvement property.
The corresponding construction is somewhat tedious and will not be given;
we refer to [BTW97] and [Ber17], Section 6.4.2.

Using Multiple Heuristics

In many problems, several promising heuristics may be available. It is then
possible to use all of these heuristics in the rollout framework. The idea
is to construct a superheuristic, which selects the best trajectory produced
by all the base heuristic trajectories. The superheuristic can then be used
as the base heuristic for a rollout algorithm.

In particular, let us assume that we have M base heuristics, and that
the mth of these, given a state xk+1, produces a trajectory

T̃m
k+1 = {xk+1, ũ

m
k+1, . . . , ũ

m
N−1, x̃

m
N},

and corresponding cost C(T̃m
k+1). The superheuristic then produces at xk+1

the trajectory T̃m
k+1 for which C(T̃m

k+1) is minimum.
An interesting property, which can be readily verified by using the

definitions, is that if all the base heuristics are sequentially improving, the
same is true for the superheuristic. Moreover, there is a fortified version
of the rollout algorithm, which has the property that it produces a trajec-
tory with no worse cost than all the trajectories produced by the M base
heuristics when started at the initial state x0.

Rollout Algorithms with Multistep Lookahead

We may incorporate multistep lookahead into the deterministic rollout
framework. To describe two-step lookahead in its most straightforward
implementation, suppose that after k steps we have reached state xk. We
then consider the set of all two-step-ahead states xk+2 we run the base
heuristic starting from each of them, and compute the two-stage cost to
get from xk to xk+2, plus the cost of the base heuristic from xk+2. We
select the state, say x̃k+2, that is associated with minimum cost, compute
the controls ũk and ũk+1 that lead from xk to x̃k+2, and choose ũk as the
next rollout control and xk+1 = fk(xk, ũk) as the next state; see Fig. 2.4.5.

The extension of the algorithm to lookahead of more than two steps
is straightforward: instead of the two-step-ahead states xk+2 we run the
base heuristic starting from all the possible ℓ-step ahead states xk+ℓ, etc.
For problems with a large number of stages, we can consider truncated

rollout with terminal cost approximation. Here the rollout trajectories are
obtained by running the base heuristic from the leaf nodes of the lookahead
tree, and they are truncated after a given number of steps, while a terminal
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Figure 2.4.5 Illustration of truncated rollout with two-step lookahead and a
terminal cost function approximation J̃ . The base heuristic is used for a limited
number of steps and the terminal cost is added to compensate for the costs of the
remaining steps.

cost approximation is added to the heuristic cost to compensate for the
resulting error.

Among other variations of deterministic multistep rollout, let us men-
tion a fortified version, which maintains a tentative trajectory, along the
lines described earlier for the one-step lookahead case. In still another ver-
sion of ℓ-step lookahead rollout, we may consider disregarding some of the
states that are ℓ steps or less ahead, which are judged less promising ac-
cording to some criterion (for example the costs of the base heuristic after
a one-step lookahead); see Fig. 2.4.6. This may be viewed as selective depth

lookahead , and aims to limit the number of times that the base heuristic
is applied, which can become overwhelming as the length of lookahead is
increased. We will encounter again the idea of selective depth lookahead
in the context of stochastic rollout and Monte Carlo tree search (see the
next section), where in addition to the length of lookahead, the accuracy
of the simulation to evaluate the cost of the base heuristic is adapted to
the results of earlier computations.

Finally, let us mention a variant of rollout that maintains multiple
trajectories, extending from a given state xk to possibly multiple next states
xk+1. These states are the ones considered “most promising” based on
the current results of the base heuristic (like being “ǫ-best”), but may be
discarded later based on subsequent computations. Such extended forms
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Figure 2.4.6 Illustration of deterministic rollout with selective depth lookahead.
After k steps of the algorithm, we have a trajectory that starts at the initial state
x0 and ends at state xk. We then generate the set of all possible next states
(states x1

k+1
, x2

k+1
, x3

k+1
, x4

k+1
in the figure). We “evaluate” these states using

the base heuristic, and select some of them for “expansion,” i.e., we generate their
next states xk+2, evaluate them using the base heuristic, and continue. In the
end we have a selective depth tree of next states, and the base heuristic costs from
the leaves of the tree. The state xk+1 that corresponds to smallest overall cost
is chosen by the selective depth lookahead rollout algorithm. For problems with
a large number of stages, we can also truncate the rollout trajectories and add a
terminal cost function approximation as compensation for the resulting error; cf.
Fig. 2.4.5.

of rollout are restricted to deterministic problems, and tend to be problem-
dependent. We will not consider them further in this book.

2.4.2 Stochastic Rollout and Monte Carlo Tree Search

We will now discuss the extension of the rollout algorithm to stochastic
problems with a finite number of states. We will restrict ourselves to the
case where the base heuristic is a policy π = {µ0, . . . , µN−1} (i.e., is sequen-
tially consistent, in the context of deterministic problems). It is possible to
consider more general rollout algorithms that involve base heuristics with
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a sequential improvement property, but we will not pursue this idea, as it
does not seem to have been applied so far in interesting stochastic contexts.

We first note that the cost improvement property that we showed for
deterministic problems under the sequential consistency condition carries
through for stochastic problems. In particular, let us denote by Jk,π(xk) the
cost corresponding to starting the base policy at state xk, and by Jk,π̃(xk)
the cost corresponding to starting the rollout algorithm at state xk. We
claim that

Jk,π̃(xk) ≤ Jk,π(xk), for all xk and k.

We prove this inequality by induction similar to the deterministic
case. Clearly it holds for k = N , since JN,π̃ = JN,π = gN . Assuming that
it holds for index k + 1, we have for all xk,

Jk,π̃(xk) = E
{

gk
(

xk, µ̃k(xk), wk

)

+ Jk+1,π̃

(

fk
(

xk, µ̃k(xk), wk

)

)}

≤ E
{

gk
(

xk, µ̃k(xk), wk

)

+ Jk+1,π

(

fk(xk, µ̃k(xk), wk)
)

}

= min
uk∈Uk(xk)

E
{

gk(xk, uk, wk) + Jk+1,π

(

fk(xk, uk, wk)
)

}

≤ E
{

gk
(

xk, µk(xk), wk

)

+ Jk+1,π

(

fk(xk, uk, wk)
)

}

= Jk,π(xk),

where:

(a) The first equality is the DP equation for the rollout policy π̃.

(b) The first inequality holds by the induction hypothesis.

(c) The second equality holds by the definition of the rollout algorithm.

(d) The third equality is the DP equation for the policy π that corre-
sponds to the base heuristic.

The induction proof of the cost improvement property (2.27) is thus com-
plete.

Similar to deterministic problems, it has been observed empirically
that for stochastic problems the rollout policy not only does not deteriorate
the performance of the base policy, but also typically produces substantial
cost improvement; see the case studies referenced at the end of the chapter.

Simulation-Based Implementation of the Rollout Algorithm

A conceptually straightforward way to compute the rollout control at a
given state xk and time k is to consider each possible control uk ∈ Uk(xk)
and to generate a “large” number of simulated trajectories of the system
starting from (xk, uk). Thus a simulated trajectory has the form

xi+1 = fi
(

xi, µi(xi), wi

)

, i = k + 1, . . . , N − 1,

kalou
Highlight

kalou
Highlight
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where {µk+1, . . . , µN−1} is the tail portion of the base policy, the first
generated state is

xk+1 = fk(xk, uk, wk),

and the disturbance sequences {wk, . . . , wN−1} are independent random
samples. The costs of the trajectories corresponding to a pair (xk, uk) can
be viewed as samples of the Q-factor

Qk(xk, uk) = E
{

gk(xk, uk, wk) + Jk+1,π̃

(

fk(xk, uk, wk)
)

}

,

where Jk+1,π̃ is the cost-to-go function of the base policy, i.e., Jk+1,π̃(xk+1)
is the cost of using the base policy starting from xk+1. For problems with a
large number of stages, it is also common to truncate the rollout trajectories
and add a terminal cost function approximation as compensation for the
resulting error.

By Monte Carlo averaging of the costs of the sample trajectories plus
the terminal cost (if any), we obtain an approximation to the Q-factor
Qk(xk, uk) for each control uk ∈ Uk(xk), which we denote by Q̃k(xk, uk).
We then compute the (approximate) rollout control µ̃k(xk) with the mini-
mization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk). (2.31)

Example 2.4.2 (Backgammon)

The first impressive application of rollout was given for the ancient two-player
game of backgammon, in the paper by Tesauro and Galperin [TeG96]; see
Fig. 2.4.7. They implemented a rollout algorithm, which attained a level of
play that was better than all computer backgammon programs, and eventu-
ally better than the best humans. Tesauro had proposed earlier the use of
one-step and two-step lookahead with lookahead cost function approximation
provided by a neural network, resulting in a backgammon program called TD-
Gammon [Tes89a], [Tes89b], [Tes92], [Tes94], [Tes95], [Tes02]. TD-Gammon
was trained with the use of the TD(λ) algorithm that will be discussed in
Section 4.9, and was used as the base heuristic (for both players) to sim-
ulate game trajectories. The rollout algorithm also involved truncation of
long game trajectories, using a terminal cost function approximation based
on TD-Gammon. Game trajectories are of course random, since they involve
the use of dice at each player’s turn. Thus the scores of many trajectories
have to be generated and Monte Carlo averaged to assess the probability of
a win from a given position.

An important issue to consider here is that backgammon is a two-player
game and not an optimal control problem that involves a single decision
maker. While there is a DP theory for sequential zero-sum games, this theory
has not been covered in this book. Thus how are we to interpret rollout
algorithms in the context of two-player games? The answer is to treat the
two players unequally: one player uses the heuristic policy exclusively (TD-
Gammon in the present example). The other player takes the role of the
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Figure 2.4.7 Illustration of rollout for backgammon. At a given position and
roll of the dice, the set of all possible moves is generated, and the outcome
of the game for each move is evaluated by “rolling out” (simulating to the
end) many games using a suboptimal/heuristic backgammon player (the TD-
Gammon player was used for this purpose in [TeG96]), and by Monte-Carlo
averaging the scores. The move that results in the best average score is
selected for play.

optimizer, and tries to improve on the heuristic policy (TD-Gammon) by using
rollout. Thus “policy improvement” in the context of the present example
means that when playing against a TD-Gammon opponent, the rollout player
achieves a better score on the average than if he/she were to play with the
TD-Gammon strategy. In particular, the theory does not guarantee that
a rollout player that is trained using TD-Gammon for both players will do
better than TD-Gammon would against a non-TD-Gammon opponent. This
is a plausible hypothesis, albeit one that can only be tested empirically.

Most of the currently existing computer backgammon programs de-
scend from TD-Gammon. Rollout-based backgammon programs are the most
powerful in terms of performance, consistent with the principle that a roll-
out algorithm performs better than its base heuristic. However, they are too
time-consuming for real-time play, because of the extensive on-line simulation
requirement at each move (the situation in backgammon is exacerbated by its
high branching factor, i.e., for a given position, the number of possible succes-
sor positions is quite large, as compared for example with chess). They have
been used in a limited diagnostic way to assess the quality of neural network-
based programs (many articles and empirical works on computer backgammon
are posted on-line; see e.g., http://www.bkgm.com/articles/page07.html).

Monte Carlo Tree Search

In the rollout implementation just described, we implicitly assumed that
once we reach state xk, we generate the same large number of trajectories
starting from each pair (xk, uk), with uk ∈ U(xk), to the end of the horizon.
The drawback of this is threefold:

(a) The trajectories may be too long because the horizon length N is
large (or infinite, in an infinite horizon context).



Sec. 2.4 Rollout 47

(b) Some of the controls uk may be clearly inferior to others, and may
not be worth as much sampling effort.

(c) Some of the controls uk that appear to be promising, may be worth
exploring better through multistep lookahead.

This has motivated variants, generally referred to as Monte Carlo tree

search (MCTS for short), which aim to trade off computational economy
with a hopefully small risk of degradation in performance. Variants of
this type involve, among others, early discarding of controls deemed to be
inferior based on the results of preliminary calculations, and simulation
that is limited in scope (either because of a reduced number of simulation
samples, or because of a shortened horizon of simulation, or both).

In particular, a simple remedy for (a) above is to use rollout trajec-
tories of reasonably limited length, with some terminal cost approximation
at the end (in an extreme case, the rollout may be skipped altogether,
i.e., rollout trajectories have zero length). The terminal cost function may
be very simple (such as zero) or may be obtained through some auxil-
iary calculation. In fact the base policy used for rollout may be the one
that provides the terminal cost function approximation, as noted for the
rollout-based backgammon algorithm of Example 2.4.2.

A simple but less straightforward remedy for (b) is to use some heuris-
tic or statistical test to discard some of the controls uk, as soon as this is
suggested by the early results of simulation. Similarly, to implement (c)
one may use some heuristic to increase the length of lookahead selectively
for some of the controls uk. This is similar to the selective depth lookahead
procedure for deterministic rollout that we illustrated in Fig. 2.4.6.

The MCTS approach can be based on sophisticated procedures for
implementing and combining the ideas just described. The implementation
is often adapted to the problem at hand, but the general idea is to use
the interim results of the computation and statistical tests to focus the
simulation effort along the most promising directions. Thus to implement
MCTS one needs to maintain a lookahead tree, which is expanded as the
relevant Q-factors are evaluated by simulation, and which balances the

competing desires of exploitation and exploration (generate and evaluate
controls that seem most promising in terms of performance versus assessing
the potential of inadequately explored controls). Ideas that were developed
in the context of multiarmed bandit problems have played an important
role in the construction of this type of MCTS procedures (see the end-of-
chapter references).

Example 2.4.3 (Statistical Tests for Adaptive Sampling with
a One-Step Lookahead)

Let us consider a typical one-step lookahead selection strategy that is based
on adaptive sampling. We are at a state xk and we try to find a control ũk
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Figure 2.4.8 Illustration of one-step lookahead MCTS at a state xk. The
Q-factor sampled next corresponds to the control i with minimum sum of
exploitation index (here taken to be the running average Qi,n) and exploration
index (Ri,n, possibly given by the UCB rule).

that minimizes an approximate Q-factor

Q̃k(xk, uk) = E

{

gk(xk, u, wk) + J̃k+1

(

fk(xk, u, wk)
)

}

over uk ∈ Uk(xk), by averaging samples of Q̃k(xk, uk). We assume that
Uk(xk) contains m elements, which for simplicity are denoted 1, . . . ,m. At
the ℓth sampling period, knowing the outcomes of the preceding sampling
periods, we select one of the m controls, say iℓ, and we draw a sample of
Q̃k(xk, iℓ), whose value is denoted by Siℓ

. Thus after the nth sampling period
we have an estimate Qi,n of the Q-factor of each control i = 1, . . . ,m that
has been sampled at least once, given by

Qi,n =

∑n

ℓ=1
δ(iℓ = i)Siℓ

∑n

ℓ=1
δ(iℓ = i)

where

δ(iℓ = i) =
{

1 if iℓ = i,
0 if iℓ 6= i.

Thus Qi,n is the empirical mean of the Q-factor of control i (total sample
value divided by total number of samples), assuming that i has been sampled
at least once.

After n samples have been collected, with each control sampled at least
once, we may declare the control i that minimizes Qi,n as the “best” one,
i.e., the one that truly minimizes the Q-factor Qk(xk, i). However, there is
a positive probability that there is an error: the selected control may not
minimize the true Q-factor. In adaptive sampling, roughly speaking, we want
to design the sample selection strategy and the criterion to stop the sampling,
in a way that keeps the probability of error small (by allocating some sampling
effort to all controls), and the number of samples limited (by not wasting
samples on controls i that appear inferior based on their empirical mean
Qi,n).
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Intuitively, a good sampling policy will balance at time n the desires of
exploitation and exploration (i.e., sample controls that seem most promising,
in the sense that they have a small running average Qi,n, versus assessing the
potential of inadequately explored controls, those i that have been sampled
a small number of times). Thus it makes sense to sample next the control i
that minimizes the sum

Ti,n +Ri,n

of two indexes: an exploitation index Ti,n and an exploration index Ri,n.
Usually the exploitation index is chosen to be the empirical mean Qi,n. The
exploration index is based an a confidence interval formula and depends on
the sample count

si =

n
∑

ℓ=1

δ(iℓ = i)

of control i. A frequently suggested choice is the UCB rule (upper confidence
bound), which sets

Ri,n = −c

√

log n

si
,

where c is a positive constant that is selected empirically (some analysis sug-
gests values near c =

√
2, assuming that Qi,n is normalized to take values in

the range [−1, 0]). The UCB rule, first proposed in the paper [ACF02], has
been extensively discussed in the literature both for one-step and for multistep
lookahead [where it is called UCT (UCB applied to trees; see [KoS16])]. Its
justification is based on probabilistic analyses that relate to the multiarmed
bandit problem, and is beyond our scope.

Sampling policies for MCTS with multistep lookahead are based on
similar sampling ideas to the case of one-step lookahead. A simulated
trajectory is run from a node i of the lookahead tree that minimizes the
sum Ti,n + Ri,n of an exploitation index and an exploration index. There
are many schemes of this type, but the details are beyond our scope (see
the end-of-chapter references).

A major success has been the use of MCTS in two-player game con-
texts, such as the AlphaGo computer program (Silver et al. [SHM16]),
which performs better than the best humans in the game of Go. This pro-
gram integrates several of the techniques discussed in this chapter, and in
Chapters 3 and 4, including MCTS and rollout using a base policy that is
trained off-line using a deep neural network. We will discuss neural net-
work training techniques in Chapter 3. The AlphaZero program, which
has performed spectacularly well against humans and other programs in
the games of Go and chess (Silver et al. [SHS17]), bears some similarity
with AlphaGo, and critically relies on MCTS, but does not use rollout.
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Randomized Policy Improvement by MCTS

We have described rollout and MCTS as schemes for policy improvement:
start with a base policy, and compute an improved policy based on the
results of one-step lookahead or multistep lookahead followed by simulation
with the base policy. We have implicitly assumed that both the base policy
and the rollout policy are deterministic in the sense that they map each
state xk into a unique control µ̃k(xk) [cf. Eq. (2.31)]. In some contexts,
success has been achieved with randomized policies , which map a state xk

to a probability distribution over the set of controls Uk(xk), rather than
mapping onto a single control. In particular, the AlphaGo and AlphaZero
programs use MCTS to generate and use for training purposes randomized
policies, which specify at each board position the probabilities with which
the various moves are selected.

A randomized policy can be used as a base policy in exactly the
same way as a deterministic policy: for a given state xk, we just generate
sample trajectories and associated sample Q-factors, starting from each
leaf-state of the lookahead tree that is rooted at xk. We then average the
corresponding Q-factor samples. However, the rollout/improved policy, as
we have described it, is a deterministic policy, i.e., it applies at xk the
control µ̃k(xk) that is “best” according to the results of the rollout [cf. Eq.
(2.31)]. Still, however, if we wish to generate an improved policy that is
randomized, we can simply change the probabilities of different controls
in the direction of the deterministic rollout policy. This can be done by
increasing the probability of the “best” control µ̃k(xk) from its base policy
level, while decreasing the probabilities of the other controls.

The use of MCTS provides a related method to “improve” a random-
ized policy. In the process of adaptive simulation that is used in MCTS, we
generate frequency counts of the different controls, i.e., the proportion of
rollout trajectories associated each uk ∈ Uk(xk). We can then obtain the
rollout randomized policy by moving the probabilities of the base policy in
the direction suggested by the frequency counts, i.e., increase the proba-
bility of high-count controls and reduce the probability of the others. This
type of policy improvement is reminiscent of gradient-type methods, and
has been successful in a number of applications; see Section 4.11 for further
discussion, and the end-of-chapter references for such policy improvement
implementations in AlphaGo, AlphaZero, and other application contexts.

Variance Reduction in Rollout - Comparing Advantages

When using simulation, sampling is often organized to effect variance re-

duction. By this we mean that for a given problem, the collection and
use of samples is structured so that the variance of the simulation error is
made smaller, with the same amount of simulation effort. There are several
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methods of this type for which we refer to textbooks on simulation (see,
e.g., Ross [Ros12], Rubinstein and Kroese [RuK17]).

In this section we discuss a method to reduce the effects of the sim-
ulation error in the calculation of the Q-factors in the context of rollout.
The key idea is that the selection of the rollout control depends on the
values of the Q-factor differences

Q̃k(xk, uk)− Q̃k(xk, ûk)

for all pairs of controls (uk, ûk). These values must be computed accu-
rately, so that the controls uk and ûk can be accurately compared. On the
other hand, the simulation/approximation errors in the computation of the
individual Q-factors Q̃k(xk, uk) may be magnified through the preceding
differencing operation.

An alternative approach is possible in the case where the probabil-
ity distribution of each disturbance wk does not depend on xk and uk.
In this case, we may approximate by simulation the Q-factor difference
Q̃k(xk, uk)− Q̃k(xk, ûk) by sampling the difference

Ck(xk, uk,wk)− Ck(xk, ûk,wk),

where wk = (wk, wk+1, . . . , wN−1) and

Ck(xk, uk,wk) = gN (xN ) + gk(xk, uk, wk) +

N−1
∑

i=k+1

gi
(

xi, µi(xi), wi

)

,

where {µk+1, . . . , µN−1} is the tail portion of the base policy.
This approximation may be far more accurate than the one obtained

by differencing independent samples Ck(xk, uk,wk) and Ck(xk, ûk, ŵk). In-
deed, by introducing the zero mean sample errors

Dk(xk, uk,wk) = Ck(xk, uk,wk)− Q̃k(xk, uk),

it can be seen that the variance of the error in estimating Q̃k(xk, uk) −
Q̃k(xk, ûk) with the former method will be smaller than with the latter
method if and only if

Ewk , ŵk

{

∣

∣Dk(xk, uk,wk)−Dk(xk, ûk, ŵk)
∣

∣

2
}

> Ewk

{

∣

∣Dk(xk, uk,wk)−Dk(xk, ûk,wk)
∣

∣

2
}

,

or equivalently

E
{

Dk(xk, uk,wk)Dk(xk, ûk,wk)
}

> 0; (2.32)
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i.e., if and only if the correlation between the errors Dk(xk, uk,wk) and
Dk(xk, ûk,wk) is positive. A little thought should convince the reader
that this property is likely to hold in many types of problems. Roughly
speaking, the relation (2.32) holds if changes in the value of uk (at the first
stage) have little effect on the value of the error Dk(xk, uk,wk) relative
to the effect induced by the randomness of wk. To see this, suppose that
there exists a scalar γ < 1 such that, for all xk, uk, and ûk, there holds

E
{

∣

∣Dk(xk, uk,wk)−Dk(xk, ûk,wk)
∣

∣

2
}

≤ γE
{

∣

∣Dk(xk, uk,wk)
∣

∣

2
}

.

(2.33)
Then we have

Dk(xk, uk,wk)Dk(xk, ûk,wk)

=
∣

∣Dk(xk, uk,wk)
∣

∣

2

+Dk(xk, uk,wk)
(

Dk(xk, ûk,wk)−Dk(xk, uk,wk)
)

≥
∣

∣Dk(xk, uk,wk)
∣

∣

2

−
∣

∣Dk(xk, uk,wk)
∣

∣ ·
∣

∣Dk(xk, ûk,wk)−Dk(xk, uk,wk)
∣

∣,

from which we obtain

E
{

Dk(xk,uk,wk)Dk(xk, ûk,wk)
}

≥ E
{

∣

∣Dk(xk, uk,wk)
∣

∣

2
}

− E
{

∣

∣Dk(xk, uk,wk)
∣

∣ ·
∣

∣Dk(xk, ûk,wk)−Dk(xk, uk,wk)
∣

∣

}

≥ E
{

∣

∣Dk(xk, uk,wk)
∣

∣

2
}

−
1

2
E
{

∣

∣Dk(xk, uk,wk)
∣

∣

2
}

−
1

2
E
{

∣

∣Dk(xk, ûk,wk)−Dk(xk, uk,wk)
∣

∣

2
}

≥
1− γ

2
E
{

∣

∣Dk(xk, uk,wk)
∣

∣

2
}

,

where for the first inequality we use the generic relation ab ≥ a2−|a| · |b−a|
for two scalars a and b, for the second inequality we use the generic relation
|a| · |b| ≥ − 1

2 (a
2 + b2) for two scalars a and b, and for the third inequality

we use Eq. (2.33).
Thus, under the assumption (2.33) and the assumption

E
{

∣

∣Dk(xk, uk,wk)
∣

∣

2
}

> 0,

the condition (2.32) holds and guarantees that by averaging cost difference
samples rather than differencing (independently obtained) averages of cost
samples, the simulation error variance decreases.
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Let us finally note the potential benefit of using Q-factor differences
in contexts other than rollout. In particular when approximating Q-factors
Qk(xk, uk) using parametric architectures (Section 3.4 in the next chapter),
it may be important to approximate and compare instead the differences

Ak(xk, uk) = Qk(xk, uk)− min
uk∈Uk(xk)

Qk(xk, uk).

The function Ak(xk, uk) is also known as the advantage of the pair (xk, uk),
and can serve just as well as Qk(xk, uk) for the purpose of comparing
controls, but may work better Qk(xk, uk) in the presence of approximation
errors. This question is discussed further in Section 3.4.

2.5 ON-LINE ROLLOUT FOR DETERMINISTIC INFINITE-
SPACES PROBLEMS - OPTIMIZATION HEURISTICS

We have considered so far discrete-spaces applications of rollout, where
the relevant Q-factors at each state xk are evaluated by simulation and
compared by exhaustive comparison. To implement this approach in a
continuous-spaces setting, the control constraint set must first be discretized,
which is often inconvenient and ineffective. In this section we will discuss
an alternative approach for deterministic problems that can deal with an
infinite number of controls and Q-factors at xk without discretization. The
idea is to use a base heuristic that involves a continuous optimization, and
to rely on a nonlinear programming method to solve the corresponding
lookahead optimization problem.

To get a sense of the basic idea, consider the one-step lookahead
rollout minimization

µ̃k(xk) ∈ arg min
uk∈Uk(xk)

Q̃k(xk, uk), (2.34)

where Q̃k(xk, uk) is the approximate Q-factor

Q̃k(xk, uk) = gk(xk, uk) +Hk+1

(

fk(xk, uk)
)

, (2.35)

with Hk+1(xk+1) being the cost of the base heuristic starting from state
xk+1 [cf. Eq. (2.25)]. Suppose that we have a differentiable closed-form
expression for Hk+1, and the functions gk and fk are known and are differ-
entiable with respect to uk. Then the Q-factor Q̃k(xk, uk) of Eq. (2.35) is
also differentiable with respect to uk, and its minimization (2.34) may be
addressed with one of the many gradient-based methods that are available
for differentiable unconstrained and constrained optimization.

The preceding approach requires that the heuristic cost Hk+1(xk+1)
be available in closed form, which is highly restrictive, but this difficulty can
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k xk+1

-Factors Current State x
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Figure 2.5.1 Schematic illustration of rollout for a deterministic problem with
infinite control spaces. The base heuristic is an (ℓ − 1)-stage deterministic opti-
mal control problem, which together with the kth stage minimization over uk ∈
Uk(xk), seamlessly forms an ℓ-stage continuous spaces optimal control/nonlinear
programming problem that starts at state xk.

be circumvented by using a base heuristic that is itself based on multistep

optimization. In particular, suppose that Hk+1(xk+1) is the optimal cost
of some (ℓ− 1)-stage deterministic optimal control problem that is related
to the original problem. Then the rollout algorithm (2.34)-(2.35) can be
implemented by solving the ℓ-stage deterministic optimal control problem,

which seamlessly concatenates the first stage minimization over uk [cf. Eq.

(2.34)], with the (ℓ − 1)-stage minimization of the base heuristic; see Fig.
2.5.1. This ℓ-stage problem may be solvable on-line by standard continuous
spaces nonlinear programming or optimal control methods. An important
example of methods of this type arises in control system design and is
discussed next.

2.5.1 Model Predictive Control

We will consider a classical control problem, where the objective is to keep
the state of a deterministic system close to the origin of the state space
or close to a given trajectory. This problem has a long history, and has
been addressed by a variety of sophisticated methods. Starting in the late
50s and early 60s, approaches based on state variable system representa-
tions and optimal control became popular. The linear-quadratic approach,
which we have illustrated by example in Section 1.3.7, was developed during
this period, and is still used extensively. Unfortunately, however, linear-
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Figure 2.5.2 Illustration of constrained motion of a robot from point A to point
B. There are state (position/velocity) constraints, and control (acceleration) con-
straints. When there are mobile obstacles, the state constraints may change
unpredictably, necessitating on-line replanning.

quadratic models are often not satisfactory. There are two main reasons
for this:

(a) The system may be nonlinear, and it may be inappropriate to use for
control purposes a model that is linearized around the desired point
or trajectory.

(b) There may be control and/or state constraints, which are not handled
adequately through quadratic penalty terms in the cost function. For
example, the motion of a robot may be constrained by the presence
of obstacles and hardware limitations (see Fig. 2.5.2). The solution
obtained from a linear-quadratic model may not be suitable for such
a problem, because quadratic penalties treat constraints “softly” and
may produce trajectories that violate the constraints.

These inadequacies of the linear-quadratic model have motivated a
methodology, called model predictive control (MPC for short), which com-
bines elements of several ideas that we have discussed so far: multistep
lookahead, rollout with infinite control spaces, and certainty equivalence.
Aside from resolving the difficulty with infinitely many Q-factors at xk,
while dealing adequately with state and control constraints, MPC is well-
suited for on-line replanning, like all rollout methods.

We will focus primarily on the most common form of MPC, where
the system is either deterministic, or else it is stochastic, but it is replaced
with a deterministic version by using typical values in place of the uncertain
quantities, similar to the certainty equivalent control approach. Moreover
we will consider the case where the objective is to keep the state close to
the origin; this is called the regulation problem. Similar approaches have
been developed for the problem of maintaining the state of a nonstationary
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system along a given state trajectory, and also, with appropriate modifica-
tions, to control problems involving disturbances.

In particular, we will consider a deterministic system

xk+1 = fk(xk, uk),

whose state xk and control uk are vectors that consist of a finite number
of scalar components. The cost per stage is assumed nonnegative

gk(xk, uk) ≥ 0, for all (xk, uk),

(e.g., a quadratic cost). We impose state and control constraints

xk ∈ Xk, uk ∈ Uk(xk), k = 0, 1, . . . .

We also assume that the system can be kept at the origin at zero cost, i.e.,

fk(0, uk) = 0, gk(0, uk) = 0 for some control uk ∈ Uk(0). (2.36)

For a given initial state x0 ∈ X0, we want to obtain a sequence {u0, u1, . . .}
such that the states and controls of the system satisfy the state and control
constraints with small total cost.

The MPC Algorithm

Let us describe the MPC algorithm for the deterministic problem just de-
scribed. At the current state xk:

(a) MPC solves an ℓ-step lookahead version of the problem, which re-
quires that xk+ℓ = 0.

(b) If {ũk, . . . , ũk+ℓ−1} is the optimal control sequence of this problem,
MPC applies ũk and discards the other controls ũk+1, . . . , ũk+ℓ−1.

(c) At the next stage, MPC repeats this process, once the next state xk+1

is revealed.

In particular, at the typical stage k and state xk ∈ Xk, the MPC
algorithm solves an ℓ-stage optimal control problem involving the same
cost function and the requirement xk+ℓ = 0. This is the problem

min
ui, i=k,...,k+ℓ−1

k+ℓ−1
∑

i=k

gi(xi, ui), (2.37)

subject to the system equation constraints

xi+1 = fi(xi, ui), i = k, . . . , k + ℓ− 1,
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the state and control constraints

xi ∈ Xi, ui ∈ Ui(xi), i = k, . . . , k + ℓ− 1,

and the terminal state constraint

xk+ℓ = 0.

Let {ũk, ũk+1, . . . , ũk+ℓ−1} be a corresponding optimal control sequence.
The MPC algorithm applies at stage k the first component ũk of this se-
quence, and discards the remaining components; see Fig. 2.5.3.†

To guarantee that there is an integer ℓ such that the preceding MPC
algorithm is feasible, we assume the following.

Constrained Controllability Condition

There exists an integer ℓ > 1 such that for every initial state xk ∈
Xk, we can find a sequence of controls uk, . . . , uk+ℓ−1 that drive to
0 the state xk+ℓ of the system at time k + ℓ, while satisfying all the
intermediate state and control constraints

uk ∈ Uk(xk), xk+1 ∈ Xk+1, . . . ,

xk+ℓ−1 ∈ Xk+ℓ−1, uk+ℓ−1 ∈ Uk+ℓ−1(xk+ℓ−1).

Finding an integer ℓ that satisfies the constrained controllability con-
dition is an important issue to which we will return later.† Generally the
constrained controllability condition tends to be satisfied if the control con-
straints are not too stringent, and the state constraints do not allow a large
deviation from the origin. In this case not only we can implement MPC,
but also the resulting closed-loop system will tend to be stable; see the
following discussion of stability, and Example 2.5.2.

Note that the actual state trajectory produced by MPC may never
reach the origin (see the subsequent Example 2.5.1). This is because we use
only the first control ũk of the kth stage sequence {ũk, ũk+1, . . . , ũk+ℓ−1},

† In the case, where we want the system to follow a given nominal trajectory,

rather than stay close to the origin, we should modify the MPC optimization

to impose as a terminal constraint that the state xk+ℓ should be a point on

the nominal trajectory (instead of xk+ℓ = 0). We should also change the cost

function to reflect a penalty for deviating from the given trajectory.

† In the case where we want the system to follow a given nominal trajec-

tory, rather than stay close to the origin, we may want to use a time-dependent

lookahead length ℓk, to exercise tighter control over critical parts of the nominal

trajectory.
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Figure 2.5.3 Illustration of the problem solved by MPC at state xk. We minimize
the cost function over the next ℓ stages while imposing the requirement that
xk+ℓ = 0. We then apply the first control of the optimizing sequence.

which aims at xk+ℓ = 0. At the next stage k + 1 the control generated by
MPC may be different than ũk+1, because it will aim one step further to
the terminal condition xk+ℓ+1 = 0.

To make the connection of MPC with rollout, we note that the one-

step lookahead function J̃ implicitly used by MPC [cf. Eq. (2.37)] is the

cost-to-go function of a certain base heuristic. This is the heuristic that
drives to 0 the state after ℓ−1 stages (not ℓ stages) and keeps the state at 0
thereafter, while observing the state and control constraints, and minimiz-
ing the associated (ℓ− 1) stages cost, in the spirit of our earlier discussion;
cf. Fig. 2.5.1.

Sequential Improvement Property and Stability Analysis

It turns out that the base heuristic just described is sequentially improving,
so MPC has a cost improvement property, of the type discussed in Section
2.4.1. To see this, let us denote by Ĵk(xk) the optimal cost of the ℓ-stage
problem solved by MPC when at a state xk ∈ Xk. Let also Hk(xk) and
Hk+1(xk+1) be the optimal heuristic costs of the corresponding (ℓ − 1)-
stage optimization problems that start at xk and xk+1, and drive the states
xk+ℓ−1 and xk+ℓ, respectively, to 0. Thus, by the principle of optimality,
we have the DP equation

Ĵk(xk) = min
uk∈Uk(xk)

[

gk(xk, uk) +Hk+1

(

fk(xk.uk)
)]

.
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Since having one less stage at our disposal to drive the state to 0 cannot
decrease the optimal cost, we have

Ĵk(xk) ≤ Hk(xk).

By combining the preceding two relations, we obtain

min
uk∈Uk(xk)

[

gk(xk, uk) +Hk+1

(

fk(xk.uk)
)]

≤ Hk(xk), (2.38)

which is the sequential improvement condition for the base heuristic [cf.
Eq. (2.29)].†

Often the primary objective in MPC, aside from fulfilling the state
and control constraints, is to obtain a stable closed-loop system, i.e., a
system that naturally tends to stay close to the origin. This is typically
expressed adequately by the requirement of a finite cost over an infinite
number of stages:

∞
∑

k=0

gk(xk, uk) < ∞, (2.39)

where {x0, u0, x1, u1, . . .} is the state and control sequence generated by
MPC.

We will now show that the stability condition (2.39) is satisfied by
the MPC algorithm. Indeed, from the sequential improvement condition
(2.38), we have

gk(xk, uk) +Hk+1(xk+1) ≤ Hk(xk), k = 0, 1, . . . . (2.40)

Adding this relation for all k in a range [0,K], where K = 0, 1, . . ., we
obtain

HK+1(xK+1) +
K
∑

k=0

gk(xk, uk) ≤ H0(x0).

Since HK+1(xK+1) ≥ 0, it follows that

K
∑

k=0

gk(xk, uk) ≤ H0(x0), K = 0, 1, . . . , (2.41)

and taking the limit as K → ∞,

∞
∑

k=0

gk(xk, uk) ≤ H0(x0) < ∞,

[H0(x0) is finite because the transfer from x0 to xℓ = 0 is feasible by the
constrained controllability condition]. We have thus verified the stability
condition (2.39).

† Note that the base heuristic is not sequentially consistent, as it fails to

satisfy the definition given in Section 2.4.1 (see the subsequent Example 2.5.1).
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Example 2.5.1

Consider a scalar linear system and a quadratic cost

xk+1 = xk + uk, gk(xk, uk) = x
2
k + u

2
k,

where the state and control constraints are

xk ∈ Xk =
{

x | |x| ≤ 1.5
}

, uk ∈ Uk(xk) =
{

u | |u| ≤ 1
}

.

We apply the MPC algorithm with ℓ = 2. For this value of ℓ, the constrained
controllability assumption is satisfied, since the 2-step sequence of controls

u0 = −sgn(x0), u1 = −x1 = −x0 + sgn(x0)

drives the state x2 to 0, for any x0 with |x0| ≤ 1.5.
At state xk ∈ Xk, MPC minimizes the two-stage cost

x
2
k + u

2
k + (xk + uk)

2 + u
2
k+1,

subject to the control constraints

|uk| ≤ 1, |uk+1| ≤ 1,

and the state constraints

|xk+1| ≤ 1.5, xk+2 = xk + uk + uk+1 = 0.

This is a quadratic programming problem, which can be solved with available
software, and in this case analytically, because of its simplicity. In particular,
it can be verified that the minimization yields

ũk = −
2

3
xk, ũk+1 = −(xk + ũk).

Thus the MPC algorithm selects ũk = − 2
3
xk, which results in the closed-loop

system

xk+1 =
1

3
xk, k = 0, 1, . . . .

Note that while this closed-loop system is stable, its state is never driven
to 0 if started from x0 6= 0. Moreover, it is easily verified that the base
heuristic is not sequentially consistent. For example, starting from xk = 1,
the base heuristic generates the sequence

{

xk = 1, uk = −
2

3
, xk+1 =

1

3
, uk+1 = −

1

3
, xk+2 = 0, uk+2 = 0, . . .

}

,

while starting from the next state xk+1 = 1
3
it generates the sequence

{

xk+1 =
1

3
, uk+1 = −

2

9
, xk+2 =

1

9
, uk+2 = −

1

9
, xk+3 = 0, uk+3 = 0, . . .

}

,
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so the sequential consistency condition of Section 2.4.1 is violated.

Regarding the choice of the horizon length ℓ for the MPC calcula-
tions, note that if the constrained controllability assumption is satisfied for
some value of ℓ, it is also satisfied for all larger values of ℓ. This argues
for a large value of ℓ. On the other hand, the optimal control problem
solved at each stage by MPC becomes larger and hence more difficult as ℓ
increases. Thus, the horizon length is usually chosen on the basis of some
experimentation: first ensure that ℓ is large enough for the constrained
controllability assumption to hold, and then by further experimentation to
ensure overall satisfactory performance.

2.5.2 Target Tubes and the Constrained Controllability
Condition

We now return to the constrained controllability condition, which asserts
that the state constraint sets Xk are such that starting from anywhere
within it, it is possible to drive to 0 the state of the system within some
number of steps ℓ, while staying within Xm at each intermediate step m =
k + 1, . . . ,m = k + ℓ − 1. Unfortunately, this assumption masks some
major complications. In particular, the control constraint set may not
be sufficiently rich to compensate for natural instability tendencies of the
system. As a result it may be impossible to keep the state within Xk over
a sufficiently long period of time, something that may be viewed as a form
of instability. Here is an example.

Example 2.5.2

Consider the scalar linear system

xk+1 = 2xk + uk,

which is unstable, and the control constraint

|uk| ≤ 1.

Then if 0 ≤ x0 < 1, it can be seen that by using the control u0 = −1, the
next state satisfies,

x1 = 2x0 − 1 < x0,

and is closer to 0 than the preceding state x0. Similarly, using controls uk =
−1, every subsequent state xk+1 will get closer to 0 that xk. Eventually, after
a sufficient number of steps k̄, with controls uk = −1 for k < k̄, the state xk̄

will satisfy

0 ≤ xk̄ ≤
1

2
.

Once this happens, the feasible control uk̄ = −2xk̄ will drive the state xk̄+1

to 0.
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Figure 2.5.4 Illustration of state trajectories under MPC for Example 2.5.2. If
the initial state lies within the set (−1, 1) the constrained controllability condition
is satisfied for sufficiently large ℓ, and the MPC algorithm yields a stable controller.
If the initial state lies outside this set, MPC cannot be implemented because
the constrained controllability condition fails to holds. Moreover, the system is
unstable starting from such an initial state. In this example, the largest reachable

tube is {X,X, . . .} with X =
{

x | |x| ≤ 1
}

.

Similarly, when −1 < x0 ≤ 0, by applying control uk = 1 for a suffi-
ciently large number of steps k̄, the state xk̄ will be driven into the region
[−1/2, 0], and then the feasible control uk̄ = −2xk̄ will drive the state xk̄+1

to 0.
Suppose now that the control constraint is |uk| ≤ 1 and the state con-

straint is of the form Xk = [−β, β] for all k, and let us explore what happens
for different values of β. The preceding discussion shows that if 0 < β < 1 the
constrained controllability assumption is satisfied, and for every state initial
state x0 ∈ X0 the state can be kept within Xk and can be driven to 0 in a
finite number ℓ of steps. The number ℓ depends on β, and in particular if
0 < β < 1/2, ℓ can be taken equal to 1.

On the other hand, if β ≥ 1, it is impossible to drive the state to 0 from
every initial state x0 ∈ [1, β] without violating the constraint |uk| ≤ 1, so the
constrained controllability assumption is violated. In fact if the initial state
satisfies |x0| > 1, the state trajectory diverges in the sense that |xk| → ∞

for any control sequence that satisfies the constraint |uk| ≤ 1; see Fig. 2.5.4.
Thus if β ≥ 1, either a larger control constraint set or an initial condition
that is close to 0, or both, are needed to satisfy the constrained controllability
condition and to improve the stability properties of the closed-loop system.

The critical construction in the preceding example is to identify sets
of states Xk ⊂ Xk such that starting from within Xk we are guaranteed
to stay within the “tube” {Xk+1, Xk+2, . . . , XN} for all subsequent times
with appropriate choices of control. Tubes of this type can serve as state
constraints in MPC. Moreover, when the sets Xk are bounded, a guarantee
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that the state can stay within the tube amounts to a form of closed-loop

stability guarantee. In the remainder if this section, we will address the
issue of how such tubes can be constructed.

Formally, a tube {X0, X1, . . . , XN} is just a sequence of subsets with
Xk ⊂ Xk for all k = 0, . . . , N . The tube is called reachable if it has the
property that for every k and xk ∈ Xk there exists a uk ∈ Uk(xk) such
that fk(xk, uk) ∈ Xk+1. A reachable tube was also called an effective

target tube in [Ber71], and for simplicity it will be called a target tube in
this section; the latter name is widely used in the current literature.† If
the original tube of state constraints {X0, X1, . . . , XN} is not reachable, the
constrained controllability condition cannot be satisfied, since then there
will be states outside the tube starting from which we can never reenter
the tube. In this case, it is necessary to compute a reachable tube to use
as a set of state constraints in place of the original tube {X0, X1, . . . , XN}.
Thus obtaining a reachable tube is a prerequisite towards satisfying the
constrained controllability assumption, and serves as the first step in the
analysis and design of MPC schemes with state constraints.

Given an N -stage deterministic problem with state constraints xk ∈
Xk, k = 0, . . . , N , we can obtain a reachable tube {X0, X1, . . . , XN} by a
recursive algorithm that starts with

XN = XN ,

and generates Xk, k = 0, . . . , N − 1, going backwards,

Xk =
{

xk ∈ Xk | for some uk ∈ Uk(xk) we have fk(xk, uk) ∈ Xk+1

}

.

Generally, it is difficult to compute the sets Xk of the reachable tube, but
algorithms that produce inner approximations have been constructed. The
author’s thesis [Ber71] and subsequent papers [BeR71], [Ber72], [BeR73],
[Ber07], gave inner ellipsoidal approximations for both finite and infinite
horizon problems with perfect and partial state information, which involve
linear systems and ellipsoidal constraints. Other authors have developed
polyhedral approximations; see the textbook by Borelli, Bemporad, and
Morari [BBM17].

† The concept of target tubes and reachability in discrete-time systems was

introduced in the author’s 1971 Ph.D. thesis ([Ber71], available on-line) and asso-

ciated papers [BeR71], [Ber72], [BeR73], where various methods for constructing

target tubes were given, for both deterministic and minimax/game problems,

including easily characterized ellipsoids for linear systems. Reachability can be

defined for finite horizon as well as infinite horizon problems. Reachability con-

cepts were studied by several authors much later, particularly in the context of

MPC, and have been generalized to continuous-time systems (see the end-of-

chapter references).
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Example 2.5.2 (continued)

Here if the state constraints are

Xk =
{

xk | |xk| ≤ 1
}

, k = 0, 1, . . . , N, (2.42)

the tube {Xk | k = 0, . . . , N} is reachable for any N . However, this is not
true for the constraint sets

Xk =
{

xk | |xk| ≤ 2
}

, k = 0, 1, . . . , N.

For example for x0 = 2 the next state x1 = 2x0 + uk = 4 + uk will not
satisfy |x1| ≤ 2 for any of the feasible controls uk with |uk| ≤ 1. Thus it is
necessary to replace the tube of original constraints {Xk | k = 0, . . . , N} with
a reachable tube {Xk | k = 0, . . . , N}. It can be verified that the largest tube
that is reachable for any value of N is the one with

Xk =
{

xk | |xk| ≤ 1
}

, k = 0, 1, . . . , N.

Calculating a reachable tube is relatively easy for one-dimensional problems,
but becomes complicated for multidimensional problems, where approxima-
tions are required in general.

Finally, let us consider the case of the quadratic cost per stage

gk(xk, uk) = x
2
k + u

2
k,

and MPC implemented with ℓ = 2. As noted earlier, in order for the MPC
minimizations to be feasible for ℓ = 2, the initial condition must satisfy
|x0| ≤ 1. A calculation very similar to the one of Example 2.5.1 shows that
MPC applies at time k the control ũk = −(5/3)xk. The state of the closed-
loop system evolves according to

xk+1 =
1

3
xk,

and tends to 0 asymptotically.

Note that there is a subtle difference between reachability of the tube
{Xk | k = 0, . . . , N} and satisfying the constrained controllability condi-
tion. The latter implies the former, but the converse is not true, as the
preceding example illustrates. In particular, if Xk is given by Eq. (2.42),
the tube is reachable, but the constrained controllability assumption is not
satisfied because starting at the boundary of Xk, we cannot drive the state
to 0 in any number of steps, using controls uk with |uk| ≤ 1. By contrast,
if we remove from Xk the boundary points 1 and -1, the tube is still reach-
able while the constrained controllability condition is satisfied. Generally,
except for boundary effects of this type, tube reachability typically implies
the constrained controllability condition.
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2.5.3 Variants of Model Predictive Control

The MPC scheme that we have described is just the starting point for a
broad methodology with many variations, which often relate to the subop-
timal control methods that we have discussed so far in this chapter. For
example, in the problem solved by MPC at each stage, instead of the re-
quirement of driving the system state to 0 in ℓ steps, one may use a large
penalty for the state being nonzero after ℓ steps. Then, the preceding anal-
ysis goes through, as long as the terminal penalty is chosen so that the
sequential improvement condition (2.38) is satisfied.

In another variant, instead of aiming to drive the state to 0 after ℓ

steps, one aims to reach a sufficiently small neighborhood of the origin,
within which a stabilizing controller, designed by other methods, may be
used.

We finally mention variants of MPC methods, which combine rollout
and terminal cost function approximation, and which can deal with uncer-
tainty and system disturbances. A method of this type will be described in
Section 4.6.1 in the context of infinite horizon problems, but can be adapted
to finite horizon problems as well; see also the end-of-chapter references.

As an illustration, let us provide an example of a scheme that com-
bines MPC with certainty equivalent control ideas (cf. Section 2.3.2).

Example 2.5.3 (MPC for Stochastic Systems and Certainty
Equivalent Approximation)

Consider the stochastic system

xk+1 = fk(xk, uk, wk),

with the expected cost of a policy π = {µ0, . . . , µN−1} starting at x0 defined
by

Jπ(x0) = E

{

gN(xN) +

N−1
∑

k=0

g
(

xk, µk(xk), wk

)

}

;

cf. the framework of Section 1.2. We assume that for all k, there are state
and control constraints of the form

xk ∈ Xk, uk ∈ Uk(xk),

and that the stochastic disturbances wk take values within some known set
Wk.

An important characteristic of this problem is that a policy must main-
tain reachability of the tube {X0, X1, . . .}, even under worst-case disturbance
values. For this it is necessary that for each state xk ∈ Xk, the control uk is
chosen from within the subset Ũk(xk) given by

Ũk(xk) =
{

uk ∈ Uk(xk) | f(xk, uk, wk) ∈ Xk, for all wk ∈ Wk

}

.
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We assume that Ũk(xk) is nonempty for all xk ∈ Xk and is somehow avail-
able. This is not automatically satisfied; similar to the deterministic case
discussed earlier, the target tube {X0, X1, . . .} must be properly constructed
using reachability methods, the sets Uk(xk) must be sufficiently “rich” to
ensure that this is possible, and the sets Ũk(xk) must be computed.

We will now describe a rollout/MPC method that generalizes the one
given earlier for deterministic problems. It satisfies the state and control
constraints, and uses assumed certainty equivalence to define the base policy
over ℓ − 1 steps, where ℓ > 1 is some integer. In particular, at a given state
xk ∈ Xk, this method first fixes the disturbances wk+1, . . . , wk+ℓ−1 to some
typical values. It then applies the control ũk that minimizes over uk ∈ Ũk(xk)
the Q-factor

Q̃k(xk, uk) = E

{

g(xk, uk, wk) +Hk+1

(

f(xk, uk, wk)
)

}

, (2.43)

where Hk+1(xk+1) is the optimal cost of the deterministic transfer from xk+1

to 0 in ℓ−1 steps with controls ũm from the sets Ũm(xm), m = k+1, . . . , k+
ℓ−1, and with the disturbances fixed at their typical values. Here we require
a constrained controllability condition that guarantees that this transfer is
possible.

Note that the minimization over uk ∈ Ũk(xk) of the Q-factor (2.43)
can be implemented by optimizing over sequences {uk, uk+1, . . . , uk+ℓ−1} an
ℓ-stage deterministic optimal control problem. This is the problem that seam-
lessly concatenates the first stage minimization over uk [cf. Eq. (2.43)] with
the (ℓ − 1)-stage minimization of the base heuristic. Consistent with the
general rollout approach of this section, it may be possible to address this
problem with gradient-based optimization methods.

A drawback of the MPC method of the preceding example is that it
may not be well suited for on-line implementation because of the substantial
amount of computation required at each state xk. An alternative is to
introduce approximation in policy space on top of approximation in value

space; cf. Section 2.1.5. To this end, we can generate a large number of
sample states xs

k, s = 1, . . . , q, and calculate the corresponding controls us
k

using the Q-factor minimization

us
k ∈ arg min

uk∈Ũ(xs
k
)
E
{

g(xs
k, uk, wk) +Hk+1

(

f(xs
k, uk, wk)

)

}

,

[cf. Eq. (2.43)]. We can then use the pairs (xs
k, u

s
k), s = 1, . . . , q, and some

form of regression to train a Q-factor parametric architecture Q̃k(xk, uk, r̄k)
such as a neural network [cf. the approximation in policy space approach
of Eq. (2.6)]. Once this is done, the MPC controls can be generated on-line
using the minimization

µ̃k(xk) ∈ arg min
uk∈Ũk(xk)

Q̃k(xk, uk, r̄k);

cf. Eq. (2.7). This type of approximation in policy space approach may be
applied more broadly in MPC methods where the on-line computational
requirements are excessive.
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2.6 NOTES AND SOURCES

Approximation in value space has been considered in an ad hoc manner
since the early days of DP, motivated by the curse of dimensionality. The
idea was reframed and coupled with model-free simulation methods that
originated in the late 1980s in artificial intelligence. Since that time, ap-
proximation in value space has been one of the two pillars of approximate
DP/RL. The other pillar is approximation in policy space, which was dis-
cussed briefly in Section 2.1.4 and will be revisited in Section 4.11.

The problem approximation approach has a long history in optimal
control and operations research. The author’s paper [Ber07] describes a
few enforced decomposition schemes based on constraint relaxation. The
book [Ber17], Section 6.2.1, provides some additional examples from flexible
manufacturing and multiarmed bandit problems; see also the thesis by
Kimemia [Kim82], and the papers by Kimemia, Gershwin, and Bertsekas
[KGB82], and Whittle [Whi88].

The main idea of rollout algorithms, obtaining an improved policy
starting from some other suboptimal policy, has appeared in several DP
application contexts. The name “rollout” was coined by Tesauro in spe-
cific reference to rolling the dice in the game of backgammon [TeG96]. In
Tesauro’s proposal, a given backgammon position is evaluated by “rolling
out” many games starting from that position, using a simulator, and the re-
sults are averaged to provide a “score” for the position; see Example 2.4.2.
The use of the name “rollout” has gradually expanded beyond its original
context; for example the samples collected through simulated trajectories
are referred to as “rollouts” by some authors.

The application of rollout algorithms to discrete deterministic op-
timization problems, and the notions of sequential consistency, sequen-
tial improvement, fortified rollout, and the use of multiple heuristics (also
called “parallel rollout”) were given in the paper by Bertsekas, Tsitsiklis,
and Wu [BTW97], and also in the neuro-dynamic book by Bertsekas and
Tsitsiklis [BeT96]. Rollout algorithms for stochastic problems were further
formalized in the papers by Bertsekas [Ber97b], and Bertsekas and Cas-
tanon [BeC99]. A discussion of rollout algorithms as applied to network
optimization problems may be found in the author’s textbook [Ber98].

For more recent work on rollout algorithms and related methods, see
Secomandi [Sec00], [Sec01], [Sec03], Ferris and Voelker [FeV02], [FeV04],
McGovern, Moss, and Barto [MMB02], Savagaonkar, Givan, and Chong
[SGC02], Bertsimas and Popescu [BeP03], Guerriero and Mancini [GuM03],
Tu and Pattipati [TuP03], Wu, Chong, and Givan [WCG03], Chang, Gi-
van, and Chong [CGC04], Meloni, Pacciarelli, and Pranzo [MPP04], Yan,
Diaconis, Rusmevichientong, and Van Roy [YDR04], Besse and Chaib-draa
[BeC08], Sun et al. [SZL08], Bertazzi et al. [BBG13], Sun et al. [SLJ13],
Tesauro et al. [TGL13], Beyme and Leung [BeL14], Goodson, Thomas, and
Ohlmann [GTO15], Li and Womer [LiW15], Mastin and Jaillet [MaJ15],
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Huang, Jia, and Guan [HJG16], Simroth, Holfeld, and Brunsch [SHB15],
and Lan, Guan, and Wu [LGW16]. For a recent survey by the author,
see [Ber13b]. These works discuss a broad variety of applications and case
studies, and generally report positive computational experience.

The idea of rollout that uses limited lookahead, adaptive pruning of
the lookahead tree, and cost function approximation at the end of the looka-
head horizon was suggested by Tesauro and Galperin [TeG96] in the context
of backgammon. Related ideas appeared earlier in the paper by Abramson
[Abr90], in a game playing context. The paper and monograph by Chang,
Hu, Fu, and Marcus [CFH05], [CFH13] proposed and analyzed adaptive
sampling in connection with DP, including statistical tests to control the
sampling process. The name “Monte Carlo tree search” (Section 2.4.2) has
become popular, and in its current use, it encompasses a broad range of
methods that involve adaptive sampling, rollout, extensions to sequential
games, and the use and analysis of various statistical tests. We refer to the
papers by Coulom [Cou06], the survey by Browne et al. [BPW12], and the
discussion by Fu [Fu17]. The development of statistical tests for adaptive
sampling has been influenced by works on multiarmed bandit problems; see
the papers by Lai and Robbins [LaR85], Agrawal [Agr95], Burnetas and
Katehakis [BuK97], Meuleau and Bourgine [MeB99], Auer, Cesa-Bianchi,
and Fischer [ACF02], Peret and Garcia [PeG04], Kocsis and Szepesvari
[KoS06], and the monograph by Munos [Mun14]. The technique for vari-
ance reduction in the calculation of Q-factor differences (Section 2.4.2) was
given in the author’s paper [Ber97].

The MPC approach is popular in a variety of control system design
contexts, and particularly in chemical process control and robotics, where
meeting explicit control and state constraints is an important practical
issue. The connection of MPC with rollout algorithms was made in the
author’s review paper [Ber05a]. The stability analysis given here is based
on the work of Keerthi and Gilbert [KeG88]. For an early survey of the
field, which gives many of the early references, see Morari and Lee [MoL99],
and for a more recent survey see Mayne [May14]. For related textbooks,
see Maciejowski [Mac02], Camacho and Bordons [CaB04], Kouvaritakis and
Cannon [KoC15], and Borelli, Bemporad, and Morari [BBM17].

In our account of MPC, we have restricted ourselves to deterministic
problems possibly involving tight state constraints as well as control con-
straints. Problems with stochastic uncertainty and state constraints are
more challenging because of the difficulty of guaranteeing that the con-
straints are satisfied; see the survey by Mayne [May14] for a review of vari-
ous approaches that have been used in this context. The textbook [Ber17],
Section 6.4, describes MPC for problems with set membership uncertainty
and state constraints, using target tube/reachability concepts, which origi-
nated in the author’s PhD thesis and subsequent papers [Ber71], [Ber72a],
[BeR71a], [BeR71b], [BeR73]. Target tubes were used subsequently in MPC
and other contexts by several authors; see the surveys by Blanchini [Bla99]
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and Mayne [May14].
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Clearly, for the success of approximation in value space, it is important to
select a class of lookahead functions J̃k that is suitable for the problem at
hand. In the preceding chapter we discussed several methods for choos-
ing J̃k based mostly on problem approximation, including rollout. In this
chapter we discuss an alternative approach, whereby J̃k is chosen to be a
member of a parametric class of functions, including neural networks, with
the parameters “optimized” or “trained” by using some algorithm.

3.1 APPROXIMATION ARCHITECTURES

The starting point for the schemes of this chapter is a class of functions
J̃k(xk, rk) that for each k, depend on the current state xk and a vector
rk = (r1,k, . . . , rm,k) of m “tunable” scalar parameters, also called weights.
By adjusting the weights, one can change the “shape” of J̃k so that it is a
reasonably good approximation to the true optimal cost-to-go function J*

k .

The class of functions J̃k(xk, rk) is called an approximation architecture,
and the process of choosing the parameter vectors rk is commonly called
training or tuning the architecture.

The simplest training approach is to do some form of semi-exhaustive
or semi-random search in the space of parameter vectors and adopt the pa-
rameters that result in best performance of the associated one-step looka-
head controller (according to some criterion). More systematic approaches
are based on numerical optimization, such as for example a least squares fit
that aims to match the cost approximation produced by the architecture
to a “training set,” i.e., a large number of pairs of state and cost values
that are obtained through some form of sampling process. Throughout this
chapter we will focus on this latter approach.

3.1.1 Linear and Nonlinear Feature-Based Architectures

There is a large variety of approximation architectures, based for exam-
ple on polynomials, wavelets, discretization/interpolation schemes, neural
networks, and others. A particularly interesting type of cost approxima-
tion involves feature extraction, a process that maps the state xk into some
vector φk(xk), called the feature vector associated with xk at time k. The
vector φk(xk) consists of scalar components

φ1,k(xk), . . . , φm,k(xk),

called features . A feature-based cost approximation has the form

J̃k(xk, rk) = Ĵk
(

φk(xk), rk
)

,

where rk is a parameter vector and Ĵk is some function. Thus, the cost
approximation depends on the state xk through its feature vector φk(xk).
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i Feature Extraction Mapping Feature Vector
Approximator ( )Feature Extraction Mapping Feature VectorFeature Extraction Mapping Feature Vector

i) Linear Cost

i) Linear Cost
State xk k Feature Vector φk(xk) Approximator) Approximator r′

k
φk(xk)

Figure 3.1.1 The structure of a linear feature-based architecture. We use a
feature extraction mapping to generate an input φk(xk) to a linear mapping
defined by a weight vector rk.

Note that we are allowing for different features φk(xk) and different
parameter vectors rk for each stage k. This is necessary for nonstationary
problems (e.g., if the state space changes over time), and also to capture
the effect of proximity to the end of the horizon. On the other hand,
for stationary problems with a long or infinite horizon, where the state
space does not change with k, it is common to use the same features and
parameters for all stages. The subsequent discussion can easily be adapted
to infinite horizon methods, as we will discuss in Chapter 4.

Features are often handcrafted, based on whatever human intelli-
gence, insight, or experience is available, and are meant to capture the
most important characteristics of the current state. There are also sys-
tematic ways to construct features, including the use of neural networks,
which we will discuss shortly. In this section, we provide a brief and selec-
tive discussion of architectures, and we refer to the specialized literature
(e.g., Bertsekas and Tsitsiklis [BeT96], Bishop [Bis95], Haykin [Hay09],
Sutton and Barto [SuB18]), and the author’s [Ber12], Section 6.1.1, for
more detailed presentations.

One idea behind using features is that the optimal cost-to-go functions
J*
k may be complicated nonlinear mappings, so it is sensible to try to break

their complexity into smaller, less complex pieces. In particular, if the
features encode much of the nonlinearity of J*

k , we may be able to use a

relatively simple architecture Ĵk to approximate J*
k . For example, with a

well-chosen feature vector φk(xk), a good approximation to the cost-to-go
is often provided by linearly weighting the features, i.e.,

J̃k(xk, rk) = Ĵk
(

φk(xk), rk
)

=
m
∑

ℓ=1

rℓ,kφℓ,k(xk) = r′kφk(xk), (3.1)

where rℓ,k and φℓ,k(xk) are the ℓth components of rk and φk(xk), respec-
tively, and r′kφk(xk) denotes the inner product of rk and φk(xk), viewed
as column vectors of ℜm (a prime denoting transposition, so r′k is a row
vector; see Fig. 3.1.1).

This is called a linear feature-based architecture, and the scalar param-
eters rℓ,k are also called weights . Among other advantages, these architec-
tures admit simpler training algorithms that their nonlinear counterparts.
Mathematically, the approximating function J̃k(xk, rk) can be viewed as a
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J̃(x, r) =
∑

m

ℓ=1
rℓφℓ(x)

x S1 Sℓ ℓ Sm

. . . . . . ) x S

. . . r1

rℓ rm

1 rℓ

Figure 3.1.2 Illustration of a piecewise constant architecture. The state space
is partitioned into subsets S1, . . . , Sm, with each subset Sℓ defining the feature

φℓ(x) =

{

1 if x ∈ Sℓ,
0 if x /∈ Sℓ,

with its own weight rℓ.

member of the subspace spanned by the features φℓ,k(xk), ℓ = 1, . . . ,m,
which for this reason are also referred to basis functions . We provide a few
examples, where for simplicity we drop the index k.

Example 3.1.1 (Piecewise Constant Approximation)

Suppose that the state space is partitioned into subsets S1, . . . , Sm, so that
every state belongs to one and only one subset. Let the ℓth feature be defined
by membership to the set Sℓ, i.e.,

φℓ(x) =
{

1 if x ∈ Sℓ,
0 if x /∈ Sℓ.

Consider the architecture

J̃(x, r) =

m
∑

ℓ=1

rℓφℓ(x),

where r is the vector consists of the m scalar parameters r1, . . . , rm. It can
be seen that J̃(x, r) is the piecewise constant function that has value rℓ for
all states within the set Sℓ; see Fig. 3.1.2.
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The piecewise constant approximation is an example of a linear fea-
ture-based architecture that involves exclusively local features . These are
features that take a nonzero value only for a relatively small subset of
states. Thus a change of a single weight causes a change of the value of
J̃(x, r) for relatively few states x. At the opposite end we have linear
feature-based architectures that involve global features . These are features
that take nonzero values for a large number of states. The following is an
example.

Example 3.1.2 (Polynomial Approximation)

An important case of linear architecture is one that uses polynomial basis
functions. Suppose that the state consists of n components x1, . . . , xn, each
taking values within some range of integers. For example, in a queueing
system, xi may represent the number of customers in the ith queue, where
i = 1, . . . , n. Suppose that we want to use an approximating function that
is quadratic in the components xi. Then we can define a total of 1 + n+ n2

basis functions that depend on the state x = (x1, . . . , xn) via

φ0(x) = 1, φi(x) = x
i
, φij(x) = x

i
x
j
, i, j = 1, . . . , n.

A linear approximation architecture that uses these functions is given by

J̃(x, r) = r0 +

n
∑

i=1

rix
i +

n
∑

i=1

n
∑

j=i

rijx
i
x
j
,

where the parameter vector r has components r0, ri, and rij , with i = 1, . . . , n,
j = k, . . . , n. Indeed, any kind of approximating function that is polynomial
in the components x1, . . . , xn can be constructed similarly.

A more general polynomial approximation may be based on some other
known features of the state. For example, we may start with a feature vector

φ(x) =
(

φ1(x), . . . , φm(x)
)′

,

and transform it with a quadratic polynomial mapping. In this way we obtain
approximating functions of the form

J̃(x, r) = r0 +

m
∑

i=1

riφi(x) +

m
∑

i=1

m
∑

j=k

rijφi(x)φj(x),

where the parameter r has components r0, ri, and rij , with i, j = 1, . . . ,m.
This can also be viewed as a linear architecture that uses the basis functions

w0(x) = 1, wi(x) = φi(x), wij(x) = φi(x)φj(x), i, j = 1, . . . , m.

The preceding example architectures are generic in the sense that they
can be applied to many different types of problems. Other architectures
rely on problem-specific insight to construct features, which are then com-
bibed into a relatively simple architecture. The following are two examples
involving games.
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Example 3.1.3 (Tetris)

Let us revisit the game of tetris, which we discussed in Example 1.3.4. We can
model the problem of finding an optimal playing strategy as a finite horizon
problem with a very large horizon.

In Example 1.3.4 we viewed as state the pair of the board position
x and the shape of the current falling block y. We viewed as control, the
horizontal positioning and rotation applied to the falling block. However,
the DP algorithm can be executed over the space of x only, since y is an
uncontrollable state component. The optimal cost-to-go function is a vector
of huge dimension (there are 2200 board positions in a “standard” tetris board
of width 10 and height 20). However, it has been successfully approximated
in practice by low-dimensional linear architectures.

In particular, the following features have been proposed in [BeI96]: the
heights of the columns, the height differentials of adjacent columns, the wall
height (the maximum column height), the number of holes of the board, and
the constant 1 (the unit is often included as a feature in cost approximation
architectures, as it allows for a constant shift in the approximating function).
These features are readily recognized by tetris players as capturing impor-
tant aspects of the board position.† There are a total of 22 features for a
“standard” board with 10 columns. Of course the 2200 × 22 matrix of fea-
ture values cannot be stored in a computer, but for any board position, the
corresponding row of features can be easily generated, and this is sufficient
for implementation of the associated approximate DP algorithms. For recent
works involving approximate DP methods and the preceding 22 features, see
[Sch13], [GGS13], and [SGG15], which reference several other related papers.

Example 3.1.4 (Computer Chess)

Computer chess programs that involve feature-based architectures have been
available for many years, and are still used widely (they have been upstaged in
the mid-2010s by alternative types of chess programs that are based on neural
network-based techniques that will be discussed later). These programs are
based on approximate DP for minimax problems,‡ a feature-based paramet-
ric architecture, and multistep lookahead. For the most part, however, the
computer chess training methodology has been qualitatively different from
the parametric approximation methods that we consider in this book.

In particular, with few exceptions, the training of chess architectures
has been done with ad hoc hand-tuning techniques (as opposed to some form
of optimization). Moreover, the features have traditionally been hand-crafted

† The use of feature-based approximate DP methods for the game of tetris
was first suggested in the paper [TsV96], which introduced just two features (in
addition to the constant 1): the wall height and the number of holes of the
board. Most studies have used the set of features described here, but other sets
of features have also been used; see [ThS09] and the discussion in [GGS13].

‡ We have not discussed DP for minimax problems and two-player games,
but the ideas of approximation in value space apply to these contexts as well; see
[Ber17] for a discussion that is focused on computer chess.
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Feature Extraction Features: Material Balance, Mobility, Safety, etc
Feature Extraction Features: Material Balance,

Feature Extraction Features: Material Balance,

Feature Extraction Features: Material Balance,
Mobility, Safety, etc Weighting of Features Score Position Evaluator

Mobility, Safety, etc Weighting of Features Score Position Evaluator
Mobility, Safety, etc Weighting of Features Score Position Evaluator

Mobility, Safety, etc Weighting of Features Score Position Evaluator

Figure 3.1.3 A feature-based architecture for computer chess.

based on chess-specific knowledge (as opposed to automatically generated
through a neural network or some other method). Indeed, it has been argued
that the success of chess programs in outperforming the best humans, can
be more properly attributed to the brute-force calculating power of modern
computers, which provides long and accurate lookahead, than to the ability
of simulation-based algorithmic approaches, which can learn powerful playing
strategies that humans have difficulty conceiving or executing. This assess-
ment is changing rapidly following the impressive success of the AlphaZero
chess program (Silver et al. [SHS17]). Still, however, computer chess with
its use of long lookahead, provides an approximate DP paradigm that may
be better suited for some practical contexts where a lot of computational
power is available, but innovative and sophisticated algorithms are hard to
construct.

The fundamental paper on which all computer chess programs are based
was written by one of the most illustrious modern-day applied mathemati-
cians, C. Shannon [Sha50]. Shannon proposed limited lookahead and evalua-
tion of the end positions by means of a “scoring function” (in our terminology
this plays the role of a cost function approximation). This function may in-
volve, for example, the calculation of a numerical value for each of a set of
major features of a position that chess players easily recognize (such as mate-
rial balance, mobility, pawn structure, and other positional factors), together
with a method to combine these numerical values into a single score. Shannon
then went on to describe various strategies of exhaustive and selective search
over a multistep lookahead tree of moves.

We may view the scoring function as a hand-crafted feature-based ar-
chitecture for evaluating a chess position/state (cf. Fig. 3.1.3). In our earlier
notation, it is a function of the form

J̃(x, r) = Ĵ
(

φ(x), r
)

,

which maps a position x into a cost-to-go approximation Ĵ
(

φ(x), r
)

, a score
whose value depends on the feature vector φ(x) of the position and a param-
eter vector r.†

† Because of the nature of the chess game, J̃(x, r) does not depend critically
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8 Parametric Approximation Chap. 3

In most computer chess programs, the features are weighted linearly,
i.e., the architecture J̃(x, r) that is used for limited lookahead is linear [cf. Eq.
(3.1)]. In many cases, the weights are determined manually, by trial and error
based on experience. However, in some programs, the weights are determined
with supervised learning techniques that use examples of grandmaster play,
i.e., by adjustment to bring the play of the program as close as possible
to the play of chess grandmasters. This is a technique that applies more
broadly in artificial intelligence; see Tesauro [Tes89], [Tes01]. An example is
the Deepchess program by David, Netanyahu, and Wolf [DNW16], estimated
to perform at a strong grandmaster level, which uses a deep neural network
to extract features for use in another approximation architecture.

In a recent computer chess breakthrough, the entire idea of extracting
features of a position through human expertise was abandoned in favor of
feature discovery through self-play and the use of neural networks. The first
program of this type to attain supremacy not only over humans, but also
over the best computer programs that use human expertise-based features,
was AlphaZero (Silver et al. [SHS17]). This program is based on DP principles
of policy iteration, and Monte Carlo tree search. It will be discussed further
in Chapter 4.

The next example considers a feature extraction strategy that is par-
ticularly relevant to problems of partial state information.

Example 3.1.5 (Feature Extraction from Sufficient Statistics)

The concept of a sufficient statistic, which originated in inference methodolo-
gies, plays an important role in DP. As discussed in Section 1.3, it refers to
quantities that summarize all the essential content of the state xk for optimal
control selection at time k.

In particular, consider a partial information context where at time k we
have accumulated an information record

Ik = (z0, . . . , zk, u0, . . . , uk−1),

which consists of the past controls u0, . . . , uk−1 and state-related measure-
ments z0, . . . , zk obtained at the times 0, . . . , k, respectively. The control uk

is allowed to depend only on Ik, and the optimal policy is a sequence of the
form

{

µ∗

0(I0), . . . , µ
∗

N−1(IN−1)
}

. We say that a function Sk(Ik) is a suffi-

cient statistic at time k if the control function µ∗

k depends on Ik only through

on the time (or move) index. The duration of the game is unknown and so is
the horizon of the problem. We are dealing essentially with an infinite horizon
minimax problem, whose termination time is finite but unknown, similar to the
stochastic shortest path problems to be discussed in Chapter 4. Still, however,
chess programs often use features and weights that depend on the phase of the
game (opening, middlegame, or endgame). Moreover the programs include spe-
cialized knowledge, such as opening and endgame databases. In our discussion
we will ignore such possibilities.
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Sk(Ik), i.e., for some function µ̂k, we have

µ
∗

k(Ik) = µ̂k

(

Sk(Ik)
)

.

where µ∗

k is optimal.
There are several examples of sufficient statistics, and they are typically

problem-dependent. A trivial possibility is to view Ik itself as a sufficient
statistic, and a more sophisticated possibility is to view the belief state pk(Ik)
as a sufficient statistic (this is the conditional probability distribution of xk

given Ik; a more detailed discussion of these possibilities can be found in
[Ber17], Chapter 4).

Since the sufficient statistic contains all the relevant information for
control purposes, an idea that suggests itself is to introduce features of the
sufficient statistic and to train a corresponding approximation architecture
accordingly. As examples of potentially good features, one may consider a
partial history (such as the last m measurements and controls in Ik), or some
special characteristic of Ik (such as whether some alarm-like “special” event
has been observed). In the case where the belief state pk(Ik) is used as a
sufficient statistic, examples of good features may be a point estimate based
on pk(Ik), the variance of this estimate, and other quantities that can be
simply extracted from pk(Ik) [e.g., simplified or certainty equivalent versions
of pk(Ik)].

Unfortunately, in many situations an adequate set of features is not
known, so it is important to have methods that construct features automat-
ically, to supplement whatever features may already be available. Indeed,
there are architectures that do not rely on the knowledge of good features.
One of the most popular is neural networks , which we will describe in
Section 3.2. Some of these architectures involve training that constructs
simultaneously both the feature vectors φk(xk) and the parameter vectors
rk that weigh them.

3.1.2 Training of Linear and Nonlinear Architectures

The process of choosing the parameter vector r of a parametric architecture
J̃(x, r) is generally referred to as training. The most common type of
training is based on a least squares optimization, also known as least squares
regression. Here a set of state-cost training pairs (xs, βs), s = 1, . . . , q,
called the training set , is collected and r is determined by solving the
problem

min
r

q
∑

s=1

(

J̃(xs, r)− βs
)2
. (3.2)

Thus r is chosen to minimize the error between sample costs βs and the
architecture-predicted costs J̃(xs, r) in a least squares sense. Here typically,
there is some “target” cost function J that we aim to approximate with
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10 Parametric Approximation Chap. 3

J̃(·, r), and the sample cost βs is the value J(xs) plus perhaps some error
or “noise.”

The cost function of the training problem (3.2) is generally nonconvex,
which may pose challenges, since there may exist multiple local minima.
However, for a linear architecture the cost function is convex quadratic,
and the training problem admits a closed-form solution. In particular, for
the linear architecture

J̃(x, r) = r′φ(x),

the problem becomes

min
r

q
∑

s=1

(

r′φ(xs)− βs
)2
.

By setting the gradient of the quadratic objective to 0, we have the linear
equation

q
∑

s=1

φ(xs)
(

r′φ(xs)− βs
)

= 0,

or
q
∑

s=1

φ(xs)φ(xs)′r =

q
∑

s=1

φ(xs)βs.

Thus by matrix inversion we obtain the minimizing parameter vector

r̂ =

(

q
∑

s=1

φ(xs)φ(xs)′

)−1 q
∑

s=1

φ(xs)βs. (3.3)

(Since sometimes the inverse above may not exist, an additional quadratic
in r, called a regularization function, is added to the least squares objective
to deal with this, and also to help with other issues to be discussed later.)

Thus a linear architecture has the important advantage that the train-
ing problem can be solved exactly and conveniently with the formula (3.3)
(of course it may be solved by any other algorithm that is suitable for
linear least squares problems). By contrast, if we use a nonlinear archi-
tecture, such as a neural network, the associated least squares problem is
nonquadratic and also nonconvex. Despite this fact, through a combination
of sophisticated implementation of special gradient algorithms, called in-

cremental , and powerful computational resources, neural network methods
have been successful in practice as we will discuss in Section 3.2.

3.1.3 Incremental Gradient and Newton Methods

We will now digress to discuss special methods for solution of the least
squares training problem (3.2), assuming a parametric architecture that
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is differentiable in the parameter vector. This methodology is properly
viewed as a subject in nonlinear programming and iterative algorithms, and
as such it can be studied independently of the approximate DP methods of
this book. Thus the reader who has already some exposure to the subject
may skip to the next section, and return later as needed.

Incremental methods have a rich theory, and our presentation in this
section is brief, focusing primarily on implementation and intuition. Some
surveys and book references are provided at the end of the chapter, which
include a more detailed treatment. In particular, the neuro-dynamic pro-
gramming book [BeT96] contains convergence analysis for both determin-
istic and stochastic training problems. Since, we want to cover problems
that are more general than the specific least squares training problem (3.2),
we will adopt a broader formulation and notation that are standard in non-
linear programming.

Incremental Gradient Methods

We view the training problem (3.2) as a special case of the minimization
of a sum of component functions

f(y) =

m
∑

i=1

fi(y), (3.4)

where each fi is a differentiable scalar function of the n-dimensional vector
y (this is the parameter vector). Thus we use the more common symbols
y and m in place of r and q, respectively, and we replace the least squares
terms J̃(xs, r) in the training problem (3.2) with the generic terms fi(y).

The (ordinary) gradient method for problem (3.4) has the form†

yk+1 = yk − γk∇f(yk) = yk − γk
m
∑

i=1

∇fi(yk), (3.5)

where γk is a positive stepsize parameter. Incremental gradient methods
have the general form

yk+1 = yk − γk∇fik (y
k), (3.6)

where ik is some index from the set {1, . . . ,m}, chosen by some determin-
istic or randomized rule. Thus a single component function fik is used at

† We use standard calculus notation for gradients; see, e.g., [Ber16], Ap-

pendix A. In particular, ∇f(y) denotes the n dimensional vector whose compo-

nents are the first partial derivatives ∂f(y)/∂yi of f with respect to the compo-

nents y1, . . . , yn of the vector y.
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each iteration of the incremental method (3.6), with great economies in gra-
dient calculation cost over the ordinary gradient method (3.5), particularly
when m is large.

The method for selecting the index ik of the component to be iterated
on at iteration k is important for the performance of the method. Three
common rules are:

(1) A cyclic order , the simplest rule, whereby the indexes are taken up in
the fixed deterministic order 1, . . . ,m, so that ik is equal to (k modulo
m) plus 1. A contiguous block of iterations involving the components

f1, . . . , fm

in this order and exactly once is called a cycle.

(2) A uniform random order , whereby the index ik chosen randomly by
sampling over all indexes with a uniform distribution, independently
of the past history of the algorithm. This rule may perform better
that the cyclic rule in some circumstances.

(3) A cyclic order with random reshuffling, whereby the indexes are taken
up one by one within each cycle, but their order after each cycle is
reshuffled randomly (and independently of the past). This rule is used
widely in practice, particularly when the number of components m is
modest, for reasons to be discussed later.

Note that in the cyclic case, it is essential to include all components in
a cycle, for otherwise some components will be sampled more often than
others, leading to a bias in the convergence process. Simlarly, it is necessary
to sample according to the uniform distribution in the random order case.

Focusing for the moment on the cyclic rule, we note that the moti-
vation for the incremental gradient method is faster convergence: we hope
that far from the solution, a single cycle of the method will be as effec-
tive as several (as many as m) iterations of the ordinary gradient method
(think of the case where the components fi are similar in structure). Near
a solution, however, the incremental method may not be as effective.

To be more specific, we note that there are two complementary per-
formance issues to consider in comparing incremental and nonincremental
methods:

(a) Progress when far from convergence. Here the incremental method
can be much faster. For an extreme case take m large and all com-
ponents fi identical to each other. Then an incremental iteration
requires m times less computation than a classical gradient iteration,
but gives exactly the same result, when the stepsize is scaled to be m
times larger. While this is an extreme example, it reflects the essential
mechanism by which incremental methods can be much superior: far
from the minimum a single component gradient will point to “more
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or less” the right direction, at least most of the time; see the following
example.

(b) Progress when close to convergence. Here the incremental method can
be inferior. In particular, the ordinary gradient method (3.5) can be
shown to converge with a constant stepsize under reasonable assump-
tions, see e.g., [Ber16], Chapter 1. However, the incremental method
requires a diminishing stepsize, and its ultimate rate of convergence
can be much slower.

This type of behavior is illustrated in the following example.

Example 3.1.6

Assume that y is a scalar, and that the problem is

minimize f(y) = 1
2

m
∑

i=1

(ciy − bi)
2

subject to y ∈ ℜ,

where ci and bi are given scalars with ci 6= 0 for all i. The minimum of each
of the components fi(y) = 1

2 (ciy − bi)
2 is

y
∗

i =
bi

ci
,

while the minimum of the least squares cost function f is

y
∗ =

∑m

i=1
cibi

∑m

i=1
c2i

.

It can be seen that y∗ lies within the range of the component minima

R =
[

min
i
y
∗

i , max
i
y
∗

i

]

,

and that for all y outside the range R, the gradient

∇fi(y) = ci(ciy − bi)

has the same sign as ∇f(y) (see Fig. 3.1.4). As a result, when outside the
region R, the incremental gradient method

y
k+1 = y

k
− γ

k
cik (ciky

k
− bik )

approaches y∗ at each step, provided the stepsize γk is small enough. In fact
it can be verified that it is sufficient that

γ
k
≤ min

i

1

c2i
.

kalou
Sticky Note
replace b_i with y_i^* in y^*



14 Parametric Approximation Chap. 3
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i

Figure 3.1.4. Illustrating the advantage of incrementalism when far from the
optimal solution. The region of component minima

R =

[

min
i

y∗i , max
i

y∗i

]

,

is labeled as the “region of confusion.” It is the region where the method
does not have a clear direction towards the optimum. The ith step in an

incremental gradient cycle is a gradient step for minimizing (ciy − bi)
2, so

if y lies outside the region of component minima R =
[

mini y
∗

i
, maxi y

∗

i

]

,

(labeled as the “farout region”) and the stepsize is small enough, progress
towards the solution y∗ is made.

However, for y inside the region R, the ith step of a cycle of the in-
cremental gradient method need not make progress. It will approach y∗ (for
small enough stepsize γk) only if the current point yk does not lie in the in-
terval connecting y∗i and y∗. This induces an oscillatory behavior within the
region R, and as a result, the incremental gradient method will typically not
converge to y∗ unless γk → 0. By contrast, the ordinary gradient method,
which takes the form

y
k+1 = y

k
− γ

m
∑

i=1

ci(ciy
k
− bi),

can be verified to converge to y∗ for any constant stepsize γ with

0 < γ ≤
1

∑m

i=1
c2i
.

However, for y outside the region R, a full iteration of the ordinary gradient
method need not make more progress towards the solution than a single step of
the incremental gradient method. In other words, with comparably intelligent
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stepsize choices, far from the solution (outside R), a single pass through the

entire set of cost components by incremental gradient is roughly as effective

as m passes by ordinary gradient .

The discussion of the preceding example relies on y being one-dimensi-
onal, but in many multidimensional problems the same qualitative behavior
can be observed. In particular, a pass through the ith component fi by the
incremental gradient method can make progress towards the solution in the
region where the component gradient ∇fik(y

k) makes an angle less than 90
degrees with the cost function gradient ∇f(yk). If the components fi are
not “too dissimilar”, this is likely to happen in a region of points that are
not too close to the optimal solution set. This behavior has been verified
in many practical contexts, including the training of neural networks (cf.
the next section), where incremental gradient methods have been used
extensively, frequently under the name backpropagation methods .

Stepsize Choice and Diagonal Scaling

The choice of the stepsize γk plays an important role in the performance
of incremental gradient methods. On close examination, it turns out that
the direction used by the method differs from the gradient direction by an
error that is proportional to the stepsize, and for this reason a diminishing
stepsize is essential for convergence to a local minimum of f (convergence
to a local minimum is the best we hope for since the cost function may not
be convex).

However, it turns out that a peculiar form of convergence also typ-
ically occurs for a constant but sufficiently small stepsize. In this case,
the iterates converge to a “limit cycle”, whereby the ith iterates ψi within
the cycles converge to a different limit than the jth iterates ψj for i 6= j.
The sequence {yk} of the iterates obtained at the end of cycles converges,
except that the limit obtained need not be a minimum of f , even when
f is convex. The limit tends to be close to the minimum point when the
constant stepsize is small (see Section 2.4 of [Ber16] for analysis and exam-
ples). In practice, it is common to use a constant stepsize for a (possibly
prespecified) number of iterations, then decrease the stepsize by a certain
factor, and repeat, up to the point where the stepsize reaches a prespecified
floor value.

An alternative possibility is to use a diminishing stepsize rule of the
form

γk = min

{

γ,
β1

k + β2

}

,

where γ, β1, and β2 are some positive scalars. There are also variants of
the incremental gradient method that use a constant stepsize throughout,
and generically converge to a stationary point of f at a linear rate. In one
type of such method the degree of incrementalism gradually diminishes as
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the method progresses (see [Ber97a]). Another incremental approach with
similar aims, is the aggregated incremental gradient method, which will be
discussed later in this section.

Regardless of whether a constant or a diminishing stepsize is ulti-
mately used, to maintain the advantage of faster convergence when far
from the solution, the incremental method must use a much larger stepsize
than the corresponding nonincremental gradient method (as much as m
times larger so that the size of the incremental gradient step is comparable
to the size of the nonincremental gradient step).

One possibility is to use an adaptive stepsize rule, whereby the step-
size is reduced (or increased) when the progress of the method indicates
that the algorithm is oscillating because it operates within (or outside,
respectively) the region of confusion. There are formal ways to imple-
ment such stepsize rules with sound convergence properties (see [Tse98],
[MYF03], [GOP15a]).

The difficulty with stepsize selection may also be addressed with di-

agonal scaling, i.e., using a stepsize γkj that is different for each of the com-
ponents yj of y. Second derivatives can be very effective for this purpose.
In generic nonlinear programming problems of unconstrained minimization
of a function f , it is common to use diagonal scaling with stepsizes

γkj = γ

(

∂2f(yk)

∂2yj

)−1

, j = 1, . . . , n,

where γ is a constant that is nearly equal 1 (the second derivatives may also
be approximated by gradient difference approximations). However, in least
squares training problems, this type of scaling is inconvenient because of
the additive form of f as a sum of a large number of component functions:

f(y) =

m
∑

i=1

fi(y),

cf. Eq. (3.4). Later in this section, when we discuss incremental New-
ton methods, we will provide a type of diagonal scaling that uses second
derivatives and is well suited to the additive character of f .

Stochastic Gradient Descent

Incremental gradient methods are related to methods that aim to minimize
an expected value

f(y) = E
{

F (y, w)
}

,

where w is a random variable, and F (·, w) : ℜn 7→ ℜ is a differentiable
function for each possible value of w. The stochastic gradient method for
minimizing f is given by

yk+1 = yk − γk∇yF (yk, wk), (3.7)



Sec. 3.1 Approximation Architectures 17

where wk is a sample of w and ∇yF denotes gradient of F with respect
to y. This method has a rich theory and a long history, and it is strongly
related to the classical algorithmic field of stochastic approximation; see the
books [BeT96], [KuY03], [Spa03], [Mey07], [Bor08], [BPP13]. The method
is also often referred to as stochastic gradient descent , particularly in the
context of machine learning applications.

If we view the expected value cost E
{

F (y, w)
}

as a weighted sum of
cost function components, we see that the stochastic gradient method (3.7)
is related to the incremental gradient method

yk+1 = yk − γk∇fik(y
k) (3.8)

for minimizing a finite sum
∑m

i=1 fi, when randomization is used for compo-
nent selection. An important difference is that the former method involves
stochastic sampling of cost components F (y, w) from a possibly infinite
population, under some probabilistic assumptions, while in the latter the
set of cost components fi is predetermined and finite. However, it is possi-
ble to view the incremental gradient method (3.8), with uniform random-
ized selection of the component function fi (i.e., with ik chosen to be any
one of the indexes 1, . . . ,m, with equal probability 1/m, and independently
of preceding choices), as a stochastic gradient method.

Despite the apparent similarity of the incremental and the stochastic
gradient methods, the view that the problem

minimize f(y) =
m
∑

i=1

fi(y)

subject to y ∈ ℜn,

(3.9)

can simply be treated as a special case of the problem

minimize f(y) = E
{

F (y, w)
}

subject to y ∈ ℜn,

is questionable.
One reason is that once we convert the finite sum problem to a

stochastic problem, we preclude the use of methods that exploit the fi-
nite sum structure, such as the incremental aggregated gradient methods
to be discussed in the next subsection. Another reason is that the finite-
component problem (3.9) is often genuinely deterministic, and to view it as
a stochastic problem at the outset may mask some of its important char-
acteristics, such as the number m of cost components, or the sequence in
which the components are ordered and processed. These characteristics
may potentially be algorithmically exploited. For example, with insight
into the problem’s structure, one may be able to discover a special deter-
ministic or partially randomized order of processing the component func-
tions that is superior to a uniform randomized order. On the other hand
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analysis indicates that in the absence of problem-specific knowledge that
can be exploited to select a favorable deterministic order, a uniform ran-
domized order (each component fi chosen with equal probability 1/m at
each iteration, independently of preceding choices) sometimes has superior
worst-case complexity; see [NeB00], [NeB01], [BNO03], [Ber15a], [WaB16].

Finally, let us note the popular hybrid technique, which reshuffles
randomly the order of the cost components after each cycle. Practical expe-
rience and recent analysis [GOP15c] indicates that it has somewhat better
performance to the uniform randomized order when m is large. One possi-
ble reason is that random reshuffling allocates exactly one computation slot
to each component in anm-slot cycle, while uniform sampling allocates one
computation slot to each component on the average. A nonzero variance
in the number of slots that any fixed component gets within a cycle, may
be detrimental to performance. While it seems difficult to establish this
fact analytically, a justification is suggested by the view of the incremen-
tal gradient method as a gradient method with error in the computation
of the gradient. The error has apparently greater variance in the uniform
sampling method than in the random reshuffling method, and heuristically,
if the variance of the error is larger, the direction of descent deteriorates,
suggesting slower convergence.

Incremental Aggregated Gradient Methods

Another algorithm that is well suited for least squares training problems is
the incremental aggregated gradient method , which has the form

yk+1 = yk − γk
m−1
∑

ℓ=0

∇fik−ℓ
(yk−ℓ), (3.10)

where fik is the new component function selected for iteration k.† In the
most common version of the method the component indexes ik are selected
in a cyclic order [ik = (k modulo m) + 1]. Random selection of the index
ik has also been suggested.

From Eq. (3.10) it can be seen that the method computes the gradient
incrementally, one component per iteration. However, in place of the single
component gradient ∇fik (y

k), used in the incremental gradient method
(3.6), it uses the sum of the component gradients computed in the past m
iterations, which is an approximation to the total cost gradient ∇f(yk).

The idea of the method is that by aggregating the component gradi-
ents one may be able to reduce the error between the true gradient ∇f(yk)
and the incrementally computed approximation used in Eq. (3.10), and
thus attain a faster asymptotic convergence rate. Indeed, it turns out that

† In the case where k < m, the summation in Eq. (3.10) should go up to

ℓ = k, and the stepsize should be replaced by a corresponding larger value.
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under certain conditions the method exhibits a linear convergence rate, just
like in the nonincremental gradient method, without incurring the cost of
a full gradient evaluation at each iteration (a strongly convex cost function
and with a sufficiently small constant stepsize are required for this; see
[Ber16], Section 2.4.2, and the references quoted there). This is in contrast
with the incremental gradient method (3.6), for which a linear convergence
rate can be achieved only at the expense of asymptotic error, as discussed
earlier.

A disadvantage of the aggregated gradient method (3.10) is that it
requires that the most recent component gradients be kept in memory,
so that when a component gradient is reevaluated at a new point, the
preceding gradient of the same component is discarded from the sum of
gradients of Eq. (3.10). There have been alternative implementations that
ameliorate this memory issue, by recalculating the full gradient periodically
and replacing an old component gradient by a new one. More specifically,
instead of the gradient sum

sk =

m−1
∑

ℓ=0

∇fik−ℓ
(yk−ℓ),

in Eq. (3.10), these methods use

s̃k = ∇fik (y
k)−∇fik(ỹ

k) +

m−1
∑

ℓ=0

∇fik−ℓ
(ỹk),

where ỹk is the most recent point where the full gradient has been calcu-
lated. To calculate s̃k one only needs to compute the difference of the two
gradients

∇fik(y
k)−∇fik(ỹ

k)

and add it to the full gradient
∑m−1

ℓ=0 ∇fik−ℓ(ỹk). This bypasses the need
for extensive memory storage, and with proper implementation, typically
leads to small degradation in performance. However, periodically calculat-
ing the full gradient when m is very large can be a drawback. Another
potential drawback of the aggregated gradient method is that for a large
number of terms m, one hopes to converge within the first cycle through
the components fi, thereby reducing the effect of aggregating the gradients
of the components.

Incremental Newton Methods

We will now consider an incremental version of Newton’s method for un-
constrained minimization of an additive cost function of the form

f(y) =

m
∑

i=1

fi(y),
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where the functions fi are convex and twice continuously differentiable.†
The ordinary Newton’s method, at the current iterate yk, obtains the

next iterate yk+1 by minimizing over y the quadratic approximation/second
order expansion

f̃(y; yk) = ∇f(yk)′(y − yk) + 1
2 (y − yk)′∇2f(yk)(y − yk),

of f at yk. Similarly, the incremental form of Newton’s method minimizes
a sum of quadratic approximations of components of the general form

f̃ i(y;ψ) = ∇fi(ψ)′(y − ψ) + 1
2(y − ψ)′∇2fi(ψ)(y − ψ), (3.11)

as we will now explain.
As in the case of the incremental gradient method, we view an it-

eration as a cycle of m subiterations, each involving a single additional
component fi, and its gradient and Hessian at the current point within the
cycle. In particular, if yk is the vector obtained after k cycles, the vector
yk+1 obtained after one more cycle is

yk+1 = ψm,k,

where starting with ψ0,k = yk, we obtain ψm,k after the m steps

ψi,k ∈ arg min
y∈ℜn

i
∑

ℓ=1

f̃ ℓ(y;ψℓ−1,k), i = 1, . . . ,m, (3.12)

where f̃ℓ is defined as the quadratic approximation (3.11). If all the func-
tions fi are quadratic, it can be seen that the method finds the solution
in a single cycle.‡ The reason is that when fi is quadratic, each fi(y) dif-
fers from f̃ i(y;ψ) by a constant, which does not depend on y. Thus the
difference

m
∑

i=1

fi(y)−
m
∑

i=1

f̃ i(y;ψi−1,k)

† We will denote by ∇2f(y) the n × n Hessian matrix of f at y, i.e., the

matrix whose (i, j)th component is the second partial derivative ∂2f(y)/∂yi∂yj .

A beneficial consequence of assuming convexity of fi is that the Hessian matrices

∇2fi(y) are positive semidefinite, which facilitates the implementation of the

algorithms to be described. On the other hand, the algorithmic ideas of this

section may also be adapted for the case where fi are nonconvex.

‡ Here we assume that them quadratic minimizations (3.12) to generate ψm,k

have a solution. For this it is sufficient that the first Hessian matrix ∇2f1(y
0) be

positive definite, in which case there is a unique solution at every iteration. A

simple possibility to deal with this requirement is to add to f1 a small positive

regularization term, such as ǫ
2
‖y − y0‖2. A more sound possibility is to lump

together several of the component functions (enough to ensure that the sum of

their quadratic approximations at y0 is positive definite), and to use them in

place of f1. This is generally a good idea and leads to smoother initialization, as

it ensures a relatively stable behavior of the algorithm for the initial iterations.
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is a constant that is independent of y, and minimization of either sum in
the above expression gives the same result.

It is important to note that the computations of Eq. (3.12) can be
carried out efficiently. For simplicity, let as assume that f̃1(y;ψ) is a pos-
itive definite quadratic, so that for all i, ψi,k is well defined as the unique
solution of the minimization problem in Eq. (3.12). We will show that the
incremental Newton method (3.12) can be implemented in terms of the
incremental update formula

ψi,k = ψi−1,k −Di,k∇fi(ψi−1,k), (3.13)

where Di,k is given by

Di,k =

(

i
∑

ℓ=1

∇2fℓ(ψℓ−1,k)

)−1

, (3.14)

and is generated iteratively as

Di,k =
(

D−1
i−1,k +∇2fi(ψi,k)

)−1

. (3.15)

Indeed, from the definition of the method (3.12), the quadratic function
∑i−1

ℓ=1 f̃ ℓ(y;ψℓ−1,k) is minimized by ψi−1,k and its Hessian matrix is D−1
i−1,k,

so we have

i−1
∑

ℓ=1

f̃ ℓ(y;ψℓ−1,k) = 1
2(y − ψℓ−1,k)′D

−1
i−1,k(y − ψℓ−1,k) + constant.

Thus, by adding f̃ i(y;ψi−1,k) to both sides of this expression, we obtain

i
∑

ℓ=1

f̃ ℓ(y;ψℓ−1,k) = 1
2 (y − ψℓ−1,k)′D

−1
i−1,k(y − ψℓ−1,k) + constant

+ 1
2(y − ψi−1,k)′∇2fi(ψi−1,k)(y − ψi−1,k) +∇fi(ψi−1,k)′(y − ψi−1,k).

Since by definition ψi,k minimizes this function, we obtain Eqs. (3.13)-
(3.15).

The recursion (3.15) for the matrix Di,k can often be efficiently im-
plemented by using convenient formulas for the inverse of the sum of two
matrices. In particular, if fi is given by

fi(y) = hi(a′iy − bi),

for some twice differentiable convex function hi : ℜ 7→ ℜ, vector ai, and
scalar bi, we have

∇2fi(ψi−1,k) = ∇2hi(ψi−1,k) aia′i,
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and the recursion (3.15) can be written as

Di,k = Di−1,k −
Di−1,kaia

′

iDi−1,k

∇2hi(ψi−1,k)−1 + a′iDi−1,kai
;

this is the well-known Sherman-Morrison formula for the inverse of the sum
of an invertible matrix and a rank-one matrix.

We have considered so far a single cycle of the incremental Newton
method. Similar to the case of the incremental gradient method, we may
cycle through the component functions multiple times. In particular, we
may apply the incremental Newton method to the extended set of compo-
nents

f1, f2, . . . , fm, f1, f2, . . . , fm, f1, f2, . . . .

The resulting method asymptotically resembles an incremental gradient
method with diminishing stepsize of the type described earlier. Indeed,
from Eq. (3.14)], the matrix Di,k diminishes roughly in proportion to 1/k.
From this it follows that the asymptotic convergence properties of the in-
cremental Newton method are similar to those of an incremental gradient
method with diminishing stepsize of order O(1/k). Thus its convergence
rate is slower than linear.

To accelerate the convergence of the method one may employ a form
of restart, so that Di,k does not converge to 0. For example Di,k may
be reinitialized and increased in size at the beginning of each cycle. For
problems where f has a unique nonsingular minimum y∗ [one for which
∇2f(y∗) is nonsingular], one may design incremental Newton schemes with
restart that converge linearly to within a neighborhood of y∗ (and even
superlinearly if y∗ is also a minimum of all the functions fi, so there is
no region of confusion). Alternatively, the update formula (3.15) may be
modified to

Di,k =
(

βkD
−1
i−1,k +∇2fℓ(ψi,k)

)−1

, (3.16)

by introducing a parameter βk ∈ (0, 1), which can be used to accelerate
the practical convergence rate of the method; cf. the discussion of the
incremental Gauss-Newton methods.

Incremental Newton Method with Diagonal Approximation

Generally, with proper implementation, the incremental Newton method is
often substantially faster than the incremental gradient method, in terms
of numbers of iterations (there are theoretical results suggesting this prop-
erty for stochastic versions of the two methods; see the end-of-chapter ref-
erences). However, in addition to computation of second derivatives, the
incremental Newton method involves greater overhead per iteration due to
the matrix-vector calculations in Eqs. (3.13), (3.15), and (3.16), so it is
suitable only for problems where n, the dimension of y, is relatively small.
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A way to remedy in part this difficulty is to approximate ∇2fi(ψi,k)
by a diagonal matrix, and recursively update a diagonal approximation
of Di,k using Eqs. (3.15) or (3.16). In particular, one may set to 0 the
off-diagonal components of ∇2fi(ψi,k). In this case, the iteration (3.13)
becomes a diagonally scaled version of the incremental gradient method,
and involves comparable overhead per iteration (assuming the required
diagonal second derivatives are easily computed or approximated). As an
additional scaling option, one may multiply the diagonal components with
a stepsize parameter that is close to 1 and add a small positive constant (to
bound them away from 0). Ordinarily this method is easily implementable,
and requires little experimentation with stepsize selection.

3.2 NEURAL NETWORKS

There are several different types of neural networks that can be used for
a variety of tasks, such as pattern recognition, classification, image and
speech recognition, and others. We focus here on our finite horizon DP
context, and the role that neural networks can play in approximating the
optimal cost-to-go functions J*

k . As an example within this context, we
may first use a neural network to construct an approximation to J*

N−1.

Then we may use this approximation to approximate J*
N−2, and continue

this process backwards in time, to obtain approximations to all the optimal
cost-to-go functions J*

k , k = 1, . . . , N − 1, as we will discuss in more detail
in Section 3.3.

To describe the use of neural networks in finite horizon DP, let us
consider the typical stage k, and for convenience drop the index k; the
subsequent discussion applies to each value of k separately. We consider
parametric architectures J̃(x, v, r) of the form

J̃(x, v, r) = r′φ(x, v) (3.17)

that depend on two parameter vectors v and r. Our objective is to select
v and r so that J̃(x, v, r) approximates some cost function that can be
sampled (possibly with some error). The process is to collect a training set
that consists of a large number of state-cost pairs (xs, βs), s = 1, . . . , q, and
to find a function J̃(x, v, r) of the form (3.17) that matches the training
set in a least squares sense, i.e., (v, r) minimizes

q
∑

s=1

(

J̃(xs, v, r)− βs
)2
.
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Figure 3.2.1 A perceptron consisting of a linear layer and a nonlinear layer.
It provides a way to compute features of the state, which can be used for cost
function approximation. The state x is encoded as a vector of numerical values
y(x), which is then transformed linearly as Ay(x) + b in the linear layer. The
m scalar output components of the linear layer, become the inputs to nonlinear

functions that produce the m scalars φℓ(x, v) = σ
(

(Ay(x) + b)ℓ
)

, which can be
viewed as features that are in turn linearly weighted with parameters rℓ.

We postpone for later the question of how the training pairs (xs, βs) are
generated, and how the training problem is solved.† Notice the different
roles of the two parameter vectors here: v parametrizes φ(x, v), which in
some interpretation may be viewed as a feature vector, and r is a vector of

linear weighting parameters for the components of φ(x, v).
A neural network architecture provides a parametric class of functions

J̃(x, v, r) of the form (3.17) that can be used in the optimization framework
just described. The simplest type of neural network is the single layer per-

ceptron; see Fig. 3.2.1. Here the state x is encoded as a vector of numerical
values y(x) with components y1(x), . . . , yn(x), which is then transformed
linearly as

Ay(x) + b,

where A is an m×n matrix and b is a vector in ℜm.‡ This transformation
is called the linear layer of the neural network. We view the components
of A and b as parameters to be determined, and we group them together
into the parameter vector v = (A, b).

† The least squares training problem used here is based on nonlinear re-

gression. This is a classical method for approximating the expected value of a

function with a parametric architecture, and involves a least squares fit of the

architecture to simulation-generated samples of the expected value. We refer to

machine learning and statistics textbooks for more discussion.

‡ The method of encoding x into the numerical vector y(x) is problem-

dependent, but it is important to note that some of the components of y(x)

could be some known interesting features of x that can be designed based on

problem-specific knowledge.
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Figure 3.2.2 The rectified linear unit σ(ξ) = ln(1+eξ). It is the rectifier function
max{0, ξ} with its corner “smoothed out.” Its derivative is σ′(ξ) = eξ/(1 + eξ),
and approaches 0 and 1 as ξ → −∞ and ξ → ∞, respectively.

Each of the m scalar output components of the linear layer,

(

Ay(x) + b
)

ℓ
, ℓ = 1, . . . ,m,

becomes the input to a nonlinear differentiable function σ that maps scalars
to scalars. Typically σ is differentiable and monotonically increasing. A
simple and popular possibility is based on the rectifier , which is simply
the function max{0, ξ}. In neural networks it is approximated by a differ-
entiable function σ by some form of smoothing operation, and it is called
rectified linear unit (ReLU for short); for example σ(ξ) = ln(1+ eξ), which
illustrated in Fig. 3.2.2. Other functions, used since the early days of neural
networks, have the property

−∞ < lim
ξ→−∞

σ(ξ) < lim
ξ→∞

σ(ξ) <∞;

see Fig. 3.2.3. Such functions are called sigmoids , and some common
choices are the hyperbolic tangent function

σ(ξ) = tanh(ξ) =
eξ − e−ξ

eξ + e−ξ
,

and the logistic function

σ(ξ) =
1

1 + e−ξ
.

In what follows, we will ignore the character of the function σ (except for
differentiability), and simply refer to it as a “nonlinear unit” and to the
corresponding layer as a “nonlinear layer.”

At the outputs of the nonlinear units, we obtain the scalars

φℓ(x, v) = σ
(

(Ay(x) + b)ℓ
)

, ℓ = 1, . . . ,m.
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Figure 3.2.3 Some examples of sigmoid functions. The hyperbolic tangent func-
tion is on the left, while the logistic function is on the right.

One possible interpretation is to view φℓ(x, v) as features of x, which are
linearly combined using weights rℓ, ℓ = 1, . . . ,m, to produce the final
output

J̃(x, v, r) =

m
∑

ℓ=1

rℓφℓ(x, v) =

m
∑

ℓ=1

rℓσ
(

(Ay(x) + b)ℓ
)

.

Note that each value φℓ(x, v) depends on just the ℓth row of A and the ℓth
component of b, not on the entire vector v. In some cases this motivates
placing some constraints on individual components of A and b to achieve
special problem-dependent “handcrafted” effects.

State Encoding and Direct Feature Extraction

The state encoding operation that transforms x into the neural network in-
put y(x) can be instrumental in the success of the approximation scheme.
Examples of possible state encodings are components of the state x, numer-
ical representations of qualitative characteristics of x, and more generally
features of x, i.e., functions of x that aim to capture “important nonlin-
earities” of the optimal cost-to-go function. With the latter view of state
encoding, we may consider the approximation process as consisting of a
feature extraction mapping, followed by a neural network with input the
extracted features of x, and output the cost-to-go approximation; see Fig.
3.2.4.

The idea here is that with a good feature extraction mapping, the
neural network need not be very complicated (may involve few nonlinear
units and corresponding parameters), and may be trained more easily. This
intuition is borne out by simple examples and practical experience. How-
ever, as is often the case with neural networks, it is hard to support it with
a quantitative analysis.
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Figure 3.2.4 Nonlinear architecture with a view of the state encoding process
as a feature extraction mapping preceding the neural network.

3.2.1 Training of Neural Networks

Given a set of state-cost training pairs (xs, βs), s = 1, . . . , q, the parameters
of the neural network A, b, and r are obtained by solving the training
problem

min
A,b,r

q
∑

s=1

(

m
∑

ℓ=1

rℓσ
((

Ay(xs) + b
)

ℓ

)

− βs

)2

. (3.18)

Note that the cost function of this problem is generally nonconvex, so there
may exist multiple local minima.

In practice it is common to augment the cost function of this problem
with a regularization function, such as a quadratic in the parameters A, b,
and r. This is customary in least squares problems in order to make the
problem easier to solve algorithmically. However, in the context of neu-
ral network training, regularization is primarily important for a different
reason: it helps to avoid overfitting, which refers to a situation where a
neural network model matches the training data very well but does not do
as well on new data. This is a well known difficulty in machine learning,
which may occur when the number of parameters of the neural network is
relatively large (roughly comparable to the size of the training set). We
refer to machine learning and neural network textbooks for a discussion
of algorithmic questions regarding regularization and other issues that re-
late to the practical implementation of the training process. In any case,
the training problem (3.18) is an unconstrained nonconvex differentiable
optimization problem that can in principle be addressed with any of the
standard gradient-type methods. Significantly, it is well-suited for the in-
cremental methods discussed in Section 3.1.3.

Let us now consider a few issues regarding the neural network formu-
lation and training process just described:

(a) The first issue is to select a method to solve the training problem
(3.18). While we can use any unconstrained optimization method that
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is based on gradients, in practice it is important to take into account
the cost function structure of problem (3.18). The salient character-
istic of this cost function is that it is the sum of a potentially very
large number q of component functions. This makes the computation
of the cost function value of the training problem and/or its gradient
very costly. For this reason the incremental methods of Section 3.1.3
are universally used for training.† Experience has shown that these
methods can be vastly superior to their nonincremental counterparts
in the context of neural network training.

The implementation of the training process has benefited from expe-
rience that has been accumulated over time, and has provided guide-
lines for scaling, regularization, initial parameter selection, and other
practical issues; we refer to books on neural networks such as Bishop
[Bis95], Goodfellow, Bengio, and Courville [GBC16], and Haykin
[Hay09] for related accounts. Still, incremental methods can be quite
slow, and training may be a time-consuming process. Fortunately, the
training is ordinarily done off-line, in which case computation time
may not be a serious issue. Moreover, in practice the neural network
training problem typically need not be solved with great accuracy.

(b) Another important question is how well we can approximate the op-
timal cost-to-go functions J*

k with a neural network architecture, as-
suming we can choose the number of the nonlinear units m to be as
large as we want. The answer to this question is quite favorable and is
provided by the so-called universal approximation theorem. Roughly,
the theorem says that assuming that x is an element of a Euclidean
space X and y(x) ≡ x, a neural network of the form described can ap-
proximate arbitrarily closely (in an appropriate mathematical sense),
over a closed and bounded subset S ⊂ X , any piecewise continu-
ous function J : S 7→ ℜ, provided the number m of nonlinear units
is sufficiently large. For proofs of the theorem at different levels of
generality, we refer to Cybenko [Cyb89], Funahashi [Fun89], Hornik,
Stinchcombe, and White [HSW89], and Leshno et al. [LLP93]. For
intuitive explanations we refer to Bishop ([Bis95], pp. 129-130) and
Jones [Jon90].

(c) While the universal approximation theorem provides some assurance
about the adequacy of the neural network structure, it does not pre-

† The incremental methods are valid for an arbitrary order of component

selection within the cycle, but it is common to randomize the order at the begin-

ning of each cycle. Also, in a variation of the basic method, we may operate on

a batch of several components at each iteration, called a minibatch, rather than

a single component. This has an averaging effect, which reduces the tendency

of the method to oscillate and allows for the use of a larger stepsize; see the

end-of-chapter references.
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dict how many nonlinear units we may need for “good” performance
in a given problem. Unfortunately, this is a difficult question to even
pose precisely, let alone to answer adequately. In practice, one is
reduced to trying increasingly larger values of m until one is con-
vinced that satisfactory performance has been obtained for the task
at hand. Experience has shown that in many cases the number of re-
quired nonlinear units and corresponding dimension of A can be very
large, adding significantly to the difficulty of solving the training prob-
lem. This has given rise to many suggestions for modifications of the
neural network structure. One possibility is to concatenate multiple
single layer perceptrons so that the output of the nonlinear layer of
one perceptron becomes the input to the linear layer of the next, as
we will now discuss.

What are the Features that can be Produced by Neural Networks?

The short answer is that just about any feature that can be of practical
interest can be produced or be closely approximated by a neural network.
What is needed is a single layer that consists of a sufficiently large num-
ber of nonlinear units, preceded and followed by a linear layer. This is a
consequence of the universal approximation theorem. In particular it is
not necessary to have more than one nonlinear layer (although it is possi-
ble that fewer nonlinear units may be needed with a deep neural network,
involving more than one nonlinear layer).

To illustrate this fact, we will consider features of a scalar state vari-
able x, and a neural network that uses the rectifier function

σ(ξ) = max{0, ξ}

as the basic nonlinear unit. Thus a single rectifier preceded by a linear
function

L(x) = γ(x− β),

where β and γ are scalars, produces the feature

φβ,γ(x) = max
{

0, γ(x− β)
}

, (3.19)

illustrated in Fig. 3.2.6.
We can now construct more complex features by adding or subtracting

single rectifier features of the form (3.19). In particular, subtracting two
rectifier functions with the same slope but two different horizontal shifts
β1 and β2, we obtain the feature

φβ1,β2,γ(x) = φβ1,γ(x)− φβ2,γ(x)



30 Parametric Approximation Chap. 3

x } Linear Unit Rectifier

x γ(x− β) max

Linear Unit Rectifier

) max{0, ξ}

Linear Unit Rectifier φβ,γ(x) Slope

xγ β

) Slope γ β

Cost 0 Cost

Figure 3.2.6 The feature

φβ,γ(x) = max
{

0, γ(x − β)
}

,

produced by a rectifier preceded by the linear function L(x) = γ(x− β).

shown in Fig. 3.2.7(a). By subtracting again two features of the preceding
form, we obtain the “pulse” feature

φβ1,β2,β3,β4,γ(x) = φβ1,β2,γ(x) − φβ3,β4,γ(x), (3.20)

shown in Fig. 3.2.7(b). The “pulse” feature can be used in turn as a funda-
mental block to approximate any desired feature by a linear combination of
“pulses.” This explains how neural networks produce features of any shape
by using linear layers to precede and follow nonlinear layers, at least in
the case of a scalar state x. In fact, the mechanism for feature formation
just described can be extended to the case of a multidimensional x, and
is at the heart of the universal approximation theorem and its proof (see
Cybenko [Cyb89]).

3.2.2 Multilayer and Deep Neural Networks

An important generalization of the single layer perceptron architecture in-
volves a concatenation of multiple layers of linear and nonlinear functions;
see Fig. 3.2.5. In particular the outputs of each nonlinear layer become the
inputs of the next linear layer. In some cases it may make sense to add
as additional inputs some of the components of the state x or the state
encoding y(x).

There are a few questions to consider here. The first has to do with the
reason for having multiple nonlinear layers, when a single one is sufficient to
guarantee the universal approximation property. Here are some qualitative
explanations:

(a) If we view the outputs of each nonlinear layer as features, we see
that the multilayer network provides a sequence of features, where
each set of features in the sequence is a function of the preceding
set of features in the sequence [except for the first set of features,
which is a function of the encoding y(x) of the state x]. Thus the
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Figure 3.2.6 (a) Illustration of how the feature

φβ1,β2,γ(x) = φβ1,γ(x)− φβ2,γ(x)

is formed by a neural network of a two-rectifier nonlinear layer, preceded by a
linear layer.
(b) Illustration of how the “pulse” feature

φβ1,β2,β3,β4,γ(x) = φβ1,β2,γ(x)− φβ3,β4,γ(x)

is formed by a neural network of a four-rectifier nonlinear layer, preceded by a
linear layer.

network produces a hierarchy of features. In the context of specific
applications, this hierarchical structure can be exploited in order to
specialize the role of some of the layers and to enhance particular
characteristics of the state.

(b) Given the presence of multiple linear layers, one may consider the
possibility of using matrices A with a particular sparsity pattern,
or other structure that embodies special linear operations such as
convolution. When such structures are used, the training problem
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Figure 3.2.5 A neural network with multiple layers. Each nonlinear layer con-
structs the inputs of the next linear layer.

often becomes easier, because the number of parameters in the linear
layers is drastically decreased.

Note that while in the early days of neural networks practitioners
tended to use few nonlinear layers (say one to three), more recently a lot
of success in certain problem domains (including image and speech pro-
cessing, as well as approximate DP) has been achieved with so called deep

neural networks , which involve a considerably larger number of layers. In
particular, the use of deep neural networks, in conjunction with Monte
Carlo tree search, has been an important factor for the success of the com-
puter programs AlphaGo and AlphaZero, which perform better than the
best humans in the games of Go and chess; see the papers by Silver et al.
[SHM16], [SHS17]. By contrast, Tesauro’s backgammon program and its
descendants (cf. Section 2.4.2) do not require multiple nonlinear layers for
good performance at present.

Training and Backpropagation

Let us now consider the training problem for multilayer networks. It has
the form

min
v,r

q
∑

s=1

(

m
∑

ℓ=1

rℓφℓ(xs, v)− βs

)2

,

where v represents the collection of all the parameters of the linear layers,
and φℓ(x, v) is the ℓth feature produced at the output of the final nonlinear
layer. Various types of incremental gradient methods, which modify the
weight vector in the direction opposite to the gradient of a single sample
term

(

m
∑

ℓ=1

rℓφℓ(xs, v)− βs

)2

,

can also be applied here. They are the methods most commonly used
in practice. An important fact is that the gradient with respect to v of
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each feature φℓ(x, v) can be efficiently calculated using a special procedure
known as backpropagation. This is just an intelligent way of applying the
chain rule of differentiation, as we will explain now.

Multilayer perceptrons can be represented compactly by introducing
certain mappings to describe the linear and the nonlinear layers. In partic-
ular, let L1, . . . , Lm+1 denote the matrices representing the linear layers;
that is, at the output of the 1st linear layer we obtain the vector L1x and
at the output of the kth linear layer (k > 1) we obtain Lkξ, where ξ is the
output of the preceding nonlinear layer. Similarly, let Σ1, . . . ,Σm denote
the mappings representing the nonlinear layers; that is, when the input of
the kth nonlinear layer (k > 1) is the vector y with components y(j), we
obtain at the output the vector Σky with components σ

(

y(j)
)

. The output
of the multilayer perceptron is

F (L1, . . . , Lm+1, x) = Lm+1ΣmLm · · ·Σ1L1x.

The special nature of this formula has an important computational con-
sequence: the gradient (with respect to the weights) of the squared error
between the output and a desired output y,

E(L1, . . . , Lm+1) =
1

2

(

y − F (L1, . . . , Lm+1, x)
)2
,

can be efficiently calculated using a special procedure known as backprop-
agation, which is just an intelligent way of using the chain rule.† In par-
ticular, the partial derivative of the cost function E(L1, . . . , Lm+1) with
respect to Lk(i, j), the ijth component of the matrix Lk, is given by

∂E(L1, . . . , Lm+1)

∂Lk(i, j)
= −e′Lm+1ΣmLm · · ·Lk+1ΣkIijΣk−1Lk−1 · · ·Σ1L1x,

(3.21)
where e is the error vector

e = y − F (L1, . . . , Lm+1, x),

Σn, n = 1, . . . ,m, is the diagonal matrix with diagonal terms equal to the
derivatives of the nonlinear functions σ of the nth hidden layer evaluated at
the appropriate points, and Iij is the matrix obtained from Lk by setting
all of its components to 0 except for the ijth component which is set to 1.
This formula can be used to obtain efficiently all of the terms needed in
the partial derivatives (3.21) of E using a two-step calculation:

† The name backpropagation is used in several different ways in the neural

networks literature. For example feedforward neural networks of the type shown

in Fig. 3.2.5 are sometimes referred to as backpropagation networks. The some-

what abstract derivation of the backpropagation formulas given here comes from

Section 3.1.1 of the book [BeT96].
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(a) Use a forward pass through the network to calculate sequentially the
outputs of the linear layers

L1x, L2Σ1L1x, . . . , Lm+1ΣmLm · · ·Σ1L1x.

This is needed in order to obtain the points at which the derivatives
in the matrices Σn are evaluated, and also in order to obtain the error
vector e = y − F (L1, . . . , Lm+1, x).

(b) Use a backward pass through the network to calculate sequentially
the terms

e′Lm+1ΣmLm · · ·Lk+1Σk

in the derivative formulas (3.21), starting with e′Lm+1Σm, proceeding
to e′Lm+1ΣmLmΣm−1, and continuing to e′Lm+1Σm · · ·L2Σ1.

As a final remark, we mention that the ability to simultaneously ex-
tract features and optimize their linear combination is not unique to neural
networks. Other approaches that use a multilayer architecture have been
proposed (see the survey by Schmidhuber [Sch15]), and they admit similar
training procedures based on appropriately modified forms of backpropaga-
tion. An example of an alternative multilayer architecture approach is the
Group Method for Data Handling (GMDH), which is principally based on
the use of polynomial (rather than sigmoidal) nonlinearities. The GMDH
approach was investigated extensively in the Soviet Union starting with
the work of Ivakhnenko in the late 60s; see e.g., [Iva68]. It has been used
in a large variety of applications, and its similarities with the neural net-
work methodology have been noted (see the survey by Ivakhnenko [Iva71],
and the large literature summary at the web site http://www.gmdh.net).
Most of the GMDH research relates to inference-type problems, and there
have not been any applications to approximate DP to date. However, this
may be a fruitful area of investigation, since in some applications it may
turn out that polynomial nonlinearities are more suitable than sigmoidal
or rectified linear unit nonlinearities.

3.3 SEQUENTIAL DYNAMIC PROGRAMMING
APPROXIMATION

Let us describe a popular approach for training an approximation archi-
tecture J̃k(xk, rk) for a finite horizon DP problem. The parameter vectors
rk are determined sequentially, with an algorithm known as fitted value

iteration, starting from the end of the horizon, and proceeding backwards
as in the DP algorithm: first rN−1 then rN−2, and so on, see Fig. 3.3.1.
The algorithm samples the state space for each stage k, and generates a
large number of states xsk, s = 1, . . . , q. It then determines sequentially
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Figure 3.3.1 Illustration of fitted value iteration.

the parameter vectors rk to obtain a good “least squares fit” to the DP
algorithm.

In particular, each rk is determined by generating a large number of
sample states and solving a least squares problem that aims to minimize
the error in satisfying the DP equation for these states at time k. At
the typical stage k, having obtained rk+1, we determine rk from the least
squares problem

rk ∈ argmin
r

q
∑

s=1

(

J̃k(xsk, r)

− min
u∈Uk(x

s
k
)
E
{

g(xsk, u, wk) + J̃k+1

(

fk(xsk, u, wk), rk+1

)

}

)2

where xsk, i = 1, . . . , q, are the sample states that have been generated for
the kth stage. Since rk+1 is assumed to be already known, the complicated
minimization term in the right side of this equation is the known scalar

βs
k = min

u∈Uk(x
s
k
)
E
{

g(xsk, u, wk) + J̃k+1

(

fk(xsk, u, wk), rk+1

)

}

,

so that rk is obtained as

rk ∈ argmin
r

q
∑

s=1

(

J̃k(xsk, r)− βs
k

)2
. (3.22)

The algorithm starts at stage N − 1 with the minimization

rN−1 ∈ argmin
r

q
∑

s=1

(

J̃N−1(xsN−1, r)

− min
u∈UN−1(x

s
N−1

)
E
{

gN−1(xsN−1, u, wN−1) + gN
(

fN−1(xsN−1, u, wN−1)
)

}

)2
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and ends with the calculation of r0 at time k = 0.
In the case of a linear architecture, where the approximate cost-to-go

functions are

J̃k(xk, rk) = r′kφk(xk), k = 0, . . . , N − 1,

the least squares problem (3.22) greatly simplifies, and admits the closed
form solution

rk =

(

q
∑

s=1

φk(xsk)φk(x
s
k)

′

)−1 q
∑

s=1

βs
kφk(x

s
k);

cf. Eq. (3.3). For a nonlinear architecture such as a neural network, incre-
mental gradient algorithms may be used.

An important implementation issue is how to select the sample states
xsk, s = 1, . . . , q, k = 0, . . . , N − 1. In practice, they are typically obtained
by some form of Monte Carlo simulation, but the distribution by which
they are generated is important for the success of the method. In particu-
lar, it is important that the sample states are “representative” in the sense
that they are visited often under a nearly optimal policy. More precisely,
the frequencies with which various states appear in the sample should be
roughly proportional to the probabilities of their occurrence under an opti-
mal policy. This point will be discussed later in Chapter 4, in the context
of infinite horizon problems, and the notion of “representative” state will
be better quantified in probabilistic terms.

Aside from the issue of selection of the sampling distribution that
we have just described, a difficulty with fitted value iteration arises when
the horizon is very long. In this case, however, the problem is often sta-
tionary, in the sense that the system and cost per stage do not change
as time progresses. Then it may be possible to treat the problem as one
with an infinite horizon and bring to bear additional methods for training
approximation architectures; see the discussion in Chapter 4.

3.4 Q-FACTOR PARAMETRIC APPROXIMATION

We will now consider an alternative form of approximation in value space.
It involves approximation of the optimal Q-factors of state-control pairs
(xk, uk) at time k, without an intermediate approximation of cost-to-go
functions. The optimal Q-factors are defined by

Q*
k(xk, uk) = E

{

gk(xk, uk, wk)+J*
k+1

(

fk(xk, uk, wk)
)

}

, k = 0, . . . , N−1,

(3.23)
where J*

k+1 is the optimal cost-to-go function for stage k+1. ThusQ*
k(xk, uk)

is the cost attained by using uk at state xk, and subsequently using an op-
timal policy.
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As noted in Section 1.2, the DP algorithm can be written as

J*
k (xk) = min

u∈Uk(xk)
Q*

k(xk, uk), (3.24)

and by using this equation, we can write Eq. (3.23) in the following equiv-
alent form that relates Q*

k with Q*
k+1:

Q*
k(xk, uk) = E

{

gk(xk, uk, wk)

+ min
u∈Uk+1(fk(xk,uk,wk))

Q*
k+1

(

fk(xk, uk, wk), u
)

}

.
(3.25)

This suggests that in place of the Q-factorsQ*
k(xk, uk), we may use Q-factor

approximations and Eq. (3.25) as the basis for suboptimal control.
We can obtain such approximations by using methods that are similar

to the ones we have considered so far (parametric approximation, enforced
decomposition, certainty equivalent control, etc). Parametric Q-factor ap-
proximations Q̃k(xk, uk, rk) may involve a neural network, or a feature-
based linear architecture. The feature vector may depend on just the state,
or on both the state and the control. In the former case, the architecture
has the form

Q̃k(xk, uk, rk) = rk(uk)′φk(xk), (3.26)

where rk(uk) is a separate weight vector for each control uk. In the latter
case, the architecture has the form

Q̃k(xk, uk, rk) = r′kφk(xk, uk), (3.27)

where rk is a weight vector that is independent of uk. The architecture
(3.26) is suitable for problems with a relatively small number of control
options at each stage. In what follows, we will focus on the architecture
(3.27), but the discussion with few modifications, also applies to the archi-
tecture (3.26).

We may adapt the fitted value iteration approach of the preceding
section to compute sequentially the parameter vectors rk in Q-factor para-
metric approximations, starting from k = N − 1. This algorithm is based
on Eq. (3.25), with rk obtained by solving least squares problems similar
to the ones of Eq. (3.22). As an example, the parameters rk of the archi-
tecture (3.27) are computed sequentially by collecting sample state-control
pairs (xsk, u

s
k), s = 1, . . . , q, and solving the linear least squares problems

rk ∈ argmin
r

q
∑

s=1

(

r′φk(xsk, u
s
k)− βs

k

)2
, (3.28)

where

βs
k = E

{

gk(xsk, u
s
k, wk) + min

u∈Uk+1(fk(x
s
k
,us

k
,wk))

r′k+1φk
(

fk(xsk, u
s
k, wk), u

)

}

.

(3.29)
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Thus rk is obtained through a least squares fit that aims to minimize the
squared errors in satisfying Eq. (3.25). Note that the solution of the least
squares problem (3.28) can be obtained in closed form as

rk =

(

q
∑

s=1

φk(xsk, u
s
k)φk(x

s
k, u

s
k)

′

)−1 q
∑

s=1

βs
kφk(x

s
k, u

s
k);

[cf. Eq. (3.3)]. Once rk has been computed, the one-step lookahead control
µ̃k(xk) is obtained on-line as

µ̃k(xk) ∈ arg min
u∈Uk(xk)

Q̃k(xk, u, rk), (3.30)

without the need to calculate any expected value. This latter property is a
primary incentive for using Q-factors in approximate DP, particularly when
there are tight constraints on the amount of on-line computation that is
possible in the given practical setting.

The samples βs
k in Eq. (3.29) involve the computation of an expected

value. In an alternative implementation, we may replace βs
k with an average

of just a few samples (even a single sample) of the random variable

gk(xsk, u
s
k, wk) + min

u∈Uk+1(fk(x
s
k
,us

k
,wk))

r′k+1φk
(

fk(xsk, u
s
k, wk), u

)

,

collected according to the probability distribution of wk. This distribu-
tion may either be known explicitly, or in a model-free situation, through
a computer simulator; cf. the discussion of Section 2.1.4. In particular,
to implement this scheme, we only need a simulator that for any pair
(xk, uk) generates a sample of the stage cost gk(xk, uk, wk) and the next
state fk(xk, uk, wk) according to the distribution of wk.

Having obtained the one-step lookahead policy π̃ = {µ̃0, . . . , µ̃N−1},
a further possibility is to approximate it with a parametric architecture.
This is approximation in policy space built on top of approximation in value

space; see the discussion of Section 2.1.3. The idea here is to simplify even
further the on-line computation of the suboptimal controls by avoiding the
minimization of Eq. (3.30).

Finally, let us note an alternative to computing Q-factor approxima-
tions. It is motivated by the potential benefit of using Q-factor differences
in contexts involving approximation. In this method, called advantage up-

dating, instead of computing and comparingQ*
k(xk, uk) for all uk ∈ Uk(xk),

we compute

Ak(xk, uk) = Q*
k(xk, uk)− min

uk∈Uk(xk)
Q*

k(xk, uk).

The function Ak(xk, uk) can serve just as well as Q*
k(xk, uk) for the pur-

pose of comparing controls, but may have a much smaller range of values



Sec. 3.5 Notes and Sources 39

than Q*
k(xk, uk). In the absence of approximations, advantage updating is

clearly equivalent to selecting controls by comparing their Q-factors. How-
ever, when approximation is involved, using Q-factor differences can be
important, because Q*

k(xk, uk) may embody sizable quantities that are in-
dependent of u, and which may interfere with algorithms such as the fitted
value iteration (3.28)-(3.29). This question is discussed further and is illus-
trated with an example in the neuro-dynamic programming book [BeT96],
Section 6.6.2.

3.5 NOTES AND SOURCES

Our discussion of approximation architectures, neural networks, and train-
ing has been limited, and aimed just to provide the connection with ap-
proximate DP and a starting point for further exploration. The literature
on the subject is vast, and the textbooks mentioned in the references to
Chapter 1 provide detailed accounts and many references in addition to
the ones given in Sections 3.1.3 and 3.2.1.

There are two broad directions of inquiry in parametric architectures:

(1) The design of architectures, either in a general or a problem-specific
context. Research in this area has intensified following the increased
popularity of deep neural networks.

(2) The algorithms for training of neural networks as well as linear archi-
tectures.

Both of these issues have been extensively investigated and research relating
to these and other related issues is continuing.

Incremental algorithms are supported by substantial theoretical anal-
ysis, which addresses issues of convergence, rate of convergence, stepsize
selection, and component order selection. It is beyond our scope to cover
this analysis, and we refer to the book [BeT96] and paper [BeT00] by
Bertsekas and Tsitsiklis, and the recent survey by Bottou, Curtis, and
Nocedal [BCN18] for theoretically oriented accounts. The author’s surveys
[Ber10] and [Ber15b], and convex optimization and nonlinear programming
textbooks [Ber15a], [Ber16a], collectively contain an extensive account of
theoretical and practical issues regarding incremental methods, including
the Kaczmarz, incremental gradient, incremental subgradient, incremental
aggregated gradient, incremental Newton, and incremental Gauss-Newton
methods.

Fitted value iteration has a long history; it has been mentioned by
Bellman among others. It has interesting properties, and at times exhibits
pathological behavior, such as instability over a long horizon. We will dis-
cuss this behavior in Section 4.4 in the context of infinite horizon problems.
Advantage updating (Section 3.4) was proposed by Baird [Bai93], [Bai94],
and is discussed in Section 6.6 of the book [BeT96].
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Sec. 4.1 An Overview of Infinite Horizon Problems 3

In this chapter, we first provide an introduction to the theory of infinite
horizon problems, and then consider the use of approximate DP/RL meth-
ods for suboptimal solution. Infinite horizon problems differ from their
finite horizon counterparts in two main respects:

(a) The number of stages is infinite.

(b) The system is stationary, i.e., the system equation, the cost per stage,
and the random disturbance statistics do not change from one stage
to the next.

The assumption of an infinite number of stages is never satisfied in practice,
but is a reasonable approximation for problems involving a finite but very
large number of stages. The assumption of stationarity is often satisfied
in practice, and in other cases it approximates well a situation where the
system parameters vary relatively slowly with time.

Infinite horizon problems give rise to elegant and insightful analysis,
and their optimal policies are often simpler than their finite horizon coun-
terparts. For example, optimal policies are typically stationary, i.e., the
optimal rule for choosing controls does not change from one stage to the
next.

On the other hand, infinite horizon problems generally require a more
sophisticated mathematical treatment. Our discussion will be limited to
relatively simple finite-state problems. Still some theoretical results will
be needed in this chapter. They will be explained intuitively to the extent
possible, and their mathematical proofs will be provided in the end-of-
chapter appendix.

4.1 AN OVERVIEW OF INFINITE HORIZON PROBLEMS

We will focus on two types of infinite horizon problems, where we aim to
minimize the total cost over an infinite number of stages, given by

Jπ(x0) = lim
N→∞

E
wk

k=0,1,...

{

N−1
∑

k=0

αkg
(

xk, µk(xk), wk

)

}

;

see Fig. 4.1.1. Here, Jπ(x0) denotes the cost associated with an initial state
x0 and a policy π = {µ0, µ1, . . .}, and α is a positive scalar. The meaning
of α < 1 is that future costs matter to us less than the same costs incurred
at the present time.

Thus the infinite horizon costs of a policy is the limit of its finite
horizon costs as the horizon tends to infinity. (We assume that the limit
exists for the moment, and address the issue later.) The two types of
problems, considered in Sections 4.2 and 4.3, respectively, are:

(a) Stochastic shortest path problems (SSP for short). Here, α = 1 but
there is a special cost-free termination state; once the system reaches
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...... ) xk xk+1) x0

Random Transition

) Random Cost

xk+1 = f(xk, uk, wk)

) αkg(xk, uk, wk)

Termination State Infinite Horizon

Figure 4.1.1 Illustration of an infinite horizon problem. The syatem and cost
per stage are stationary, except for the use of a discount factor α. If α = 1, there
is typically a special cost-free termination state that we aim to reach.

that state it remains there at no further cost. We will assume a prob-
lem structure such that termination is inevitable. Thus the horizon
is in effect finite, but its length is random and may be affected by the
policy being used.

(b) Discounted problems . Here, α < 1 and there need not be a termina-
tion state. However, we will see that a discounted problem can be
readily converted to an SSP problem. This can be done by introduc-
ing an artificial termination state to which the system moves with
probability 1−α at every stage, thus making termination inevitable.
As a result, our algorithms and analysis for SSP problems can be
easily adapted to discounted problems.

A Preview of Infinite Horizon Theory

There are several analytical and computational issues regarding our infi-
nite horizon problems. Many of them revolve around the relation between
the optimal cost-to-go function J* of the infinite horizon problem and the
optimal cost-to-go functions of the corresponding N -stage problems.

In particular, consider the SSP case and let JN (x) denote the opti-
mal cost of the problem involving N stages, initial state x, cost per stage
g(x, u, w), and zero terminal cost. This cost is generated after N iterations
of the DP algorithm

Jk+1(x) = min
u∈U(x)

E
w

{

g(x, u, w) + Jk
(

f(x, u, w)
)

}

, k = 0, 1, . . . , (4.1)

starting from the initial condition J0(x) = 0 for all x.† The algorithm (4.1)
is known as the value iteration algorithm (VI for short). Since the infinite
horizon cost of a given policy is, by definition, the limit of the corresponding
N -stage costs as N → ∞, it is natural to speculate that:

† This is just the finite horizon DP algorithm of Chapter 1. However, we

have reversed the time indexing to suit our purposes. Thus the index of the cost

functions produced by the algorithm is incremented with each iteration, and not

decremented as in the case of finite horizon.
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Sec. 4.1 An Overview of Infinite Horizon Problems 5

(1) The optimal infinite horizon cost is the limit of the corresponding
N -stage optimal costs as N → ∞; i.e.,

J*(x) = lim
N→∞

JN (x) (4.2)

for all states x.

(2) The following equation should hold for all states x,

J*(x) = min
u∈U(x)

E
w

{

g(x, u, w) + J*
(

f(x, u, w)
)

}

. (4.3)

This is obtained by taking the limit as N → ∞ in the VI algorithm
(4.1) using Eq. (4.2). Equation (4.3) is really a system of equations
(one equation per state x), which has as solution the costs-to-go of
all the states. It can also be viewed as a functional equation for the
optimal cost function J*, and it is called Bellman’s equation.

(3) If µ(x) attains the minimum in the right-hand side of the Bellman
equation (4.3) for each x, then the policy {µ, µ, . . .} should be optimal.
This type of policy is called stationary. Intuitively, optimal policies
can be found within this class of policies, since the future optimization
problem when starting at a given state looks the same regardless of
the time when we start.

All three of the preceding results hold for SSP problems under our
assumptions, as we will state later in Section 4.2 and prove in the appendix
to this chapter. They also hold for discounted problems in suitably modified
form that incorporates the discount factor. In fact the algorithms and
analysis of this chapter are quite similar for SSP and discounted problems,
to the point where we may discuss a particular method for one of the two
problems with the understanding that its application to the other problem
can be straightforwardly adapted.

Transition Probability Notation for Infinite Horizon Problems

Throughout this chapter we assume a finite-state discrete-time dynamic
system, and we will use a special transition probability notation that is
suitable for such a system. We generally denote states by the symbol i and
successor states by the symbol j. We will assume that there are n states
(in addition to the termination state for SSP problems). These states are
denoted 1, . . . , n, and the termination state is denoted t. The control u is
constrained to take values in a given finite constraint set U(i), which may
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depend on the current state i. The use of a control u at state i specifies
the transition probability pij(u) to the next state j, at a cost g(i, u, j).†

Given an admissible policy π = {µ0, µ1, . . .} [one with µk(i) ∈ U(i)
for all i and k] and an initial state i0, the system becomes a Markov chain
whose generated trajectory under π, denoted {i0, i1, . . .}, has a well-defined
probability distribution. The total expected cost associated with an initial
state i is

Jπ(i) = lim
N→∞

E

{

N−1
∑

k=0

αkg
(

ik, µk(ik), ik+1

)

∣

∣

∣
i0 = i, π

}

,

where α is either 1 (for SSP problems) or less than 1 for discounted prob-
lems. The expected value is taken with respect to the joint distribution of
the states i1, i2, . . ., conditioned on i0 = i and the use of π. The optimal
cost from state i, i.e., the minimum of Jπ(i) over all policies π, is denoted
by J*(i).

The cost function of a stationary policy π = {µ, µ, . . .} is denoted by
Jµ(i). For brevity, we refer to π as the stationary policy µ. We say that µ
is optimal if

Jµ(i) = J*(i) = min
π

Jπ(i), for all states i.

As noted earlier, under our assumptions, we will show that there will always
exist an optimal policy, which is stationary.

4.2 STOCHASTIC SHORTEST PATH PROBLEMS

In the SSP problem we assume that there is no discounting (α = 1), and
that there is a special cost-free termination state t. Once the system reaches
that state, it remains there at no further cost, i.e.,

ptt(u) = 1, g(t, u, t) = 0, for all u ∈ U(t).

We denote by 1, . . . , n the states other than the termination state t; see
Fig. 4.2.1.

With this notation, the Bellman equation (4.3) and the VI algorithm
(4.1) take the following form.

† To convert from the transition probability format to the system equation
format used in the preceding chapters, we can simply use the system equation

xk+1 = wk,

where wk is the disturbance that takes values according to the transition proba-

bilities pxkwk
(uk).
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pii(u) ) pjj(u)
) pij(u)

u) pji(u)

α i j tα i j t i j t

i j t

pit(u) ) pjt(u)

) ptt(u) = 1

Figure 4.2.1 The transition graph of an SSP problem. There are n states, plus
the termination state t, with transition probabilities pij(u). The termination state
is cost-free and absorbing.

Bellman Equation and Value Iteration for SSP Problems:

For all i = 1, . . . , n, we have

J*(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + J*(j)
)



 .

(4.4)
For all i = 1, . . . , n, and any initial conditions J0(1), . . . , J0(n), the VI
algorithm generates the sequence {Jk} according to

Jk+1(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + Jk(j)
)



 .

(4.5)

The right-hand bracketed expression in the Bellman equation (4.4)
represents an expected value, which is similar to the expectation we have
seen in earlier DP expressions. It is the sum of three terms:

(a) The contribution

pit(u)g(i, u, t)

to the expected cost of the current stage of the terminating i-to-t
transition.

(b) The contribution
n
∑

j=1

pij(u)g(i, u, j)
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to the expected cost of the current stage of the nonterminating i-to-j
transitions.

(c) The optimal expected cost-to-go

n
∑

j=1

pij(u)J*(j)

starting from the next state j [if the next state is t, the corresponding
optimal cost is J*(t), which is zero, so it does not appear in the sum].

Note that the deterministic shortest path problem of Section 1.3.1 is
obtained as the special case of the SSP problem where for each state-control
pair (i, u), the transition probability pij(u) is equal to 1 for a unique state
j that depends on (i, u). Moreover, any deterministic or stochastic finite-
state, finite horizon problem with a termination state (cf. Section 1.3.3)
can be converted to an SSP problem. In particular, the reader may verify
that the finite-state N -step horizon problem of Chapter 1 can be obtained
as a special case of an SSP problem by viewing as state the pair (xk, k)
and lumping all pairs (xN , N) into a termination state t.

We are interested in problems where reaching the termination state t
is inevitable. Thus, the essence of the problem is to reach t with minimum
expected cost. Throughout this chapter, when discussing SSP problems,
we will make the following assumption, which will be shown to guarantee
eventual termination under all policies.†

† The main analytical and algorithmic results for SSP problems are valid
under more general conditions, which involve the notion of a proper policy (see
the end-of-chapter references). In particular, a stationary policy is called proper

if starting from every state, it is guaranteed to eventually reach the destination.
The policy is called improper if it is not proper.

It can be shown that Assumption 4.2.1 is equivalent to the seemingly weaker

assumption that all stationary policies are proper. However, the subsequent four

propositions can also be shown under the genuinely weaker assumption that there

exists at least one proper policy, and furthermore, every improper policy is “bad”

in the sense that it results in infinite expected cost from at least one initial state

(see [BeT89], [BeT91], or [Ber12], Chapter 3). These assumptions, when special-

ized to deterministic shortest path problems, are similar to the assumptions of

Section 1.3.1. They imply that there is at least one path to the destination from

every starting state and that all cycles have positive cost. In the absence of these

assumptions, the Bellman equation may have no solution or an infinite number

of solutions (see [Ber18a], Section 3.1.1 for discussion of a simple example, which

in addition to t, involves a single state 1 at which we can either stay at cost a or

move to t at cost b; anomalies occur when a = 0 and when a < 0).

kalou
Highlight

kalou
Highlight

kalou
Highlight

kalou
Highlight



Sec. 4.2 Stochastic Shortest Path Problems 9

Assumption 4.2.1: (Termination is Inevitable Under All Poli-
cies) There exists an integer m such that regardless of the policy used
and the initial state, there is positive probability that the termination
state will be reached after no more that m stages; i.e., for all admissible
policies π we have

ρπ = max
i=1,...,n

P{xm 6= t | x0 = i, π} < 1.

Let ρ be the maximum probability of not reaching t, over all starting
states and policies:

ρ = max
π

ρπ.

Note that ρπ depends only on the first m components of the policy π.
Furthermore, since the number of controls available at each state is finite,
the number of distinct m-stage policies is also finite. It follows that there
can be only a finite number of distinct values of ρπ, so that

ρ < 1.

This implies that the probability of not reaching t over a finite horizon

diminishes to 0 as the horizon becomes longer , regardless of the starting
state and policy used.

To see this, note that for any π and any initial state i

P{x2m 6= t | x0 = i, π} = P{x2m 6= t | xm 6= t, x0 = i, π}

· P{xm 6= t | x0 = i, π}

≤ ρ2.

More generally, for each π, the probability of not reaching the termination
state after km stages diminishes like ρk regardless of the initial state, i.e.,

P{xkm 6= t | x0 = i, π} ≤ ρk, i = 1, . . . , n. (4.6)

This fact implies that the limit defining the associated total cost vector Jπ
exists and is finite, and is central in the proof of the following results (given
in the appendix to this chapter).

We now describe the main theoretical results for SSP problems; the
proofs are given in the appendix to this chapter. Our first result is that
the infinite horizon version of the DP algorithm, which is VI [cf. Eq. (4.1)],
converges to the optimal cost function J*. The optimal cost J*(t) starting
from t is of course 0, so it is just neglected where appropriate in the sub-
sequent analysis. Generally, J* is obtained in the limit, after an infinite
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number of iterations. However, there are important cases where conver-
gence is obtained in finitely many iterations (see [Ber12], Chapter 3).

Proposition 4.2.1: (Convergence of VI) Given any initial con-
ditions J0(1), . . . , J0(n), the sequence

{

Jk(i)
}

generated by the VI
algorithm

Jk+1(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + Jk(j)
)



 ,

converges to the optimal cost J*(i) for each i = 1, . . . , n.

Our next result is that the limiting form of the DP equation, Bell-
man’s equation, has J* as its unique solution.

Proposition 4.2.2: (Bellman’s Equation) The optimal cost func-
tion

J* =
(

J*(1), . . . , J*(n)
)

satisfies for all i = 1, . . . , n, the equation

J*(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + J*(j)
)



 ,

(4.7)
and is the unique solution of this equation.

Our next result expresses that by restricting attention to a single
policy µ, we obtain a Bellman equation specific to µ, which has Jµ as its
unique solution.

Proposition 4.2.3: (VI and Bellman’s Equation for Policies)
For any stationary policy µ, the corresponding cost function Jµ =
(

Jµ(1), . . . , Jµ(n)
)

satisfies for all i = 1, . . . , n the equation

Jµ(i) = pit
(

µ(i)
)

g
(

i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ Jµ(j)
)

,
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and is the unique solution of this equation. Furthermore, given any
initial conditions J0(1), . . . , J0(n), the sequence

{

Jk(i)
}

generated by
the VI algorithm that is specific to µ,

Jk+1(i) = pit
(

µ(i)
)

g
(

i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ Jk(j)
)

,

converges to the cost Jµ(i) for each i.

Our final result provides a necessary and sufficient condition for op-
timality of a stationary policy.

Proposition 4.2.4: (Optimality Condition) A stationary policy
µ is optimal if and only if for every state i, µ(i) attains the minimum
in the Bellman equation (4.7).

We provide an example illustrating Bellman’s equation.

Example 4.2.1 (Maximum Expected Time to Termination)

The case where

g(i, u, j) = −1, for all i, u ∈ U(i), and j,

corresponds to a problem where the objective is to terminate as late as pos-
sible on the average, while the opposite of the optimal cost, −J∗(i), is the
maximum expected time to termination starting from state i. Under our as-
sumptions, the optimal costs J∗(i) uniquely solve Bellman’s equation, which
has the form

J
∗(i) = min

u∈U(i)

[

−1 +

n
∑

j=1

pij(u)J
∗(j)

]

, i = 1, . . . , n.

In the special case of a single policy µ, where there is only one control at each
state, −Jµ(i) represents the expected time to reach t starting from i. This is
known as the mean first passage time from i to t, and is given as the unique
solution of the corresponding Bellman equation

Jµ(i) = −1 +

n
∑

j=1

pij
(

µ(i)
)

Jµ(j)
)

, i = 1, . . . , n.

We will now provide an insightful mathematical result about SSP
problems, which is proved in the appendix with the aid of the preceding

kalou
Highlight
the total expected cost over a finite horizon N is -N

kalou
Sticky Note
under miu

kalou
Highlight



12 Infinite Horizon Reinforcement Learning Chap. 4

example. To this end let us introduce for any vector J =
(

J(1), . . . , J(n)
)

,
the notation

(TJ)(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + J(j)
)



 , (4.8)

for all i = 1, . . . , n, and

(TµJ)(i) = pit
(

µ(i)
)

g
(

i, µ(i), t
)

+

n
∑

j=1

pij(µ(i))
(

g
(

i, µ(i), j
)

+ J(j)
)

, (4.9)

for all policies µ and states i = 1, . . . , n. Here T and Tµ are the DP
operators that map the vector J into the vectors

TJ =
(

(TJ)(1), . . . , (TJ)(n)
)

, TµJ =
(

(TµJ)(1), . . . , (TµJ)(n)
)

,

respectively. Bellman’s equations can be written in terms of these operators
as the fixed point equations J* = TJ* and Jµ = TµJµ.

The next proposition states that T and Tµ are contraction map-
pings, so the unique fixed point property of this mapping follows from
general mathematical results about contraction mappings (see e.g., [Ber12],
[Ber18a]). Moreover the contraction property provides a convergence rate
estimate for VI, and is the basis for further analysis of exact and approxi-
mate methods for SSP problems (see the author’s monograph [Ber18a] for
a theoretical development of DP, which is based on fixed point theory and
an abstract operator viewpoint).

Proposition 4.2.5: (Contraction Property of the DP Opera-
tor) The DP operators T and Tµ of Eqs. (4.8) and (4.9) are contrac-
tion mappings with respect to some weighted norm

‖J‖ = max
i=1,...,n

∣

∣J(i)
∣

∣

v(i)
,

defined by some vector v =
(

v(1), . . . , v(n)
)

with positive components.
In other words, there exist positive scalar ρ < 1 and ρµ < 1 such that
for any two n-dimensional vectors J and J ′, we have

‖TJ − TJ ′‖ ≤ ρ ‖J − J ′‖, ‖TµJ − TµJ ′‖ ≤ ρµ ‖J − J ′‖.

Note that the weight vector v and the corresponding weighted norm
may be different for T and for Tµ. The proof of the proposition, given in
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the appendix, shows that the weights v(i) and the modulus of contraction
ρ are related to the maximum expected number of steps −m∗(i) to reach t

from i (cf. Example 4.2.1). In particular, we have

v(i) = −m∗(i), ρ = max
i=1,...,n

v(i)− 1

v(i)
.

Among others, the preceding contraction property provides a con-
vergence rate estimate for VI, namely that the generated sequence {Jk}
satisfies

‖Jk − J*‖ ≤ ρk‖J0 − J*‖.

This follows from the fact that Jk and J* can be viewed as the results of
the k-fold application of T to the vectors J0 and J*, respectively.

Bellman Equation and Value Iteration for Q-Factors

The results just given have counterparts involving Q-factors. The optimal
Q-factors are defined for all i = 1, . . . , n, and u ∈ U(i) by

Q*(i, u) = pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + J*(j)
)

.

As in the finite horizon case, Q*(i, u) can be interpreted as the cost of
starting at i, using u for the first stage, and using an optimal policy after-
wards. Once Q* is computed by some method, an optimal policy µ∗ can
be obtained from the minimization

µ∗(i) ∈ arg min
u∈U(i)

Q*(i, u), i = 1, . . . , n.

Similarly, if approximately optimal Q-factors Q̃(i, u) are obtained by some
method (model-based or model-free), a suboptimal policy µ̃ can be obtained
from the minimization

µ̃(i) ∈ arg min
u∈U(i)

Q̃(i, u), i = 1, . . . , n.

Our basic results relating Bellman’s equation and the VI algorithm
are stated as follows.

Bellman Equation and Value Iteration for Q-Factors and SSP
Problems:

For all i = 1, . . . , n, and u ∈ U(i) we have

Q*(i, u) = pit(u)g(i, u, t) +

n
∑

j=1

pij(u)

(

g(i, u, j) + min
v∈U(j)

Q*(j, v)

)

.



14 Infinite Horizon Reinforcement Learning Chap. 4

) States

State-Control Pairs (i, u) States

) States j p

j pij(u)

) g(i, u, j)

Control v
) Cost = 0 States at stage

v (j, v) Cost = 0 States at stage

) Cost = 0 State-Control Pairs States at stage

Figure 4.2.2 States, transition probabilities, and stage costs corresponding to a
modified SSP problem, which yields the optimal Q-factors as well as the optimal
costs. The states of this problem are the pairs (i, u), u ∈ U(i), the original
problem states i = 1, . . . , n, and the termination state t. A control v ∈ U(j) is
available only at the original system states j, leading to the pair (j, v) at cost 0.
The transition from a pair (i, u) leads to j with probability pij(u) and cost 0. The
Bellman equation for this modified problem is

Q∗(i, u) = pit(u)g(i, u, t) +

n
∑

j=1

pij(u)

(

g(i, u, j) + min
v∈U(j)

Q∗(j, v)

)

,

for the states (i, u), u ∈ U(i), and

J∗(j) = min
v∈U(j)

Q∗(j, v),

for the states j = 1, . . . , n. Note that a policy µ for this problem leads from a

state j to the state
(

j, µ(j)
)

, so in any system trajectory, only pairs of the form
(

j, µ(j)
)

are visited after the first transition.

For all i = 1, . . . , n, and u ∈ U(i), and any initial conditions Q0(i, u),
the VI algorithm generates the sequence {Qk} according to

Qk+1(i, u) = pit(u)g(i, u, t) +

n
∑

j=1

pij(u)

(

g(i, u, j) + min
v∈U(j)

Qk(j, v)

)

.

Actually, the optimal Q-factors Q*(i, u) can be viewed as optimal
state costs associated with a modified SSP problem, which involves a new
state for each pair (i, u) with transition probabilities pij(u) to the states
j = 1, . . . , n, t; see Fig. 4.2.2. Then the preceding Bellman equation for the
optimal Q-factors, together with the Bellman equation (4.7) for the optimal
costs J*(j), can be viewed as the Bellman equation for the modified SSP
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problem.

Temporal Differences and Cost Shaping

Bellman’s equation can be written in an alternative form, which involves
the differential

Ĵ = J* − V,

where V =
(

V (1), . . . , V (n)
)

is any n-dimensional vector and V (t) = 0. In
particular, by subtracting V (i) from both sides of the Bellman equation
(4.7), and adding and subtracting V (j) within the right-hand side summa-
tion, we obtain

Ĵ(i) = pit(u)ĝ(i, u, t) + min
u∈U(i)

n
∑

j=1

pij(u)
(

ĝ(i, u, j) + Ĵ(j)
)

, (4.10)

for all i = 1, . . . , n, where

ĝ(i, u, j) =

{

g(i, u, j) + V (j)− V (i) if i, j = 1, . . . , n,
g(i, u, t)− V (i) if i = 1, . . . , n, j = t.

(4.11)

We refer to Eq. (4.10) as the variational form of Bellman’s equation, and
to the modified cost per stage ĝ as the temporal difference corresponding
to V . Temporal differences play a significant role in several algorithmic RL
contexts; see Section 4.9, and the approximate DP/RL books referenced
earlier.

Note that Eq. (4.10) is the Bellman equation for a cost-modified prob-
lem, where the cost per stage g has been replaced by the temporal difference
ĝ. Thus by applying Prop. 4.2.2 we have that Ĵ = J* − V is the unique
solution of this equation, so that J* can be obtained by solving either the
original or the cost-modified version of the problem. Moreover, a policy µ,
has cost function Ĵµ = Jµ−V in the cost-modified problem. It follows that
the original and the cost-modified SSP problems are essentially equivalent,
and the choice of V does not matter when exact DP methods are used
to solve them. However, when approximate methods are used, different
results may be obtained, which can be more favorable with an appropriate
choice of V .

In particular, we have the option to choose V and an approximation
architecture methodology that matches the differential Ĵ = J* − V better
than it matches J*. For example, we may obtain V with some problem
approximation scheme as a rough estimate of J*, and then use a different
approximation in value space scheme, based on different principles, for
the corresponding cost-modified problem. We refer to this as cost shaping
(the name “reward shaping” in used in the RL literature, for problems
involving reward maximization). While cost shaping does not change the
optimal policies of the original DP problem, it may change significantly
the suboptimal policies produced by approximate DP methods, such as
the ones that we will discuss in this chapter and the next.
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4.3 DISCOUNTED PROBLEMS

We now consider the discounted problem, where there is a discount factor
α < 1. Using our transition probability notation, the Bellman equation
and the VI algorithm take the following form.

Bellman Equation and Value Iteration for Discounted Prob-
lems:

For all i = 1, . . . , n, we have

J*(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ*(j)
)

.

For all i = 1, . . . , n, and any initial conditions J0(1), . . . , J0(n), the VI
algorithm generates the sequence {Jk} according to

Jk+1(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJk(j)
)

.

We will now show that the discounted problem can be converted to
an SSP problem for which the analysis of the preceding section applies.
To see this, let i = 1, . . . , n be the states, and consider an associated SSP
problem involving the states 1, . . . , n plus an artificial termination state t,
with state transitions and costs obtained as follows: From a state i 6= t,
when control u is applied, the next state is j with probability αpij(u) at
a cost g(i, u, j), and t with probability 1 − α at zero cost; see Fig. 4.3.1.
Note that Assumption 4.2.1 of the preceding section is satisfied for this
SSP problem, since t is reached with probability 1−α > 0 from every state
in a single step.

Suppose now that we use the same policy in the discounted prob-
lem and in the associated SSP problem. Then, as long as termination
has not occurred, the state evolution in the two problems is governed by
the same transition probabilities. Furthermore, the expected cost of the
kth stage of the associated shortest path problem is the expected value
of g

(

ik, µk(ik), ik+1

)

multiplied by the probability that state t has not yet
been reached, which is αk. This is also the expected cost of the kth stage
for the discounted problem. Thus the cost of any policy starting from a
given state, is the same for the original discounted problem and for the
associated SSP problem.

It follows that we can apply Props. 4.2.1-4.2.5 of the preceding sec-
tion to the associated SSP problem and obtain corresponding results for
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pii(u) ) pjj(u)
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) αpij(u)
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Cost 0 Cost g(i, u, j)

Cost 0 Cost g(i, u, j)

( )

Discounted Problem SSP EquivalentDiscounted Problem SSP Equivalent

Figure 4.3.1 Transition probabilities for an α-discounted problem and its as-
sociated SSP problem. In the latter problem, the probability that the state is
not t after k stages is αk. The transition costs at the kth stage are g(i, u, j) for
both problems, but they must be multiplied by αk because of discounting (in the
discounted case) or because it is incurred with probability αk when termination
has not yet been reached (in the SSP case).

the discounted problem, which properly incorporate the discount factor in
accordance with the SSP-to-discounted equivalence just established.

Proposition 4.3.1: (Convergence of VI) Given any initial con-
ditions J0(1), . . . , J0(n), the sequence

{

Jk(i)
}

generated by the VI
algorithm

Jk+1(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJk(j)
)

, i = 1, . . . , n,

converges to the optimal cost J*(i) for each i.

Proposition 4.3.2: (Bellman’s Equation) The optimal cost func-
tion

J* =
(

J*(1), . . . , J*(n)
)

satisfies for all i = 1, . . . , n, the equation

J*(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ*(j)
)

, (4.12)

and is the unique solution of this equation.



18 Infinite Horizon Reinforcement Learning Chap. 4

Proposition 4.3.3: (VI and Bellman’s Equation for Policies)
For any stationary policy µ, the corresponding cost function Jµ =
(

Jµ(1), . . . , Jµ(n)
)

is the unique solution of the equation

Jµ(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, i = 1, . . . , n.

Furthermore, given any initial conditions J0(1), . . . , J0(n), the sequence
{

Jk(i)
}

generated by the VI algorithm

Jk+1(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJk(j)
)

, i = 1, . . . , n,

converges to the cost Jµ(i) for each i.

Proposition 4.3.4: (Optimality Condition) A stationary policy
µ is optimal if and only if for every state i, µ(i) attains the minimum
in the Bellman equation (4.12).

Bellman’s equation (4.12) has a familiar DP interpretation. At state
i, the optimal cost J*(i) is the minimum over all controls of the sum of
the expected current stage cost and the expected optimal cost of all future
stages. The former cost is g(i, u, j). The latter cost is J*(j), but since this
cost starts accumulating after one stage, it is discounted by multiplication
with α.

Similar to Prop. 4.2.5, there is a contraction mapping result and con-
vergence rate estimate for value iteration. To this end we introduce the
mappings

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ(j)
)

, i = 1, . . . , n, (4.13)

and

(TµJ)(i) =
n
∑

j=1

pij(µ(i))
(

g
(

i, µ(i), j
)

+ αJ(j)
)

, i = 1, . . . , n, (4.14)

in analogy with their SSP counterparts of Eqs. (4.8) and (4.9). Similar
to the SSP case, Bellman’s equations can be written in terms of these



Sec. 4.3 Discounted Problems 19

operators as the fixed point equations J* = TJ* Jµ = TµJµ. The follow-
ing contraction result is useful for the analysis of exact and approximate
methods for discounted problems.

Proposition 4.3.5: (Contraction Property of the DP Opera-
tor) The DP operators T and Tµ of Eqs. (4.13) and (4.14) are con-
traction mappings of modulus α with respect to the maximum norm

‖J‖ = max
i=1,...,n

∣

∣J(i)
∣

∣. (4.15)

In particular, for any two n-dimensional vectors J and J ′, we have

‖TJ − TJ ′‖ ≤ α‖J − J ′‖, ‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖.

Let us also mention that the cost shaping idea discussed for SSP prob-
lems, extends readily to discounted problems. In particular, the variational
form of Bellman’s equation takes the form

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

ĝ(i, u, j) + αĴ(j)
)

, i = 1, . . . , n,

for any given vector V , where

ĝ(i, u, j) = g(i, u, j) + αV (j)− V (i), i = 1, . . . , n,

is the temporal difference corresponding to V ; cf. Eqs. (4.10) and (4.11).

Example 4.3.1 (Asset Selling)

Consider of problem of selling an asset over an infinite number of periods.
At each period an offer becomes available. We assume that offers at different
periods are independent and that they can take n values v1, . . . , vn with corre-
sponding probabilities according to given probability p(1), . . . , p(n). Here, if
accepted, the amount ik offered in period k, will be invested at a rate of inter-
est r. By depreciating the sale amount to period 0 dollars, we view (1+r)−kik
as the reward for selling the asset in period k at a price ik, where r > 0 is the
rate of interest. Then we have a discounted reward problem with discount
factor α = 1/(1 + r). The analysis of the present section is applicable, and
the optimal value function J∗ is the unique solution of Bellman’s equation

J
∗(i) = max

[

i,
1

1 + r

n
∑

j=1

pjJ
∗(j)

]

.
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Thus the optimal reward function is characterized by the critical number

c =
1

1 + r

n
∑

j=1

pjJ
∗(j).

An optimal policy is obtained by minimizing over the two controls. It is to
sell if and only if the current offer i is greater than c. The critical number c
can be obtained by a simple form of VI (see [Ber17], Section 3.4.

A far more difficult version of the problem is one where the offers are
correlated, so the offer at each stage may be viewed as an observation that
provides information about future offers. A related difficult version of the
problem is one where the probability distribution p =

(

p(1), . . . , p(n)
)

of
the offers is unknown, and is estimated as new offers are revealed. In both
cases the problem can be formulated as a partial state information problem
involving a belief state: the estimate of the distribution p given the past
offers (suitable conditions are of course needed to ensure that the estimate of
p can be in principle computed exactly or can be approximated as a practical
matter). Some of the finite horizon approximation methods of Chapters 2
and 3 can be adapted to solve such a problem. However, an exact solution
is practically impossible, since this would involve DP calculations over an
infinite dimensional space of belief states.

Bellman Equation and Value Iteration for Q-Factors

As in the SSP case, the results just given have counterparts involving the
optimal Q-factors, defined by

Q*(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ*(j)
)

, i = 1, . . . , n, u ∈ U(i).

They can be obtained from the corresponding SSP results, by viewing the
discounted problem as a special case of the SSP problem. OnceQ* or an ap-
proximation Q̃ is computed by some method (model-based or model-free),
an optimal policy µ∗ or approximately optimal policy µ̃ can be obtained
from the minimization

µ∗(i) ∈ arg min
u∈U(i)

Q*(i, u), i = 1, . . . , n,

or the approximate version

µ̃(i) ∈ arg min
u∈U(i)

Q̃(i, u), i = 1, . . . , n.

Our basic results relating Bellman’s equation and the VI algorithm
are stated as follows.
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Bellman Equation and Value Iteration for Q-Factors and Dis-
counted Problems:

For all i = 1, . . . , n, and u ∈ U(i) we have

Q*(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q*(j, v)

)

. (4.16)

For all i = 1, . . . , n, and u ∈ U(i), and any initial conditions Q0(i, u),
the VI algorithm generates the sequence {Qk} according to

Qk+1(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Qk(j, v)

)

. (4.17)

The VI algorithn (4.17) forms the basis for various Q-learning meth-
ods to be discussed later.

4.4 EXACT AND APPROXIMATE VALUE ITERATION

We have already encountered the VI algorithm for SSP problems,

Jk+1(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + Jk(j)
)



 , (4.18)

and its discounted version

Jk+1(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJk(j)
)

. (4.19)

It is one of the principal methods for calculating the optimal cost function
J*.

Unfortunately, when the number of states is large, the iterations
(4.18) and (4.19) may be prohibitively time consuming. This motivates
an approximate version of VI, which is patterned after the least squares
regression/fitted VI scheme of Section 3.3. We start with some initial ap-
proximation to J*, call it J̃0. Then we generate a sequence {J̃k} where
J̃k+1 is equal to the exact value iterate T J̃k plus some error [we are using
here the shorthand notation for the DP operator T given in Eqs. (4.8) and
(4.13)]. Assuming that values (T J̃k)(i) may be generated for sample states
i, we may obtain J̃k+1 by some form of least squares regression. We will
now discuss how the error (J̃k−J*) is affected by this type of approximation
process.
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Error Bounds and Pathologies of Approximate Value Iteration

We will focus on approximate VI for discounted problems. The analysis for
SSP problems is qualitatively similar. We first consider estimates of the
cost function error

max
i=1,...,n

∣

∣J̃k(i)− J*(i)
∣

∣, (4.20)

and the policy error

max
i=1,...,n

∣

∣Jµ̃k (i)− J*(i)
∣

∣, (4.21)

where the policy µ̃k is obtained from the minimization

µ̃k(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j)
)

.

It turns out that such estimates are possible, but under assumptions
whose validity may be hard to guarantee. In particular, it is natural to
assume that the error in generating the value iterates (T J̃k)(i) is within
some δ > 0 for every state i and iteration k, i.e., that

max
i=1,...,n

∣

∣

∣

∣

∣

∣

J̃k+1(i)− min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃k(j)
)

∣

∣

∣

∣

∣

∣

≤ δ. (4.22)

It is then possible to show that asymptotically, as k → ∞, the cost error
(4.20) becomes less or equal to δ/(1 − α), while the policy error (4.21)
becomes less or equal to 2δ/(1− α)2.

Such error bounds are given in Section 6.5.3 of the book [BeT96] (see
also Prop. 2.5.3 of [Ber12]), but it is important to note that the condition
(4.22) may not be satisfied by the natural least squares regression/fitted VI
scheme of Section 3.3. This is illustrated by the following simple example
from [TsV96] (see also [BeT96], Section 6.5.3), which shows that the errors
from successive approximate value iterations can accumulate to the point
where the condition (4.22) cannot be maintained, and the approximate
value iterates J̃k can grow unbounded.

Example 4.4.1 (Error Amplification in Approximate Value
Iteration)

Consider a two-state discounted problem with states 1 and 2, and a single
policy. The transitions are deterministic: from state 1 to state 2, and from
state 2 to state 2. The transitions are also cost-free; see Fig. 4.4.1. Thus the
Bellman equation is

J(1) = αJ(2), J(2) = αJ(2),
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a 1 2

u Cost 1 Cost 1

u Cost 1 Cost 1

) Terminal State 2 0
) Terminal State 2 0

) Terminal State 2 0

J∗(1) = J∗(2) = 0 Exact VI :

Termination State Infinite Horizon Bellman Eq: J(1) = αJ(2), J(2) = αJ(2)

(2) = 0 Exact VI: Jk+1(1) = αJk(2), Jk+1(2) = αJk(2)

Figure 4.4.1 Illustration of the discounted problem of Example 4.4.1. There
are two states, 1 and 2, and a single policy. The transitions are deterministic:
from state 1 to state 2, and from state 2 to state 2. These transitions are also
cost-free.

and its unique solution is J∗(1) = J∗(2) = 0. Moreover, exact VI has the
form

Jk+1(1) = αJk(2), Jk+1(2) = αJk(2).

We consider a VI approach that approximates cost functions within
the one-dimensional subspace of linear functions S =

{

(r, 2r) | r ∈ ℜ
}

; this
is a favorable choice since the optimal cost function J∗ = (0, 0) belongs to
S. We use a weighted least squares regression scheme. In particular, given
J̃k = (rk, 2rk), we find J̃k+1 = (rk+1, 2rk+1) as follows; see Fig. 4.4.2:

(a) We compute the exact VI iterate from J̃k:

T J̃k =
(

αJ̃k(2), αJ̃k(2)
)

= (2αrk, 2αrk).

(b) For some weights ξ1, ξ2 > 0, we obtain the scalar rk+1 as

rk+1 ∈ argmin
r

[

ξ1
(

r − (T J̃k)(1)
)2

+ ξ2
(

2r − (T J̃k)(2)
)2
]

,

or
rk+1 ∈ argmin

r

[

ξ1(r − 2αrk)
2 + ξ2(2r − 2αrk)

2
]

.

To perform the preceding minimization, we write the corresponding
optimality condition (set to zero the derivative with respect to r), and obtain
after some calculation

rk+1 = αζrk where ζ =
2(ξ1 + 2ξ2)

ξ1 + 4ξ2
> 1. (4.23)

Thus if ξ1 and ξ2 are chosen so that α > 1/ζ, the sequence {rk} diverges
and so does {J̃k}. In particular, for the natural choice ξ1 = ξ2 = 1, we have
ζ = 6/5, so the approximate VI scheme diverges for α in the range (5/6, 1);
see Fig. 4.4.2.

The difficulty here is that the approximate VI mapping that generates
J̃k+1 by a weighted least squares-based approximation of T J̃k is not a con-
traction (even though T itself is a contraction). At the same time there is
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J̃k = (rk, 2rk) Exact VI iterate

) Exact VI iterate J̃k+1

) Exact VI iterate J

) Exact VI iterate Approximate
) Exact VI iterate Approximate

(2) (2αrk, 2αrk)

Termination State Infinite Horizon Approximation Subspace

) Terminal State 2 0 J∗ = (0, 0)

Orthogonal Projection

π/4 Sample State

Range of Weighted Projections
Range of Weighted Projections

Figure 4.4.2 Illustration of Example 4.4.1. Iterates of approximate VI lie on the

line
{

(r, 2r) | r ∈ ℜ
}

. Given an iterate J̃k = (rk, 2rk), the next exact VI iterate
is

(

αJ̃k(2), αJ̃k(2)
)

= (2αrk , 2αrk).

The approximation of this iterate on the line {(r, 2r) | r ∈ ℜ} by least squares
regression can be viewed as weighted projection onto the line, and depends on the
weights (ξ1, ξ2). The range of weighted projections as the weights vary is shown
in the figure. For the natural choice ξ1 = ξ2 = 1 and α sufficiently close to 1,
the new approximate VI iterate J̃k+1 is further away from J∗ = (0, 0) than J̃k.
The difficulty here is that the mapping that consists of a VI followed by weighted
projection onto the line {(r, 2r) | r ∈ ℜ} need not be a contraction.

no δ such that the condition (4.22) is satisfied for all k, because of error
amplification in each approximate VI.

The preceding example indicates that the choice of the least squares
weights is important in determining the success of least squares-based ap-
proximate VI schemes. Generally, in regression-based parametric architec-
ture training schemes of the type discussed is Section 3.1.2, the weights are
related to the way samples are collected: the weight ξi for state i is the
proportion of the number of samples in the least squares summation that
correspond to state i. Thus ξ1 = ξ2 = 1 in the preceding example means
that we use an equal number of samples for each of the two states 1 and 2.

Now let us consider an approximation architecture J̃(i, ·) and a sam-
pling process for approximating the value iterates. In particular, let

J̃k(i) = J̃(i, rk), i = 1, . . . , n,

where rk is the parameter vector corresponding to iteration k. Then the
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parameter rk+1 used to represent the next value iterate as

J̃k+1(i) = J̃(i, rk+1), i = 1, . . . , n,

is obtained by the minimization

rk+1 ∈ argmin
r

q
∑

s=1

(

J̃(is, r)− βs
)2
, (4.24)

where (is, βs), s = 1, . . . , q, is a training set with each βs being the value
iterate at the state is:

βs = (T J̃k)(is).

The critical question now is how to select the sample states is, s =
1, . . . , q, to guarantee that the iterates rk remain bounded, so that a con-
dition of the form (4.22) is satisfied and the instability illustrated with Ex-
ample 4.4.1 is avoided. It turns out that there is no known general method
to guarantee this in infinite horizon problems. However, some practical
methods have been developed. One such method is to weigh each state ac-
cording to its “long-term importance,” i.e., proportionally to the number of
its occurrences over a long trajectory under a “good” heuristic policy.† To
implement this, we may run the system with the heuristic policy starting
from a number of representative states, wait for some time for the system
to approach steady-state, and record the generated states is, s = 1, . . . , q,
to be used in the regression scheme (4.24). There is no theoretical guaran-
tee for the stability of this scheme in the absence of additional conditions:
it has been used with success in several reported case studies, although its
rationale has only a tenuous basis in analysis. For a discussion of this issue,
we refer to [Ber12], Section 6.3, and other end-of-chapter references.

4.5 POLICY ITERATION

The major alternative to value iteration is policy iteration (PI for short).
This algorithm starts with a stationary policy µ0, and generates iteratively
a sequence of new policies µ1, µ2, . . .. The algorithm has solid conver-
gence guarantees when implemented in its exact form, as we will show
shortly. When implemented in approximate form, as it is necessary when

† In the preceding Example 4.4.1, weighing the two states according to their

“long-term importance” would choose ξ2 to be much larger than ξ1, since state

2 is “much more important,” in the sense that it occurs almost exclusively in

system trajectories. Indeed, from Eq. (4.23) it can be seen that when the ratio

ξ1/ξ2 is close enough to 0, the scalar ζ is close enough to 1, making the scalar αζ

strictly less than 1, and guaranteeing convergence of J̃k to J∗.
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Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

Policy Evaluation Evaluate Cost Function Jµ of Current policy

of Current policy µ

Policy Cost Evaluation

Policy Cost Evaluation

Figure 4.5.1 Illustration of exact PI. Each iteration consists of a policy evaluation
using the current policy µ, followed by generation of an improved policy µ̃.

the number of states is large, its performance guarantees are somewhat
more favorable than those of the approximate VI of the preceding section.

The closest analog of PI that we have encountered so far is the rollout
algorithm of Chapter 2. There we have started with some policy and pro-
duced an improved policy though a process of cost function evaluation and
one-step or multistep minimization. This idea is extended in the context
of PI, which consists of multiple successive policy evaluations and policy
improvements.

4.5.1 Exact Policy Iteration

Consider first the SSP problem. Here, each policy iteration consists of two
phases: policy evaluation and policy improvement ; see Fig. 4.5.1.

Exact Policy Iteration: SSP Problems

Given the typical policy µk:

Policy evaluation computes Jµk(i), i = 1, . . . , n, as the solution of
the (linear) system of Bellman equations

Jµk (i) =

n
∑

j=1

pij
(

µk(i)
)

(

g
(

i, µk(i), j
)

+ Jµk (j)
)

, i = 1, . . . , n,

(cf. Prop. 4.2.3).
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Policy improvement then computes a new policy µk+1 as

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + Jµk (j)
)

, i = 1, . . . , n.

The process is repeated with µk+1 used in place of µk, unless we have

Jµk+1(i) = Jµk (i)

for all i, in which case the algorithm terminates with the policy µk.

The counterpart for discounted problems is as follows.

Exact Policy Iteration: Discounted Problems

Given the typical policy µk:

Policy evaluation computes Jµk(i), i = 1, . . . , n, as the solution of
the (linear) system of Bellman equations

Jµk(i) =

n
∑

j=1

pij
(

µk(i)
)

(

g
(

i, µk(i), j
)

+ αJµk (j)
)

, i = 1, . . . , n,

(4.25)
(cf. Prop. 4.2.3).

Policy improvement then computes a new policy µk+1 as

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµk (j)
)

, i = 1, . . . , n.

(4.26)

The process is repeated with µk+1 used in place of µk, unless we have
Jµk+1(i) = Jµk(i) for all i, in which case the algorithm terminates with
the policy µk.

The following proposition, shown in the appendix, establishes the
validity of PI, including finite termination with an optimal policy.

Proposition 4.5.1: (Convergence of Exact PI) For both the
SSP and the discounted problems, the exact PI algorithm generates
an improving sequence of policies, i.e.,
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Jµk+1(i) ≤ Jµk (i), for all i and k, (4.27)

and terminates with an optimal policy.

The proof of the policy improvement property (4.27) is quite intuitive
and is worth summarizing for the discounted problem. Let µ be a policy
and µ̃ be the policy obtained from µ via a policy iteration. We want to
show that Jµ̃ ≤ Jµ. To this end, let us denote by JN the cost function of a

policy that applies µ̃ for the first N stages and applies µ at every subsequent

stage. We have the Bellman equation

Jµ(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJµ(j)
)

,

which together with the policy improvement equation (4.26) imply that

J1(i) =

n
∑

j=1

pij
(

µ̃(i)
)

(

g
(

i, µ̃(i), j
)

+ αJµ(j)
)

≤ Jµ(i). (4.28)

From the definition of J2 and J1 we have

J2(i) =
n
∑

j=1

pij
(

µ̃(i)
)

(

g
(

i, µ̃(i), j
)

+ αJ1(j)
)

, (4.29)

so the preceding two relations imply that

J2(i) ≤ J1(i) ≤ Jµ(i), for all i. (4.30)

Continuing similarly, we obtain

JN+1(i) ≤ JN (i) ≤ Jµ(i), for all i and N. (4.31)

Since JN → Jµ̃ (cf. Prop. 4.3.2), it follows that Jµ̃ ≤ Jµ.
In practice, a lot of cost improvement is often obtained with the PI

algorithm after the first few policies are generated. This may happen even
if the number of iterations needed for termination is quite large. The
following is an example where termination occurs after just two iterations.

Example 4.5.1 (Treasure Hunting)

A treasure hunter has obtained a lease to search a site that contains n trea-
sures, and wants to find a searching policy that maximizes his expected gain
over an infinite number of days. At each day, knowing the current number of
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treasures not yet found, he may decide to continue searching for more trea-
sures at a cost c per day, or to permanently stop searching. If he searches on
a day when there are i treasures on the site, he finds m ∈ [0, i] treasures with
given probability p(m | i), where we assume that p(0 | i) < 1 for all i ≥ 1,
and that the expected number of treasures found,

r(i) =

i
∑

m=0

mp(m | i),

is monotonically increasing with i. Each found treasure is worth 1 unit.
We formulate the problem as an SSP problem, with state equal to the

number of treasures not yet found. The termination state is state 0, where
the hunter stops searching. When the hunter decides to search at a state
i ≥ 1, the state moves to i−m with probability p(m | i). Here the inevitable
termination Assumption 4.2.1 is satisfied, in view of our condition p(0 | i) < 1
for all i. Bellman’s equation is

J
∗(i) = max

[

0, r(i)− c+

i
∑

m=0

p(m | i)J∗(i−m)

]

, i = 1, . . . , n,

with J∗(0) = 0.
Let us apply PI starting with the policy µ0 that never searches. This

policy has value function

Jµ0(i) = 0, for all i.

The policy µ1 subsequently produced by PI is the one that searches at a
state i if and only if r(i) > c, and has value function satisfying the Bellman
equation

Jµ1(i) =

{

0 if r(i) ≤ c,

r(i)− c+
∑i

m=0
p(m | i)Jµ1 (i−m) if r(i) > c.

(4.32)

Note that the values Jµ1(i) are nonnegative for all i, since by Prop. 4.5.1, we
have

Jµ1 (i) ≥ Jµ0 (i) = 0.

The next policy generated by PI is obtained from the minimization

µ
2(i) = argmax

[

0, r(i)− c+

i
∑

m=0

p(m | i)Jµ1 (i−m)

]

, i = 1, . . . , n.

For i such that r(i) ≤ c, we have r(j) ≤ c for all j < i because r(i) is
monotonically nondecreasing in i. Moreover, using Eq. (4.32), we have Jµ1(i−
m) = 0 for all m ≥ 0. It follows that for i such that r(i) ≤ c,

0 ≥ r(i)− c+

i
∑

m=0

p(m | i)Jµ1(i−m),
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and µ2(i) = stop searching.
For i such that r(i) > c, we have µ2(i) = search, since Jµ1 (i) ≥ 0 for

all i, so that

0 < r(i)− c+

i
∑

m=0

p(m | i)Jµ1(i−m).

Thus, µ2 is the same as µ1 and the PI algorithm terminates. By Prop. 4.5.1,
it follows that µ2 is optimal.

4.5.2 Optimistic and Multistep Lookahead Policy Iteration

The PI algorithm that we have discussed so far uses exact policy evaluation
of the current policy µk and one-step lookahead policy improvement, i.e.,
it computes exactly Jµk , and it obtains the next policy µk+1 by a one-
step lookahead minimization using Jµk as an approximation to J*. It is
possible to use a more flexible algorithm whereby Jµk is approximated by
any number of value iterations corresponding to µk (cf. Prop. 4.3.3) and
the policy improvement is done using multistep lookahead.

A PI algorithm that uses a finite number mk of VI steps for policy
evaluation of policy µk (in place of the infinite number required by exact
PI) is referred to as optimistic. It can be viewed as a combination of VI
and PI. The optimistic PI algorithm starts with a function J0, an initial
guess of J*. It generates a sequence {Jk} and an associated sequence of
policies {µk}, which asymptotically converge to J* and an optimal policy,
respectively. The kth iteration starts with a function Jk, and first generates
µk. It then generates Jk+1 using mk iterations of the VI algorithm that
corresponds to µk, starting with Jk as follows.

Optimistic Policy Iteration: Discounted Problems

Given the typical function Jk:

Policy improvement computes a policy µk such that

µk(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j)+αJk(j)
)

, i = 1, . . . , n. (4.33)

Optimistic policy evaluation starts with Ĵk,0 = Jk, and uses mk

VI iterations for policy µk to compute Ĵk,1, . . . , Ĵk,mk
according to

Ĵk,m+1(i) =

n
∑

j=1

pij(µk(i))
(

g
(

i, µk(i), j
)

+ αĴk,m(j)
)

, (4.34)

for all i = 1, . . . , n, m = 0, . . . ,mk − 1, and sets Jk+1 = Ĵk,mk
.
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From Eq. (4.34), it can be seen that one way to interpret optimistic
PI is that we approximate Jµk by using µk for mk stages, and adding a

terminal cost function equal to the current cost estimate Jk instead of using
µk for an additional infinite number of stages. Accordingly, simulation-
based approximations of optimistic PI, evaluate the cost function Jµk by
using mk-stage trajectories, with the cost of future stages accounted for
with some cost function approximation at the end of the mk stages.

The convergence properties of optimistic PI are solid, although it may
require an infinite number of iterations to converge to J*. To see why this
is so, suppose that we evaluate each policy with a single VI. Then the
method is essentially identical to the VI method, which requires an infinite
number of iterations to converge. For the same reason, optimistic PI, when
implemented with approximations similar to VI, as in Section 4.4, is subject
to the instability phenomenon illustrated in Example 4.4.1. Generally, most
practical approximate policy evaluation schemes are optimistic in nature.

The following proposition, shown in the appendix, establishes the
validity of optimistic PI. There is a corresponding convergence property
for SSP problems, but its currently available proof is fairly complicated.
It is given in Section 3.5.1 of the book [Ber12]. Asynchronous versions
of optimistic PI also involve theoretical convergence difficulties, which are
discussed in Section 2.6.2 of [Ber12] and Section 2.6.3 of [Ber18a].

Proposition 4.5.2: (Convergence of Optimistic PI) For the dis-
counted problem, the sequences {Jk} and {µk} generated by the opti-
mistic PI algorithm satisfy

Jk → J*, Jµk → J*.

The proof of the proposition is based on the policy improvement line
of proof we gave earlier. In particular, if J0 satisfies Tµ0J0 ≤ J0, the
argument of Eqs. (4.28)-(4.31) can be used to show that J* ≤ Jk+1 ≤ Jk for
all k. Moreover, the proof of the appendix argues that we may assume that
Tµ0J0 ≤ J0 holds without loss of generality, since we may add a constant
to J0 without affecting the sequence {µk} generated by the algorithm.
The proof of the appendix also shows that the generated policies µk are
optimal after some k, but this fact cannot be exploited in practice because
the verification that µk is optimal requires additional computations that
essentially defeat the purpose of the method.

Multistep Policy Improvement

The motivation for multistep policy improvement is that it may yield a
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better policy µk+1 than with one-step lookahead. In fact this makes even
more sense when the evaluation of µk is approximate, since then the longer
lookahead may compensate for errors in the policy evaluation. The method
in its exact nonoptimistic form is given below (in a different version it may
be combined with optimistic PI, i.e., with policy evaluation done using a
finite number of VI iterations).

Multistep Lookahead Exact Policy Iteration: Discounted Prob-
lems

Given the typical policy µk:

Policy evaluation computes Jµk(i), i = 1, . . . , n, as the solution of
the (linear) system of Bellman equations

Jµk(i) =

n
∑

j=1

pij
(

µk(i)
)

(

g
(

i, µk(i), j
)

+ αJµk (j)
)

, i = 1, . . . , n,

(cf. Prop. 4.2.3).

Policy improvement with ℓ-step lookahead then solves the ℓ-
stage problem with terminal cost function Jµk . If {µ̂0, . . . , µ̂ℓ−1} is
the optimal policy of this problem, then the new policy µk+1 is µ̂0.

The process is repeated with µk+1 used in place of µk, unless we have
Jµk+1(i) = Jµk(i) for all i, in which case the algorithm terminates with
the policy µk.

Exact PI with multistep lookahead has the same solid convergence
properties as its one-step lookahead counterpart: it terminates with an
optimal policy, and the generated sequence of policies is monotonically
improving. The proof is based on a cost improvement property that will
be shown as a special case of the subsequent Prop. 4.6.1.

4.5.3 Policy Iteration for Q-factors

Similar to VI, we may also equivalently implement PI through the use of
Q-factors. To see this, first note that the policy improvement step may be
implemented by minimizing over u ∈ U(i) the expression

Qµ(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

, i = 1, . . . , n, u ∈ U(i),

which we view as the Q-factor of the pair (i, u) corresponding to µ. Note
that we have

Jµ(j) = Qµ

(

j, µ(j)
)

,
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Policy ImprovementGenerate “Improved” Policy µ

Initial Policy Controlled System Cost per Stage Vector
tion Matrix ( )

of Current policy µ

Policy Q-Factor Evaluation

Policy Q-Factor Evaluation

Policy Q-Factor Evaluation Evaluate Q-Factor Qµ of Current policy

Figure 4.5.2 Block diagram of exact PI for Q-factors. Each iteration consists
of a policy evaluation using the current policy µ, followed by generation of an
improved policy µ̃.

(cf. Prop. 4.2.3).
The following algorithm is thus obtained; see Fig. 4.5.2.

Exact Policy Iteration for Q-Factors: Discounted Problems

Given the typical policy µk:

Policy evaluation computes Qµk(i, u), for all i = 1, . . . , n, and u ∈
U(i), as the solution of the (linear) system of equations

Qµk(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αQµk

(

j, µk(j)
)

)

. (4.35)

Policy improvement then computes a new policy µk+1 as

µk+1(i) ∈ arg min
u∈U(i)

Qµk(i, u), i = 1, . . . , n. (4.36)

The process is repeated with µk+1 used in place of µk, unless we have
Jµk+1(i) = Jµk(i) for all i, in which case the algorithm terminates with
the policy µk.

Note that the system (4.35) has a unique solution, since from the
uniqueness of solution of Bellman’s equation, any solution must satisfy

Qµk

(

j, µk(j)
)

= Jµk(j).
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Hence the Q-factors Qµk

(

j, µk(j)
)

are uniquely determined, and then the
remaining Q-factorsQµk (i, u) are also uniquely determined from Eq. (4.35).

The PI algorithm for Q-factors is mathematically equivalent to PI
for costs, as given in the preceding subsection. The only difference is
that we calculate all the Q-factors Qµk(i, u), rather than just the costs

Jµk (j) = Qµk

(

j, µk(j)
)

, i.e., just the Q-factors corresponding to the con-
trols chosen by the current policy. However, the remaining Q-factors
Qµk(i, u) are needed for the policy improvement step (4.36), so no ex-
tra computation is required. It can be verified also that the PI algorithm
(4.35)-(4.36) can be viewed as the PI algorithm for the discounted version
of the modified problem of Fig. 4.2.2. Asynchronous and optimistic PI
algorithms for Q-factors involve substantial theoretical convergence com-
plications, as shown by Williams and Baird [WiB93], which have been
resolved in papers by Bertsekas and Yu for discounted problems in [BeY12]
and for SSP problems in [YuB13a].

4.6 APPROXIMATION IN VALUE SPACE - PERFORMANCE
BOUNDS

We will focus on infinite horizon DP approximations, beginning with dis-
counted problems. Consistently with the finite horizon approximation in
value space schemes of Chapter 2, the general idea is to compute some
approximation J̃ of the optimal cost function J*, and then use one-step
or multistep lookahead to implement a suboptimal policy µ̃. Thus, a one-

step lookahead policy applies at state i the control µ̃(i) that attains the
minimum in the expression

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, (4.37)

see Fig. 4.6.1.
Similarly, at state i, a two-step lookahead policy applies the control

µ̃(i) attaining the minimum in the preceding equation, where now J̃ is
obtained itself on the basis of a one-step lookahead approximation. In
other words, for all states j that can be reached from i, we have

J̃(j) = min
u∈U(j)

n
∑

m=1

pjm(u)
(

g(j, u,m) + αĴ(m)
)

,

where Ĵ is some approximation of J*. Thus J̃ is the result of a single
value iteration starting from Ĵ . Policies with lookahead of more than two
stages are similarly defined. In particular, the “effective one-step” cost

approximation J̃ in ℓ-step lookahead is the result of ℓ − 1 successive value

iterations starting from some initial approximation Ĵ . Otherwise expressed,
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Approximations:

Replace E{·} with nominal values

Simple choices Parametric approximation Problem approximation

Simple choices Parametric approximation Problem approximation

Approximate minimization

Rollout Model Predictive Control

Aggregation

Aggregation Adaptive simulation Monte-Carlo Tree Search

Aggregation Adaptive simulation Monte-Carlo Tree Search (certainty equivalence)

Monte Carlo tree search

)

Computation of J̃ :

Monte Carlo tree search First Step “Future”Monte Carlo tree search First Step “Future”

Approximate PI Range of Weighted Projections

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

Figure 4.6.1 Schematic illustration of various options for approximation in value
space with one-step lookahead in infinite horizon problems. The lookahead func-
tion values J̃(j) approximate the optimal cost-to-go values J∗(j), and can be
computed by a variety of methods. There may be additional approximations in
the minimization over uk and the computation of the expected value.

ℓ-step lookahead with Ĵ at the end is the same as one-step lookahead with

T ℓ−1Ĵ at the end , where T is the DP operator (4.13).
In Chapter 2 we gave several types of limited lookahead schemes,

where J̃ is obtained in different ways, such as problem approximation,
rollout, and others. Several of these schemes can be fruitfully adapted to
infinite horizon problems; see Fig. 4.6.1.

In this chapter, we will focus on rollout, and particularly on approx-
imate PI schemes, which operate as follows:

(a) Several policies µ0, µ1, . . . , µm are generated, starting with an initial
policy µ0.

(b) Each policy µk is evaluated approximately, with a cost function J̃µk ,
often with the use of a parametric approximation/neural network ap-
proach.

(c) The next policy µk+1 is generated by one-step or multistep policy
improvement based on J̃µk .

(d) The approximate evaluation J̃µm of the last policy in the sequence
is used as the lookahead approximation J̃ in the one-step lookahead
minimization (4.37), or its multistep counterpart.

Performance bounds for this type of approximate PI scheme will be dis-
cussed in Section 4.6.3, following a discussion of general performance bounds
and rollout in the next two subsections. Note that rollout can be viewed as
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the extreme special case of the preceding approximate PI procedure, where
m = 0, and only the policy µ0 is evaluated and used for a single policy
improvement.

4.6.1 Limited Lookahead Performance Bounds

We will now consider performance bounds for ℓ-step lookahead. In partic-
ular, if µ̂0, . . . , µ̂ℓ−1 attain the minimum in the ℓ-step lookahead minimiza-
tion below:

min
µ0,...,µℓ−1

E

{

ℓ−1
∑

k=0

αkg
(

ik, µk(ik), jk
)

+ αℓJ̃(iℓ)

}

,

we consider the suboptimal policy µ̃ = µ̂0. We will refer to µ̃ as the ℓ-

step lookahead policy corresponding to J̃ . Equivalently, in the shorthand
notation of the DP operators T and Tµ̃ of Eqs. (4.13) and (4.14), the ℓ-step
lookahead policy µ̃ is defined by

Tµ̃(T ℓ−1J̃) = T ℓJ̃ .

In part (a) of the following proposition, we will derive a bound for the
performance of µ̃.

We will also derive a bound for the case of a useful generalized one-
step lookahead scheme [part (b) of the following proposition]. This scheme
aims to reduce the computation to obtain µ̃(i), by performing the lookahead
minimization over a subset U(i) ⊂ U(i). Thus, the control µ̃(i) used in this
scheme is one that attains the minimum in the expression

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

.

This is attractive when by using some heuristic or approximate optimiza-
tion, we can identify a subset U(i) of promising controls, and to save com-
putation, we restrict attention to this subset in the one-step lookahead
minimization.

Proposition 4.6.1: (Limited Lookahead Performance Bounds)

(a) Let µ̃ be the ℓ-step lookahead policy corresponding to J̃ . Then

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖J̃ − J*‖, (4.38)

where ‖ · ‖ denotes the maximum norm (4.15).
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(b) Let µ̃ be the one-step lookahead policy obtained by minimization
in the equation

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, i = 1, . . . , n,

(4.39)
where U(i) ⊂ U(i) for all i = 1, . . . , n. Assume that for some
constant c, we have

Ĵ(i) ≤ J̃(i) + c, i = 1, . . . , n. (4.40)

Then
Jµ̃(i) ≤ Ĵ(i) +

c

1− α
, i = 1, . . . , n. (4.41)

An important point regarding the bound (4.38) is that Jµ̃ is unaffected
by a constant shift in J̃ [an addition of a constant to all values J̃(i)]. Thus
‖J̃ − J*‖ in Eq. (4.38) can be replaced by the potentially much smaller
number

min
β∈ℜ

‖J̃ + βe − J*‖ = min
β∈ℜ

max
i=1,...,n

∣

∣J̃(i) + β − J*(i)
∣

∣.

We thus obtain the following performance bound,

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
min
β∈ℜ

max
i=1,...,n

∣

∣J̃(i) + β − J*(i)
∣

∣,

which is stronger than the one of Eq. (4.38) that corresponds to β = 0.
The preceding bound shows that performance is improved when the

length ℓ of the lookahead in increased, and also when the lookahead cost
approximation J̃ is closer to the optimal cost J* (when modified with
an optimal constant shift β). Both of these conclusions are intuitive and
also consistent with practical experience. Note that we are not asserting
that multistep lookahead will lead to better performance than one-step
lookahead; we know that this not is necessarily true (cf. Example 2.2.1).
It is the performance bound that is improved when multistep lookahead is
used.

Regarding the condition (4.40), we note that it guarantees that when
c ≤ 0, the cost Jµ̃ of the one-step lookahead policy is no larger than J̃ .
When c = 0, this condition bears resemblance with the consistent improve-
ment condition for deterministic rollout methods (cf. Section 2.4.1). If
J̃ = Jµ for some policy µ (as in the case of the pure form of rollout to
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Policy µ Policyµ Policy µ∗

1 2 1 21 2 1 2

Cost = 0 Cost =

Cost = 0 Cost =Cost = 0 Cost = Cost = 2αǫ

Figure 4.6.2 A two-state problem for proving the tightness of the performance
bound of Prop. 4.6.1(b) (cf. Example 4.6.1). All transitions are deterministic as
shown, but at state 1 there are two possible decisions: move to state 2 (policy
µ∗) or stay at state 1 (policy µ). The cost of each transition is shown next to the
corresponding arc.

be discussed in Section 4.6.2), then Eq. (4.40) holds as an equation with
c = 0, and from Eq. (4.41), it follows that Jµ̃ ≤ Jµ.

Unfortunately, the bound (4.38) is not very reassuring when α is close
to 1. Nonetheless, the following example shows that the bound is tight in
very simple problems with just two states. What is happening here is that
an O(ǫ) difference in single stage cost between two controls can generate an
O
(

ǫ/(1−α)
)

difference in policy costs, yet it can be “nullified” in Bellman’s

equation by an O(ǫ) difference between J* and J̃ .

Example 4.6.1

Consider the two-state discounted problem shown in Fig. 4.6.2, where ǫ is
a positive scalar and α ∈ [0, 1) is the discount factor. The optimal policy
µ∗ is to move from state 1 to state 2, and the optimal cost-to-go function is
J∗(1) = J∗(2) = 0. Consider the cost function approximation J̃ with

J̃(1) = −ǫ, J̃(2) = ǫ,

so that
‖J̃ − J

∗
‖ = ǫ,

as assumed in Eq. (4.38) [cf. Prop. 4.6.1(b)]. The policy µ that decides to
stay at state 1 is a one-step lookahead policy based on J̃ , because

2αǫ+ αJ̃(1) = αǫ = 0 + αJ̃(2).

Moreover, we have

Jµ(1) =
2αǫ

1− α
=

2α

1− α
‖J̃ − J

∗
‖,

so the bound of Eq. (4.38) holds with equality.
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4.6.2 Rollout

Let us first consider rollout in its pure form, where J̃ in Eq. (4.37) is
the cost function of some stationary policy µ (also called the base policy or
base heuristic), i.e., J̃ = Jµ. Thus, the rollout policy is the result of a single

policy iteration starting from µ. The policy evaluation that yields the costs
Jµ(j) needed for policy improvement may be done in any suitable way.
Monte-Carlo simulation (averaging the costs of many trajectories starting
from j) is one major possibility. Of course if the problem is deterministic,
a single simulation trajectory starting from j is sufficient, in which case
the rollout policy is much less computationally demanding. Note also that
in discounted problems the simulated trajectories must be truncated after
a number of transitions, which is sufficiently large to make the cost of the
remaining transitions insignificant in view of the discount factor.

An important fact is that in the pure form of rollout, the rollout policy
improves over the base policy, as the following proposition shows. This is
to be expected since rollout is one-step PI, so Prop. 4.5.1 applies.

Proposition 4.6.2: (Cost Improvement by Rollout) Let µ̃ be
the rollout policy obtained by the one-step lookahead minimization

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

,

where µ is a base policy [cf. Eq. (4.39) with J̃ = Jµ] and we assume
that µ(i) ∈ U(i) ⊂ U(i) for all i = 1, . . . , n. Then Jµ̃ ≤ Jµ.

Let us also mention the variation of rollout that uses multiple base
heuristics, and simultaneously improves on all of them. This variant, also
called parallel rollout because of its evident parallelization potential, ex-
tends its finite horizon counterpart; cf. Section 2.4.1.

Example 4.6.2 (Rollout with Multiple Heuristics)

Let µ1, . . . , µM be stationary policies, let

J̃(i) = min
{

Jµ1 (i), . . . , JµM
(i)
}

, i = 1, . . . , n,

let U(i) ⊂ U(i), and assume that µ1(i), . . . , µM (i) ∈ U(i) for all i = 1, . . . , n.
Then, for all i and m = 1, . . . ,M , we have

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)
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Selective Depth Lookahead Tree

Base Heuristic ik

States ik+1

States ik+2

Variable Length Rollout Selective Depth Rollout Adaptive Simulation Polic

Variable Length Rollout Selective Depth Rollout Policy µ Adaptive Simulation

Adaptive Simulation Terminal Cost Function
µ Approximation J̃

Figure 4.6.3 Illustration of two-step lookahead, rollout with a policy µ for a
limited and state-dependent number of steps, and a terminal cost function ap-
proximation J̃ . A Monte Carlo tree search scheme may also be used for multistep
lookahead; cf. Section 2.4.2. Note that the three components of this scheme (mul-
tistep lookahead, rollout with µ, and cost approximation J̃) can be designed inde-
pendently of each other. Moreover, while the multistep lookahead is implemented
on-line, µ and J̃ must be available from an earlier off-line computation.

≤ min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµm(j)
)

≤

n
∑

j=1

pij
(

µm(i)
)

(

g
(

i, µm(i), j
)

+ αJµm (j)
)

= Jµm (i),

from which, by taking minimum of the right-hand side over m, it follows that

Ĵ(i) ≤ J̃(i), i = 1, . . . , n.

Using Prop. 4.6.1(a), we see that the rollout policy µ̃, obtained by using J̃ as
one-step lookahead approximation satisfies

Jµ̃(i) ≤ min
{

Jµ1 (i), . . . , JµM
(i)
}

, i = 1, . . . , n,

i.e., it improves over each of the policies µ1, . . . , µM .



Sec. 4.6 Approximation in Value Space - Performance Bounds 41

Combined Multistep Lookahead, Rollout, and Terminal Cost
Approximation

Let us next discuss a variant of the rollout approach, whereby we use ℓ-
step lookahead, we then apply rollout with policy µ for a limited number
of steps, and finally we approximate the cost of the remaining steps us-
ing some terminal cost approximation J̃ ; see Fig. 4.6.3. We can view this
form of rollout as a single optimistic policy iteration combined with mul-

tistep lookahead ; cf. Eqs. (4.33)-(4.34). This type of algorithm was used
in Tesauro’s rollout-based backgammon player [TeG96] (it was also used
in AlphaGo in a modified form, with Monte Carlo tree search in place of
ordinary limited lookahead). We will give more details later.

The following result generalizes the performance bounds given for lim-
ited lookahead and rollout of the preceding two subsections. In particular,
part (a) of the proposition follows by applying Prop. 4.6.1(a), since the
truncated rollout scheme of this section can be viewed as ℓ-step approxi-
mation in value space with terminal cost function Tm

µ J̃ at the end of the
lookahead, where Tµ is the DP operator of Eq. (4.14).

Proposition 4.6.3: (Performance Bound of Rollout with Ter-
minal Cost Function Approximation) Let ℓ and m be positive
integers, let µ be a policy, and let J̃ be a function of the state. Consider
a truncated rollout scheme consisting of ℓ-step lookahead, followed by
rollout with a policy µ for m steps, and a terminal cost function ap-
proximation J̃ at the end of the m steps. Let µ̃ be the policy generated
by this scheme.

(a) We have

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖Tm

µ J̃ − J*‖,

where Tµ is the DP operator of Eq. (4.14), and ‖ · ‖ denotes the
maximum norm (4.15).

(b) Assume that for some constant c, J̃ and µ satisfy the condition

Ĵ(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ̃(j)
)

≤ J̃(i) + c, (4.42)

for all i = 1, . . . , n. Then

Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n. (4.43)
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As a special case of part (b) of the preceding proposition, suppose
that the terminal cost function J̃ approximates within c/(1 + α) the cost
function of µ,

∣

∣J̃(i)− Jµ(i)
∣

∣ ≤
c

1 + α
, i = 1, . . . , n.

Then Eq. (4.42) is satisfied since we have

Ĵ(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ̃(j)
)

≤
n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ Jµ(j)
)

+
αc

1 + α

= Jµ(i) +
αc

1 + α

≤ J̃(i) +
c

1 + α
+

αc

1 + α

= J̃(i) + c.

The proposition then shows that multistep lookahead followed by infinite
step rollout with µ produces a rollout policy µ̃ with

Jµ̃(i) ≤ J̃(i) +
c

1− α
≤ Jµ(i) +

c

1 + α
+

c

1− α
= Jµ(i) +

2c

1− α2

for all i. Thus, if J̃ is nearly equal to Jµ, then µ̃ nearly improves over µ

[within 2c/(1− α2)].
There is also an extension for the case where m = 0, i.e., when there

is no rollout with a policy µ. It states that under the condition

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j
)

+ αJ̃(j)
)

≤ J̃(i) + c, i = 1, . . . , n,

the multistep lookahead policy µ̃ satisfies

Jµ̃(i) ≤ J̃(i) +
c

1− α

for all i. This performance bound is similar to fairly old bounds that date
to the mid-90s; see Prop. 6.1.1 in the author’s book [Ber17] (and its earlier
editions). It extends Prop. 4.6.1(b) from one-step to multistep lookahead
approximation in value space schemes.

Regarding the nature of the terminal cost approximation J̃ in trun-
cated rollout schemes, it may be heuristic, based on problem approxima-
tion, or based on a more systematic simulation methodology. For example,
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the values Jµ(i) may be computed by simulation for all i in a subset of
representative states, and J̃ may be selected from a parametric class of
vectors by a least squares regression of the computed values. This approxi-
mation may be performed off-line, outside the time-sensitive restrictions of
a real-time implementation, and the result J̃ may be used on-line in place
of Jµ as a terminal cost function approximation. Note, however, that once
cost function approximation is introduced at the end of the rollout, the
cost improvement property of the rollout policy over the base policy may
be lost.

The truncated rollout scheme of Fig. 4.6.3 has been adopted in the
rollout backgammon algorithm of Tesauro and Galperin [TeG96], with
µ and the terminal cost function approximation J̃ provided by the TD-
Gammon algorithm of Tesauro [Tes94], which was based on a neural net-
work, trained using a form of optimistic policy iteration and TD(λ). A
similar type of algorithm was used in the AlphaGo program (Silver et al.
[SHM16]), with the policy and the terminal cost function obtained with a
deep neural network, trained using a form of approximate policy iteration.
Also the multistep lookahead in the AlphaGo algorithm was implemented
using Monte Carlo tree search (cf. Section 2.4.2).

4.6.3 Approximate Policy Iteration

When the number of states is very large, the policy evaluation step and/or
the policy improvement step of the PI method may be implementable only
through approximations. In an approximate PI scheme, each policy µk is
evaluated approximately, with a cost function J̃µk , often with the use of a
feature-based architecture or a neural network, and the next policy µk+1

is generated by (perhaps approximate) policy improvement based on J̃µk .
To formalize this type of procedure, we assume an approximate policy

evaluation error satisfying

max
i=1,...,n

∣

∣J̃µk (i)− Jµk(i)
∣

∣ ≤ δ, (4.44)

and an approximate policy improvement error satisfying

max
i=1,...,n

∣

∣

∣

∣

n
∑

j=1

pij
(

µk+1(i)
)(

g(i, µk+1(i), j) + αJ̃µk (j)
)

− min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µk (j)
)

∣

∣

∣

∣

≤ ǫ,

(4.45)
where δ and ǫ are some nonnegative scalars. The following proposition,
proved in the appendix (and also in the original source [BeT96], Section
6.2.2), provides a performance bound for discounted problems (a similar
result is available for SSP problems; see [BeT96], Section 6.2.2).
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k PI index k J∗ 0 1 20 1 20 1 2 . . .

0 1 2 . . .

J∗

. . . Error Zone Width (

Error Zone Width (ǫ+ 2αδ)/(1− α)2

) Jµk

Figure 4.6.4 Illustration of typical behavior of approximate PI. In the early
iterations, the method tends to make rapid and fairly monotonic progress, until
Jµk gets within an error zone of size less than (ǫ+2αδ)/(1−α)2. After that Jµk

oscillates randomly within that zone.

Proposition 4.6.4: (Performance Bound for Approximate PI)
Consider the discounted problem, and let {µk} be the sequence gener-
ated by the approximate PI algorithm defined by the approximate pol-
icy evaluation (4.44) and the approximate policy improvement (4.45).
Then the policy error

max
i=1,...,n

∣

∣Jµk (i)− J*(i)
∣

∣,

becomes less or equal to
ǫ + 2αδ

(1 − α)2
,

asymptotically as k → ∞.

The preceding performance bound is not particularly useful in prac-
tical terms. Significantly, however, it is in qualitative agreement with the
empirical behavior of approximate PI. In the beginning, the method tends
to make rapid and fairly monotonic progress, but eventually it gets into
an oscillatory pattern. This happens after Jµk gets within an error zone of
size (δ + 2ǫ)/(1 − α)2 or smaller, and then Jµk oscillates fairly randomly
within that zone; see Fig. 4.6.4. In practice, the error bound of Prop. 4.6.4
tends to be pessimistic, so the zone of oscillation is usually much narrower
than what is suggested by the bound. However, the bound itself can be
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k PI index k J
∗ 0 1 20 1 20 1 2 . . .

0 1 2 . . .

J∗

. . . Error Zone Width (

µ Width (ǫ+ 2αδ)/(1− α)

) Jµk

Figure 4.6.5 Illustration of typical behavior of approximate PI when policies
converge. The method tends to make monotonic progress, and Jµk converges
within an error zone of size less than

ǫ+ 2αδ

1− α
.

proved to be tight, in worst case. This is shown with an example in the
book [BeT96], Section 6.2.3. Note also that the bound of Prop. 4.6.4 holds
in the case of infinite state and control spaces discounted problems, when
there are infinitely many policies (see [Ber18a], Prop. 2.4.3).

We finally note that since the set of policies is finite, the sequence
{Jµk} is guaranteed to be bounded, so approximate PI is not hampered by
the instability that was highlighted by Example 4.4.1 for approximate VI.

Performance Bound for the Case Where Policies Converge

Generally, the policy sequence {µk} generated by approximate PI may
oscillate between several policies, as noted earlier. However, under some
circumstances the sequence will converge to some policy µ̃, in the sense
that

µk+1 = µk = µ̃ for some k. (4.46)

An important case where this happens is aggregation methods, which will
be discussed in Chapter 5. In this case the behavior of the method is more
regular, and we can show a more favorable bound than the one of Prop.
4.6.4, by a factor

1

1− α
;

see Fig. 4.6.5.
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Proposition 4.6.5: (Performance Bound for Approximate PI
when Policies Converge) Let µ̃ be a policy generated by the ap-
proximate PI algorithm under conditions (4.44), (4.45), and (4.46).
Then we have

max
i=1,...,n

∣

∣Jµ̃(i)− J*(i)
∣

∣ ≤
ǫ+ 2αδ

1− α
.

We finally note that similar performance bounds can be obtained
for optimistic PI methods, where the policy evaluation is performed with
just a few approximate value iterations, and policy improvement is ap-
proximate (cf. Section 4.5.2). These bounds are similar to the ones of the
nonoptimistic PI case given in this section, but their derivation is quite
complicated; see [Ber12], Chapter 2, or [Ber18a], Section 2.5.2, and the
end-of-chapter references. It should be noted, however, that in the absence
of special modifications, optimistic PI with approximations is subject to
the error amplification phenomenon illustrated in Example 4.4.1. Indeed
approximate VI, as described in Section 4.4, can be viewed as a special
case of an optimistic PI method, where each policy evaluation is done with
a single VI, and then approximated by least squares/regression.

4.7 SIMULATION-BASED POLICY ITERATION WITH
PARAMETRIC APPROXIMATION

In this section we will discuss PI methods where the policy evaluation step
is carried out with the use of a parametric approximation method and
Monte-Carlo simulation. We will focus on the discounted problem, but
similar methods can be used for SSP problems.

4.7.1 Self-Learning and Actor-Critic Systems

The name “self-learning” in RL usually refers to some form of PI method
that involves the use of simulation for approximate policy evaluation, and/or
approximate Q-factor evaluation. A parametric architecture is used for
this, and the algorithm that performs the policy evaluation is usually called
a critic. If a neural network is used as the parametric architecture, it is
called a critic network . The PI algorithm generates a sequence of sta-
tionary policies {µk} and a corresponding sequence of approximate cost
function evaluations {J̃µk} using a simulator of the system.

As in all PI methods, the policy evaluation J̃µk is used for policy im-
provement, to generate the next policy µk+1. The algorithm that performs
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the policy improvement is usually called an actor , and if a neural network
is involved, it is called an actor network .

The two operations needed at each policy iteration are as follows:

(a) Evaluate the current policy µk (critic): Here algorithm, system, and
simulator are merged in one, and the system “observes itself” by gen-
erating simulation cost samples under the policy µk. It then combines
these samples to “learn” a policy evaluation J̃µk . Usually this is done
through some kind of incremental method that involves a least squares
minimization using cost samples, and either a linear architecture or
a neural network.

(b) Improve the current policy µk (actor): Given the approximate policy
evaluation J̃µk , the system can generate or “learn” the new policy
µk+1 through the minimization

µk+1(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µk (j)
)

, i = 1, . . . , n.

Alternatively the system can compute the minimizing control us at a
set of sample states is, s = 1, . . . , q, through

us ∈ arg min
u∈U(is)

n
∑

j=1

pisj(u)
(

g(is, u, j) + αJ̃µk (j)
)

.

These are the sample values of the improved policy µk+1 at the sample
states is. They are generalized to “learn” a complete policy µk+1 by
using some approximation in policy space scheme (cf. Section 2.1.3).

We can thus describe simulation-based PI as a process where the sys-

tem learns better and better policies by observing its behavior . This is true
up to the point where either policy oscillations occur (cf. Fig. 4.6.4) or
the algorithm terminates (cf. Fig. 4.6.5), at which time learning essentially
stops.

It is worth noting that the system learns by itself, but it does not
learn itself, in the sense that it does not construct a mathematical model

for itself . It only learns to behave better, i.e., construct improved poli-
cies, through experience gained by simulating state and control trajecto-
ries generated with these policies. We may adopt instead an alternative
two-phase approach: first use system identification and simulation to con-
struct a mathematical model of the system, and then use a model-based
PI method. However, we will not discuss this approach in this book.

4.7.2 A Model-Based Variant

We will first provide an example of a model-based PI method that is con-
ceptually simple, and then discuss its model-free version. In particular, we
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Figure 4.7.1 Block diagram of model-based approximate PI for cost functions.

assume that the transition probabilities pij(u) are available, and that the
cost function Jµ of any given policy µ is approximated using a parametric
architecture J̃µ(i, r).

We recall that given any policy µ, the exact PI algorithm for costs
[cf. Eqs. (4.34)-(4.33)] generates the new policy µ̃ with a policy evalua-
tion/policy improvement process. We approximate this process as follows;
see Fig. 4.7.1.

(a) Approximate policy evaluation: To evaluate µ, we determine the value
of the parameter vector r by generating a large number of training
pairs (is, βs), s = 1, . . . , q, and by using least squares training:

r ∈ argmin
r

q
∑

s=1

(

J̃µ(is, r) − βs
)2
. (4.47)

For a given state is, the scalar βs is a sample cost corresponding to
is and µ.

In particular βs is generated by starting at is, simulating a trajectory
of states and controls using µ and the known transition probabili-
ties for some number N of stages, accumulating the corresponding
discounted costs, and adding a terminal cost approximation

αN Ĵ(iN ),

where iN is the terminal state of the N -stage trajectory and Ĵ is some
initial guess of Jµ. The guess Ĵ may be obtained with additional
training or some other means, such as using the result of the policy
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Figure 4.7.1 Block diagram of model-based approximate PI for cost functions.

evaluation of the preceding policy µk−1; this is similar to the cost
function approximation implicitly used in optimistic policy iteration,
cf. Section 4.5.2. It is also possible to simplify the method by using
Ĵ(iN ) = 0, or obtaining Ĵ via a problem approximation process.

The approximate policy evaluation problem of Eq. (4.47) can be
solved with the incremental methods discussed in Section 3.1.3. In
particular the incremental gradient method is given by

rk+1 = rk − γk∇J̃(isk , rk)
(

J̃(isk , rk)− βsk
)

,

where (isk , βsk ) is the state-cost sample pair that is used at the kth it-
eration, and r0 is an initial parameter guess. Here the approximation
architecture J̃(i, r) may be linear or may be nonlinear and differen-
tiable. In the case of a linear architecture it is also possible to solve
the problem (4.47) using the exact linear least squares formula.

(b) Approximate policy improvement : Having solved the approximate
policy evaluation problem (4.47), the new “improved” policy µ̃ is
obtained by the approximate policy improvement operation

µ̃(i) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, i = 1, . . . , n,

(4.48)
where r is the parameter vector obtained from the policy evaluation
operation (4.47).
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Trajectory Reuse and Bias-Variance Tradeoff

As we have noted, to each training pair (is, βs) there corresponds an N -
stage trajectory over which the sample cost βs is accumulated, but the
length of the trajectory may depend on s. This allows sampling effort
economies based on trajectory reuse. In particular, suppose that starting
at some state i0 we generate a long trajectory (i0, i1, . . . , iN) using the
policy µ. Then we can obtain the state-cost sample that corresponds to
i0, as discussed above, but we can also obtain additional cost samples for
the subsequent states i1, i2, etc, by using the tail portions of the trajectory
(i0, i1, . . . , iN) that start at these states.

Clearly, it is necessary to truncate the sample trajectories to some
number of stages N , since we cannot simulate an infinite length trajectory
in practice. If N is large, then because of the discount factor, the error for
neglecting the stage costs beyond stage N will be small. However, there
are other important concerns when choosing the trajectory lengths N .

In particular, a short length reduces the sampling effort, but is also a
source of inaccuracy. The reason is that the cost of the tail portion of the
trajectory (from stage N to infinity) is approximated by αN Ĵ(iN ), where
iN is the terminal state of the N -stage trajectory and Ĵ is the initial guess
of Jµ. This terminal cost compensates for the costs of the neglected stages
in the spirit of optimistic PI, but adds an error to the cost samples βs,
which becomes larger as the trajectory length N becomes smaller.

We note two additional benefits of using many training trajectories,
each with a relatively short trajectory length:

(1) The cost samples βs are less noisy, as they correspond to summation
of fewer random stage costs. This leads to the so-called bias-variance

tradeoff : short trajectories lead to larger bias but smaller variance of
the cost samples.

(2) With more starting states i0, there is better opportunity for explo-

ration of the state space. By this we mean adequate representation of
all possible initial trajectory states in the sample set. This is a major
issue in approximate PI, as we will discuss in Section 4.7.4.

Let us also note that the bias-variance tradeoff underlies the motiva-
tion for a number of alternative policy evaluation methods such as TD(λ),
LSTD(λ), and LSPE(λ), which we will summarize in Section 4.9; see Sec-
tion 6.3 of the book [Ber12] and other approximate DP/RL books refer-
enced earlier. The papers [Ber11b], [YuB12], and the book [Ber12], Section
6.4, discuss a broad range of short trajectory sampling methods.

4.7.3 A Model-Free Variant

We will now provide an example model-free PI method. Let us restate
the PI method in terms of Q-factors, and in a form that involves approx-
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Figure 4.7.2 Block diagram of model-free approximate PI for Q-factors.

imations and simulation-based implementations. We recall that given any
policy µ, the exact PI algorithm for Q-factors [cf. Eqs. (4.35)-(4.36)] gener-
ates the new policy µ̃ with a policy evaluation-policy improvement process.
We approximate this process as follows; see Fig. 4.7.2.

(a) Approximate policy evaluation: Here we introduce a parametric ar-
chitecture Q̃µ(i, u, r) for the Q-factors of µ. We determine the value
of the parameter vector r by generating (using a simulator of the sys-
tem) a large number of training triplets (is, us, βs), s = 1, . . . , q, and
by using a least squares fit:

r ∈ argmin
r

q
∑

s=1

(

Q̃µ(is, us, r)− βs
)2
. (4.49)

In particular, for a given pair (is, us), the scalar βs is a sample Q-
factor corresponding to (i, u). It is generated by starting at is, using
us at the first stage, and simulating a trajectory of states and controls
using µ for a total of N stages, and accumulating the corresponding
discounted costs. Thus, βs is a sample of QN

µ (is, us), the N -stage
Q-factor of µ, given by

QN
µ (i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJN−1
µ (j)

)

,

where JN−1
µ (j) is the (N − 1)-stages cost of µ starting at j. The

number of stages N in the sample trajectories may be different for
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different samples, and can be either large, or fairly small, and a termi-
nal cost αN Ĵ(iN ) may be added as in the model-based case of Section
4.7.2. Again an incremental method may be used to solve the training
problem (4.49).

(b) Approximate policy improvement : Here we compute the new policy
µ̃ according to

µ̃(i) ∈ arg min
u∈U(i)

Q̃µ(i, u, r), i = 1, . . . , n, (4.50)

where r is the parameter vector obtained from the policy evaluation
operation (4.49).

Unfortunately, trajectory reuse is more problematic in Q-factor eval-
uation than in cost evaluation, because each trajectory generates state-
control pairs of the special form

(

i, µ(i)
)

at every stage after the first, so
pairs (i, u) with u 6= µ(i) are not adequately explored ; cf. the discussion in
Section 4.7.2. For this reason, it is necessary to make an effort to include
in the samples a rich enough set of trajectories that start at pairs (i, u)
with u 6= µ(i).

An important alternative to the preceding procedure is a two-stage
process for policy evaluation: first compute in model-free fashion a cost
function approximation J̃µ(j, r), using the regression (4.47), and then use a
second sampling process and regression to approximate further the (already
approximate) Q-factor

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃µ(j, r)
)

,

with some Q̃µ(i, u, r) possibly obtained with a policy approximation archi-
tecture (see the discussion of Section 2.1.3 on model-free approximation in
policy space). Finally, once Q̃µ(i, u, r) is obtained with this approximation
in policy space, the “improved” policy µ̃ is obtained from the minimiza-
tion (4.50). The overall scheme can be viewed as model-free approximate

PI that is based on approximation in both value and policy space. In view
of the two-fold approximation needed to obtain Q̃µ(i, u, r), this scheme is
more complex, but allows trajectory reuse and thus deals better with the
exploration issue.

4.7.4 Implementation Issues of Parametric Policy Iteration

Approximate PI in its various forms has been the subject of extensive
research, both theoretical and applied. Let us provide a few comments,
focusing on the preceding parametric PI schemes.
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Architectural Issues and Cost Shaping

The choice of architectures for costs J̃µ(i, r) and Q-factors Q̃µ(i, u, r) is
critical for the success of parametric approximation schemes. These archi-
tectures may involve the use of features, and they could be linear, or they
could be nonlinear such as a neural network. A major advantage of a linear
feature-based architecture is that the policy evaluations (4.47) and (4.49)
involve linear least squares problems, which admit a closed-form solution.
Moreover, when linear architectures are used, there is a broader variety of
approximate policy evaluation methods with solid theoretical performance
guarantees, such as TD(λ), LSTD(λ), and LSPE(λ), which will be summa-
rized in Section 4.9, and are described in detail in several textbook sources.

Another interesting possibility for architecture choice has to do with
cost shaping, which we discussed in Section 4.2. This possibility involves a
modified cost per stage

ĝ(i, u, j) = g(i, u, j) + V (j)− V (i), i = 1, . . . , n,

[cf. Eq. (4.11)] for SSP problems, where V can be any approximation to
J*. The corresponding formula for discounted problems is

ĝ(i, u, j) = g(i, u, j) + αV (j)− V (i), i = 1, . . . , n.

As noted in Section 4.2, cost shaping may change significantly the sub-
optimal policies produced by approximate DP methods and approximate
PI in particular. Generally, V should be chosen close (at least in terms
of “shape”) to J* or to the current policy cost function Jµk , so that the
difference J* − V or Jµk − V , respectively, can be approximated by an
architecture that matches well the characteristics of the problem. It is
possible to approximate either V or Ĵ with a parametric architecture or
with a different approximation method, depending on the problem at hand.
Moreover, in the context of approximate PI, the choice of V may change
from one policy evaluation to the next.

The literature referenced at the end of the chapter provide some ap-
plications of cost shaping. An interesting possibility is to use complemen-
tary approximations for V and for J* or Jµk . For example V may be
approximated by a neural network-based approach that aims to discover
the general form of J* or Jµk , and then a different method may be applied
to provide a local correction to V in order to refine the approximation. The
next chapter will also illustrate this idea within the context of aggregation.

Exploration Issues

Generating an appropriate set of training pairs (is, βs) or triplets (is, us, βs)
at the policy evaluation step of approximate PI poses considerable chal-
lenges, and the literature contains several related proposals. A generic
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difficulty has to do with inadequate exploration, which we noted in Section
4.7.2.

In particular, when evaluating a policy µ with trajectory reuse, we
will be generating many cost or Q-factor samples that start from states
frequently visited by µ, but this may bias the simulation by underrepre-
senting states that are unlikely to occur under µ. As a result, the cost or
Q-factor estimates of these underrepresented states may be highly inaccu-
rate, causing potentially serious errors in the calculation of the improved
policy µ via the policy improvement operation.

One possibility to improve the exploration of the state space is to use
a large number of initial states to form a rich and representative subset,
thereby limiting trajectory reuse. It may then be necessary to use relatively
short trajectories to keep the cost of the simulation low. However, when
using short trajectories it will be important to introduce a terminal cost
function approximation in the policy evaluation step in order to make the
cost sample βs more accurate, as noted earlier.

There have been other related approaches to improve exploration,
particularly in connection with the temporal difference methods to be dis-
cussed in Section 4.9. In some of these approaches, trajectories are gener-
ated through a mix of two policies: the policy being evaluated, sometimes
called the target policy, to distinguish from the other policy, used with
some probability at each stage, which is called behavior policy and is in-
troduced to enhance exploration; see the end-of-chapter references. Also,
methods that use a behavior policy are called off-policy methods, while
methods that do not are called on-policy methods. Note, however, that it
may still be difficult to ensure that the mixed on-and-off policy will induce
sufficient exploration. The area of efficient sampling, and the attendant
issue of balancing exploration and the choice of promising controls (the so-
called exploration-exploitation tradeoff) is a subject continuing research;
for some recent work, see the paper by Russo and Van Roy [RuV16], and
the monograph [RVK18].

Oscillation Issues

Contrary to exact PI, which is guaranteed to yield an optimal policy, ap-
proximate PI produces a sequence of policies, which are only guaranteed to
lie asymptotically within a certain error bound from the optimal; cf. Prop.
4.6.4. Moreover, the generated policies may oscillate. By this we mean
that after a few iterations, policies tend to repeat in cycles.

This oscillation phenomenon, first described by the author in a 1996
conference [Ber96], occurs systematically in the absence of special condi-
tions, for both optimistic and nonoptimistic PI methods. It can be observed
even in very simple examples, and it is geometrically explained in the books
[BeT96] (Section 6.4.2) and [Ber12] (Section 6.4.3).
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Oscillations can in principle be particularly damaging, because there
is no guarantee that the oscillating policies are “good” policies, and there
is often no way to verify how well they perform relative to the optimal.
Section 6.4.2 of the book [BeT96] provides an argument suggesting that
oscillations may not degrade significantly the approximate PI performance
for many types of problems. Moreover, we note that oscillations can be
avoided and approximate PI can be shown to converge under special con-
ditions, which arise in particular when an aggregation approach is used;
see Chapter 5 and the approximate policy iteration survey [Ber11a]. Also,
when policies converge, there is a more favorable error bound, cf. Prop.
4.6.5.

4.8 Q-LEARNING

In this section we will discuss various Q-learning algorithms for discounted
problems, which can be implemented in model-free fashion. The original
method of this type is related to VI and can be used directly in the case of
multiple policies. Instead of approximating the cost functions of successive
policies as in the PI method, it updates the Q-factors associated with an
optimal policy, thereby avoiding the multiple policy evaluation steps of PI.
We will consider Q-learning as well as a variety of related methods with
the shared characteristic that they involve exact or approximate Q-factors.

We first discuss the original form of Q-learning for discounted prob-
lems; the books [BeT96] and [Ber12] contain discussions of Q-learning for
SSP problems. Then we discuss PI algorithms for Q-factors, including
optimistic asynchronous versions, which lead to algorithms with reduced
overhead per iteration. Finally we focus on Q-learning algorithms with
Q-factor approximation.

Q-Learning: A Stochastic VI Algorithm

In the discounted problem, the optimal Q-factors are defined for all pairs
(i, u) with u ∈ U(i), by

Q*(i, u) =

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ*(j)
)

.

As discussed in Section 4.3, these Q-factors satisfy for all (i, u),

Q*(i, u) =
n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q*(j, v)

)

,

and are the unique solution of this set of equations. Moreover the optimal
Q-factors can be obtained by the VI algorithm Qk+1 = FQk, where F is
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the operator defined by

(FQ)(i, u) =

n
∑

j=1

pij(u)

(

g(i, u, j) + α min
v∈U(j)

Q(j, v)

)

, for all (i, u).

(4.51)
It is straightforward to show that F is a contraction with modulus α, similar
to the DP operator T . Thus the algorithm Qk+1 = FQk converges to Q*

from every starting point Q0.
The original and most widely known Q-learning algorithm ([Wat89])

is a stochastic version of VI, whereby the expected value in Eq. (4.51) is
suitably approximated by sampling and simulation. In particular, an in-
finitely long sequence of state-control pairs {(ik, uk)} is generated according
to some probabilistic mechanism. For each pair (ik, uk), a state jk is gener-
ated according to the probabilities pikj(uk). Then the Q-factor of (ik, uk)
is updated using a stepsize γk ∈ (0, 1] while all other Q-factors are left
unchanged:

Qk+1(i, u) = (1− γk)Qk(i, u) + γk(FkQk)(i, u), for all (i, u), (4.52)

where

(FkQk)(i, u) =

{

g(ik, uk, jk) + αminv∈U(jk)
Qk(jk, v) if (i, u) = (ik, uk),

Qk(i, u) if (i, u) 6= (ik, uk).
(4.53)

Note that (FkQk)(ik, uk) is a single sample approximation of the expected
value defining (FQk)(ik, uk) in Eq. (4.51).

To guarantee the convergence of the algorithm (4.52)-(4.53) to the
optimal Q-factors, some conditions must be satisfied. Chief among these
are that all state-control pairs (i, u) must be generated infinitely often
within the infinitely long sequence {(ik, uk)}, and that the successor states
j must be independently sampled at each occurrence of a given state-control
pair. Furthermore, the stepsize γk should satisfy

γk > 0, for all k,

∞
∑

k=0

γk = ∞,

∞
∑

k=0

(γk)2 < ∞,

which are typical of stochastic approximation methods (see e.g, the books
[BeT96], [Ber12], Section 6.1.4), as for example when γk = c1/(k + c2),
where c1 and c2 are some positive constants. In addition some other
technical conditions should hold. A mathematically rigorous convergence
proof was given in the paper [Tsi94], which embeds Q-learning within a
broad class of asynchronous stochastic approximation algorithms. This
proof (also reproduced in [BeT96]) combines the theory of stochastic ap-
proximation algorithms with the convergence theory of asynchronous DP
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and asynchronous iterative methods; cf. the paper [Ber82], and the books
[BeT89] and [Ber16].

In practice, Q-learning has some drawbacks, the most important of
which is that the number of Q-factors/state-control pairs (i, u) may be
excessive. To alleviate this difficulty, we may introduce a Q-factor approx-
imation architecture, which could be linear or nonlinear based for example
on a neural network. One of these possibilities will be discussed next.

Optimistic Policy Iteration Methods with Q-Factor
Approximation - SARSA

We have discussed so far Q-learning algorithms with an exact represen-
tation of Q-factors. We will now consider Q-learning with linear feature-
based Q-factor approximation. As we noted earlier, we may view Q-factors
as optimal costs of a certain discounted DP problem, whose states are the
state-control pairs (i, u) in addition to the original states; cf. Fig. 4.2.2. We
may thus apply the approximate PI methods discussed earlier. For this,
we need to introduce a linear parametric architecture Q̃(i, u, r),

Q̃(i, u, r) = φ(i, u)′r,

where φ(i, u) is a feature vector that depends on both state and control.
We have already discussed in Section 4.7.3 a model-free approximate

PI method that is based on Q-factors and least squares training/regression.
There are also optimistic approximate PI methods, which use a policy
for a limited number of stages with cost function approximation for the
remaining states, and/or a few samples in between policy updates. As an
example, let us consider a Q-learning algorithm that uses a single sample
between policy updates. At the start of iteration k, we have the current
parameter vector rk, we are at some state ik, and we have chosen a control
uk. Then:

(1) We simulate the next transition (ik, ik+1) using the transition proba-
bilities pikj(u

k).

(2) We generate the control uk+1 with the minimization

uk+1 ∈ arg min
u∈U(ik+1)

Q̃(ik+1, u, rk).

[In some schemes, uk+1 is chosen with a small probability to be a dif-
ferent or random element of U(ik+1) in order to enhance exploration.]

(3) We update the parameter vector via

rk+1 = rk − γkφ(ik, uk)qk,

where γk is a positive stepsize, and qk is given by

qk = φ(ik, uk)′rk − αφ(ik+1, uk+1)′rk − g(ik, uk, ik+1).
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The vector φ(ik, uk)qk can be interpreted as an approximate gradi-
ent direction based on an underlying regression procedure, and qk is
referred to as a temporal difference (cf. Section 4.9).

The process is now repeated with rk+1, ik+1, and uk+1 replacing rk, ik,
and uk, respectively.

Extreme optimistic schemes of the type just described, including vari-
ants that involve nonlinear architectures, have been used in practice, and
are often referred to as SARSA (State-Action-Reward-State-Action); see
e.g., the books [BeT96], [BBD10], [SuB18]. When Q-factor approximation
is used, their behavior is very complex, their theoretical convergence prop-
erties are unclear, and there are no associated performance bounds in the
literature.

We finally note that in simulation-based PI methods for Q-factors, a
major concern is the issue of exploration in the approximate evaluation step
of the current policy µ, to ensure that state-control pairs (i, u) 6=

(

i, µ(i)
)

are generated sufficiently often in the simulation.

4.9 ADDITIONAL METHODS - TEMPORAL DIFFERENCES

In this section, we summarize a few additional methods for approximation
in value space in infinite horizon problems. These include the simulation-
based temporal difference methods for policy evaluation with a linear para-
metric architecture, whose primary aim is to address a bias-variance trade-
off similar to the one discussed in Section 4.7.2. Our presentation is brief,
somewhat abstract, and makes use of linear algebra mathematics. It may
be skipped without loss of continuity. This is only a summary; it is meant
to provide a connection to other material in this chapter, and orientation
for further reading into both the optimization and artificial intelligence
literature on the subject.

Approximate Policy Evaluation Using Projections

Our main concern in policy evaluation is to solve approximately the Bell-
man equation corresponding to a given policy µ. Thus, for discounted
problems, we are interested in solving the linear system of equations

Jµ(i) =

n
∑

i=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJµ(j)
)

, i = 1, . . . , n,

or in shorthand,
Jµ = TµJµ, (4.54)

where Tµ is the DP operator for µ, given by

(TµJ)(i) =

n
∑

i=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ(j)
)

, i = 1, . . . , n. (4.55)
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Let us consider the approximate solution of this equation by parametric
approximation (cf. Section 4.7). This amounts to replacing Jµ with some
vector that lies within the manifold represented by the approximation ar-
chitecture

M =
{

(

J̃(1, r), . . . , J̃(n, r)
) ∣

∣ all parameter vectors r
}

. (4.56)

The approximate solution of systems of equations within an approxi-
mation manifold of the form (4.56) has a long history in scientific computa-
tion, particularly when the manifold is linear. A central approach involves
the use of projections with respect to a weighted quadratic norm

‖J‖2 =

n
∑

i=1

ξi
(

J(i)
)2
, (4.57)

where J(i) are the components of the vector J and ξi are some positive
weights. The projection of a vector J onto the manifold M is denoted by
Π(J). Thus

Π(J) ∈ arg min
V ∈M

‖J − V ‖2. (4.58)

Note that for a nonlinear parametric architecture, such as a neural network,
the projection may not exist and may not be unique. However, in the case
of a linear architecture, where the approximation manifold M is a sub-
space, the projection does exist and is unique; this is a consequence of the
fundamental orthogonal projection theorem of calculus and real analysis.

Let us consider three general approaches for approximation of Jµ.

(a) Project Jµ onto M to obtain Π(Jµ), which is used as an approxima-
tion of Jµ.

(b) Start with some approximation Ĵ of Jµ, perform N value iterations

to obtain TN
µ Ĵ , and project onto M to obtain Π(TN

µ Ĵ). We then use

Π(TN
µ Ĵ) as an approximation to Jµ.

(c) Solve a projected version Jµ = Π(TµJµ) of the Bellman Eq. (4.54),
and use the solution of this projected equation as an approximation
to Jµ. We will also discuss related projected versions that involve
other operators in place of Tµ.

The preceding three approaches cannot be implemented exactly; for
example, (a) is impossible since we do not know the values of Jµ. However,
it turns out that it is possible to implement these approaches by using a
Monte Carlo simulation methodology that is suitable for large problems.
To explain this methodology we first discuss the implementation of the
projection operation through sampling for the case where the parametric
architecture is linear and M is a subspace.
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Projection by Monte Carlo Simulation

We will focus on the case where the manifold M is a subspace of the form

M = {Φr | r ∈ ℜm}, (4.59)

where ℜm denote the space of m-dimensional vectors, and Φ is an n ×m

matrix with rows denoted by φ(i)′, i = 1, . . . , n. Here we use the nota-
tional convention that all vectors are column vectors, and prime denotes
transposition, so φ(i)′ is an m-dimensional row vector, and the subspace
M may be viewed as the space spanned by the n-dimensional columns of
Φ.

We consider projection with respect to the weighted Euclidean norm
of Eq. (4.57), so Π(J) is of the form Φr∗, where

r∗ ∈ arg min
r∈ℜm

‖Φr − J‖2ξ = arg min
r∈ℜm

n
∑

i=1

ξi
(

φ(i)′r − J(i)
)2
. (4.60)

By setting to 0 the gradient at r∗ of the minimized expression above,

2

n
∑

i=1

ξiφ(i)
(

φ(i)′r∗ − J(i)
)

= 0,

we obtain the solution in closed form,

r∗ =

(

n
∑

i=1

ξiφ(i)φ(i)′

)−1 n
∑

i=1

ξiφ(i)J(i), (4.61)

assuming that the inverse above exists. The difficulty here is that when
n is very large, the matrix-vector calculations in this formula can be very
time-consuming.

On the other hand, assuming (by normalizing ξ if necessary) that
ξ = (ξ1, . . . , ξn) is a probability distribution, we may view the two terms
in Eq. (4.61) as expected values with respect to ξ, and approximate them
by Monte Carlo simulation. In particular, suppose that we generate a set
of index samples is, s = 1, . . . , q, according to the distribution ξ, and form
the Monte Carlo estimates

1

q

q
∑

s=1

φ(is)φ(is)′ ≈

n
∑

i=1

ξiφ(i)φ(i)′,
1

q

q
∑

s=1

φ(is)βs ≈

n
∑

i=1

ξiφ(i)J(i),

(4.62)
where βs is a “noisy” sample of the exact value J(is)

βs = J(is) + n(is).
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For the Monte Carlo estimates (4.62) to be asymptotically correct, we must
have

1

q

q
∑

s=1

φ(is)n(is) ≈ 0, (4.63)

which is implied by a zero sample mean condition for the noise.†
Given the Monte Carlo approximation of the two terms in Eq. (4.61),

we can estimate r∗ with

r =

(

q
∑

s=1

φ(is)φ(is)′

)−1 q
∑

s=1

φ(is)βs, (4.65)

(assuming sufficiently many samples are obtained to ensure the existence of
the inverse above).‡ This is also equivalent to estimating r∗ by approximat-
ing the least squares minimization (4.60) with the following least squares
training problem

r ∈ arg min
r∈ℜm

q
∑

s=1

(

φ(is)′r − βs
)2
. (4.66)

Thus simulation-based projection can be implemented in two equiva-
lent ways:

† A suitable zero mean condition for the noise n(is) has the form

lim
q→∞

∑q

s=1
δ(is = i)n(is)

∑q

s=1
δ(is = i)

= 0, for all i = 1, . . . , n, (4.64)

where δ(is = i) = 1 if is = i and δ(is = i) = 0 if is 6= i. It states that the Monte
Carlo averages of the noise terms corresponding to every state i are zero. Then
the expression in Eq. (4.63) has the form

1

q

q
∑

s=1

φ(is)n(is) =
1

q

n
∑

i=1

φ(i)

q
∑

s=1

δ(is = i)n(is)

=
1

q

n
∑

i=1

φ(i)

q
∑

s′=1

δ(is
′

= i)

∑q

s=1
δ(is = i)n(is)

∑q

s=1
δ(is = i)

,

and converges to 0 as q → ∞, assuming that each index i is sampled infinitely

often so that Eq. (4.64) can be used.

‡ The preceding derivation and the formula (4.65) actually make sense even

if ξ = (ξ1, . . . , ξn) has some zero components, as long as the inverses in Eqs.

(4.61) and (4.65) exist. This is related to the concept of seminorm projection;

see [YuB12] for an approximate DP-related discussion.
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(a) Replacing expected values in the exact projection formula (4.61) by
simulation-based estimates [cf. Eq. (4.65)].

(b) Replacing the exact least squares problem (4.60) with a simulation-
based least squares approximation [cf. Eq. (4.66)].

These dual possibilities of implementing projection by simulation can be
used interchangeably. In particular, the least squares training problems

considered in this book may be viewed as simulation-based approximate pro-

jection calculations .
Generally, we wish that the estimate r converges to r∗ as the number

of samples q increases. An important point is that it is not necessary that
the simulation produces independent samples. Instead it is sufficient that
the long term empirical frequencies by which the indices i appear in the
simulation sequence are consistent with the probabilities ξi of the projection
norm, i.e.,

ξi = lim
k→∞

1

q

q
∑

s=1

δ(is = i), i = 1, . . . , n, (4.67)

where δ(is = i) = 1 if is = i and δ(is = i) = 0 if is 6= i.
Another important point is that the probabilities ξi need not be pre-

determined. In fact, often the exact values of ξi do not matter much, and
one may wish to first specify a reasonable and convenient sampling scheme,

and let ξi be implicitly specified via Eq. (4.67).

Projected Equation View of Approximate Policy Evaluation

Let us now discuss the approximate policy evaluation method for costs of
Section 4.7.2 [cf. Eq. (4.47)]. It can be interpreted in terms of a projected
equation, written abstractly as

J̃µ ≈ Π(TN
µ Ĵ), (4.68)

where:†

(a) Ĵ is some initial guess of Jµ (the terminal cost function approximation
discussed in Section 4.7.2), and J̃µ is the vector

J̃µ =
(

J̃(1, r), . . . , J̃(n, r)
)

,

which is the approximate policy evaluation of µ, used in the policy
improvement operation (4.48). Here r is the solution of the training
problem (4.47).

† The equation (4.68) assumes that all trajectories have equal length N ,

and thus does not allow trajectory reuse. If trajectories of different lengths are

allowed, the term TN
µ in the equation should be replaced by a more complicated

weighted sum of powers of Tµ; see the paper [YuB12] for related ideas.
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(b) Tµ is the DP operator corresponding to µ, which maps a vector J =
(

J(1), . . . , J(n)
)

into the vector TµJ of Eq. (4.55).

(c) TN
µ denotes the N -fold application of the operator Tµ, where N is the

length of the sample trajectories used in the least squares regression
problem (4.47). In particular, (TN

µ Ĵ)(i) is the cost associated with
starting at i, using µ for N stages, and incurring a terminal cost
specified by the terminal cost function Ĵ . The sample state-cost pairs
(is, βs) are obtained from trajectories corresponding to this N -stage
problem.

(d) Π(TN
µ Ĵ) denotes projection of the vector TN

µ Ĵ on the manifold of
possible approximating vectors M with respect to a weighted norm,
where each weight ξi represents the relative frequency of the state i as
initial state of a training trajectory. This projection is approximated
by the least squares regression (4.47). In particular, the cost samples
βs of the training set are noisy samples of the values (TN

µ Ĵ)(is), and
the projection is approximated with a least squares minimization, to
yield the function J̃µ of Eq. (4.68).

Suppose now that TN
µ Ĵ is close to Jµ (which happens if either N is

large or Ĵ is close to Jµ, or both) and the number of samples q is large
(so that the simulation-based regression approximates well the projection
operation Π). Then from Eq. (4.68), the approximate evaluation J̃µ of
µ approaches the projection of Jµ on the approximation manifold (4.56),
which can be viewed as the best possible approximation of Jµ (at least
relative to the distance metric defined by the weighted projection norm).
This provides an abstract formal rationale for the parametric PI method
of Section 4.7.2, which is based on Eq. (4.68).

TD(λ), LSTD(λ), and LSPE(λ)

Projected equations also fundamentally underlie temporal difference meth-

ods (TD for short), a prominent class of simulation-based methods for ap-
proximate evaluation of a policy. Examples of such methods are TD(λ),
LSTD(λ), and LSPE(λ), where λ is a scalar with 0 ≤ λ < 1.†

These three methods require a linear parametric approximation ar-
chitecture J̃µ = Φr, and all aim at the same problem. This is the problem
of solving a projected equation of the form

Φr = Π
(

T
(λ)
µ Φr

)

, (4.69)

† TD stands for “temporal difference,” LSTD stands for “least squares tem-

poral difference,” and LSPE stands for “least squares policy evaluation.”
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where Tµ is the operator (4.55), T
(λ)
µ J is defined by

(T
(λ)
µ J)(i) = (1− λ)

∞
∑

ℓ=0

λℓ(T ℓ+1
µ J)(i), i = 1, . . . , n,

and Π is projection on the approximation subspace

M = {Φr | r ∈ ℜm},

with respect to some weighted projection norm. One interpretation of the

equation J = T
(λ)
µ J is as a multistep version of Bellman’s equation. It has

the same solution, Jµ, as the “one-step” Bellman equation J = TµJ , which
corresponds to λ = 0.

Of course the projected equation (4.69) cannot be solved exactly when
the number of states n is large, since the projection is a high dimensional
operation that requires computations of order n. Instead the key idea is to
replace the projection by a simulation-based approximate projection, of the
type discussed earlier. This yields the equation,

Φr = Π̃
(

T
(λ)
µ Φr

)

, (4.70)

where Π̃ is the approximate projection obtained by sampling.
For a more concrete description, let the ith row of the matrix Φ be

the m-dimensional row vector φ(i)′, so that the cost Jµ(i) is approximated
as the inner product φ(i)′r:

Jµ(i) ≈ φ(i)′r.

Suppose that we collect q samples of initial states is, s = 1, . . . , q, together
with the corresponding transition costs g(is, is+1), s = 1, . . . , q. Then the
parameter vector r that solves Eq. (4.70) satisfies

r ∈ argmin
r

q
∑

s=1

(

φ(is)′r − sample of (T
(λ)
µ Φr)(is)

)2
, (4.71)

[cf. Eq. (4.66)], and defines the approximate evaluation Φr of Jµ. This
relation can be expressed as a linear equation, which in principle can be
solved in closed form [cf. Eq. (4.65)], and indeed LSTD(λ) does exactly
that. By contrast LSPE(λ) and TD(λ) solve this relation iteratively.

We will first give a high level description of the three methods, and
then provide a more concrete description for the simpler case where λ = 0.

(a) The LSTD(λ) method, after the q samples have been collected, solves
the relation (4.71) by matrix inversion, taking advantage of the fact
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that this relation can be written as a linear equation. In particular,
it can be written as

Cr = d, (4.72)

where C is some m × m square matrix, and d is an m-dimensional
vector. The components of C and d are explicitly computed, and
LSTD(λ) produces the approximate cost function J̃µ(i) = Φr where
r = C−1d is the solution of Eq. (4.72).

(b) The LSPE(λ) method solves the projected equation (4.69) by using
a simulation-based projected value iteration,

Jk+1 = Π̃
(

T
(λ)
µ Jk

)

. (4.73)

Here the projection is implemented iteratively, with sampling-based
least squares regression, in a manner that resembles the incremental
aggregated method of Section 3.1.3.

(c) The TD(λ) method is a simpler iterative stochastic approximation
method for solving the linear equation (4.72). It can also be viewed
as a stochastic gradient method, or as a stochastic version of the
proximal algorithm for solving this linear equation (see the author’s
papers [Ber16c] and [Ber18d]).

An interesting question is how to select λ and what is its role. There
is a bias-variance tradeoff here, similar to the one we discussed in Section
4.7.2. We will address this issue later in this section.

TD(0), LSTD(0), and LSPE(0)

Let us describe in more detail LSTD(0) for evaluation of a given policy µ.
We assume that the simulation generates a sample sequence of q transitions
using µ:

(i1, j1), (i2, j2), . . . , (iq, jq),

with corresponding transition costs

g(i1, j1), g(i2, j2), . . . , g(iq, jq).

Here, to simplify notation, we do not show the dependence of the transition
costs on the control applied by µ. Let the ith row of the matrix Φ be the
m-dimensional row vector φ(i)′, so that the cost Jµ(i) is approximated as
the inner product φ(i)′r:

Jµ(i) ≈ φ(i)′r.

Since λ = 0, we have T (λ) = T , the samples of TµΦr in Eq. (4.71) are

g(is, is+1) + αφ(is+1)′r,
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and the least squares problem in Eq. (4.71) has the form

min
r

q
∑

s=1

(

φ(is)′r − g(is, is+1)− αφ(is+1)′r
)2
. (4.74)

By setting the gradient of the minimized expression to zero, we obtain the
condition for r to attain the above minimum:

q
∑

s=1

φ(is)
(

φ(is)′r − g(is, is+1)− αφ(is+1)′r
)

= 0. (4.75)

Solving this equation for r yields the LSTD(0) solution:

r =

(

q
∑

s=1

φ(is)
(

φ(is)− αφ(is+1)
)′

)−1 q
∑

s=1

φ(is)g(is, is+1). (4.76)

Note that the inverse in the preceding equation must exist for the
method to be well-defined; otherwise the iteration has to be modified. A
modification may also be needed when the matrix inverted is nearly sin-
gular; in this case the simulation noise may introduce serious numerical
problems. Various methods have been developed to deal with the near sin-
gularity issue; see Wang and Bertsekas [WaB13a], [WaB13b], and the DP
textbook [Ber12], Section 7.3.

The expression

ds(r) = φ(is)′r − g(is, is+1)− αφ(is)′r (4.77)

that appears in the least squares sum minimization (4.74) and Eq. (4.75)
is referred to as the temporal difference associated with the sth transition

and parameter vector r. In the artificial intelligence literature, temporal
differences are viewed as fundamental to learning and are accordingly in-
terpreted, but we will not go further in this direction; see the RL textbooks
that we have cited.

The LSPE(0) method is similarly derived. It consists of a simulation-
based approximation of the projected value iteration method

Jk+1 = Π̃
(

TµJk
)

,

[cf. Eq. (4.73)]. At the kth iteration, it uses only the samples s = 1, . . . , k,
and updates the parameter vector according to

rk+1 = rk −

(

k
∑

s=1

φ(is)φ(is)′

)−1
k
∑

s=1

φ(is)ds(rs), k = 1, 2, . . . , (4.78)
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where ds(rs) is the temporal difference of Eq. (4.77), evaluated at the iterate
of iteration s; the form of this iteration is derived similar to the case of
LSTD(0). After q iterations, when all the samples have been processed,
the vector rq obtained is the one used for the approximate evaluation of Jµ.
Note that the inverse in Eq. (4.78) can be updated economically from one
iteration to the next, using fast linear algebra operations (cf. the discussion
of the incremental Newton method in Section 3.1.3).

Overall, it can be shown that LSTD(0) and LSPE(0) [with efficient
matrix inversion in Eq. (4.78)] require essentially identical amount of work
to process the q samples associated with the current policy µ [this is also
true for the LSTD(λ) and LSPE(λ) methods; see [Ber12], Section 6.3].
An advantage offered by LSPE(0) is that because it is iterative, it allows
carrying over the final parameter vector rq , as a “hot start” when passing
from one policy evaluation to the next, in the context of an approximate
PI scheme.

The TD(0) method has the form

rk+1 = rk − γkφ(ik)dk(rk), k = 1, 2, . . . , (4.79)

where γk is a diminishing stepsize parameter. It can be seen that TD(0)
resembles an incremental gradient iteration for solving the least squares
training problem (4.74), but with r replaced by the current iterate rk. The
reason is that the gradient of the typical kth term in the least squares
sum of Eq. (4.74) is the vector φ(ik)dk(rk) that appears in the TD(0)
iteration (4.79) (cf. Section 3.1.3). Thus at each iteration, TD(0) uses only
one sample, and changes rk in the opposite direction to the corresponding
incremental gradient using a stepsize γk that must be carefully controlled.

By contrast the LSPE(0) iteration (4.78) uses the full sum

k
∑

s=1

φ(is)ds(rs),

which may be viewed as an aggregated incremental method, with scaling

provided by the matrix
(

∑k

s=1 φ(i
s)φ(is)′

)−1

. This explains why TD(0) is

generally much slower and more fragile than LSPE(0). On the other hand
TD(0) is simpler than both LSTD(0) and LSPE(0), and does not require a
matrix inversion, which may be inconvenient when the column dimension
m of Φ is large.

The properties, the analysis, and the implementation of TD methods
in the context of approximate PI are quite complicated. In particular,
the issue of exploration is important and must be addressed. Moreover
there are convergence, oscillation, and reliability issues to contend with.
LSTD(λ) relies on matrix inversion and not on iteration, so it does not have
a serious convergence issue, but the system (4.72) may be singular or near
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singular, in which case very accurate simulation is needed to approximate C
well enough for its inversion to be reliable; remedies for the case of a singular
or near singular system are discussed in the papers [WaB13a], [WaB13b]
(see also [Ber12], Section 7.3). LSPE(λ) has a convergence issue because

the mapping ΠT
(λ)
µ may not be a contraction mapping (even though Tµ is)

and the projected value iteration (4.73) may not be convergent (it turns out

that the mapping ΠT
(λ)
µ is guaranteed to be a contraction for λ sufficiently

close to 1).

Direct and Indirect Policy Evaluation Methods

In trying to compare the approximate policy evaluation methods discussed
in this section, we may draw a distinction between direct methods , which
aim to compute approximately the projection Π(Jµ), and indirect methods ,
which try to solve the projected equation (4.69).

The method of Section 4.7.2 is direct and is based on Eq. (4.68). In
particular, as N → ∞ and q → ∞, it yields the approximate evaluation
Π(Jµ). The TD methods are indirect, and aim at computing the solution
of the projected equation (4.69). The solution of this equation is of the
form Φr∗λ, where the parameter vector r∗λ depends on λ. In particular the
projected equation solution Φr∗λ is different from Π(Jµ). It can be shown
that it satisfies the error bound

‖Jµ − Φr∗λ‖ξ ≤
1

√

1− α2
λ

‖Jµ −ΠJµ‖ξ, (4.80)

where

αλ =
α(1 − λ)

1− αλ

and ‖ · ‖ξ is a special projection norm of the form (4.57), where ξ is the
steady-state probability distribution of the controlled system Markov chain
under policy µ. Moreover as λ → 1 the projected equation solution Φr∗λ
approaches Π(Jµ). Based on this fact, methods which aim to compute
Π(Jµ), such as the direct method of Section 4.7.2 are sometimes called
TD(1). We refer to [Ber12], Section 6.3, for an account of this analysis,
which is beyond the scope of this book.

The difference Π(Jµ)−Φr∗λ is commonly referred to as the bias and is
illustrated in Figure 4.9.1. As indicated in this figure and as the estimate
(4.80) suggests, there is a bias-variance tradeoff . As λ is decreased, the so-
lution of the projected equation (4.69) changes and more bias is introduced
relative to the “ideal” approximation ΠJµ (this bias can be embarassingly
large as shown by examples in the paper [Ber95]). At the same time, how-

ever, the simulation samples of T
(λ)
µ J contain less noise as λ is decreased.

This provides another view of the bias-variance tradeoff, which we discussed
in Section 4.7.2 in connection with the use of short trajectories.
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Φr = Π
(

T
(λ)
µ (Φr)

)

)

Π(Jµ)
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Subspace M = {Φr | r ∈ ℜm}

Figure 4.9.1 Illustration of the bias-variance tradeoff in estimating the solution
of the projected equation for different values of λ. As λ increases from λ = 0
towards λ = 1, the solution Φr∗

λ
of the projected equation Φr = ΠT (λ)(Φr)

approaches the projection ΠJµ. The difference Φr∗
λ
− ΠJµ is the bias, and it

decreases to 0 as λ approaches 1, while the simulation error variance increases.

4.10 EXACT AND APPROXIMATE LINEAR PROGRAMMING

Another method for exact solution of infinite horizon DP problems is
based on linear programming ideas. In particular, J* can be shown to
be the unique optimal solution of a certain linear program. Focusing
on α-discounted problems, the key idea is that J* is the “largest” (on
a component-by-component basis) vector J that satisfies the constraint

J(i) ≤
n
∑

j=1

pij(u)
(

g(i, u, j) + αJ(j)
)

, for all i = 1, . . . , n and u ∈ U(i),

(4.81)
so that J*(1), . . . , J*(n) solve the linear program

maximize
n
∑

i=1

J(i)

subject to the constraint (4.81),

(4.82)

(see Fig. 4.10.1).
To verify this, let us use the VI algorithm to generate a sequence of

vectors Jk =
(

Jk(1), . . . , Jk(n)
)

starting with an initial condition vector

J0 =
(

J(1), . . . , J(n)
)

such that

J0(i) ≤ min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ0(j)
)

= J1(i), for all i.
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= 0

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)

J(1) = g(1, u2) + αp11(u2)J(1) + αp12(u2)J(2)

J(1) = g(1, u1) + αp11(u1)J(1) + αp12(u1)J(2)

J(2) =

J(1) =

J∗ =
(

J∗(1), J∗(2)
)

Figure 4.10.1 A linear program associated with a two-state SSP problem. The
constraint set is shaded, and the objective to maximize is J(1) + J(2). Note that

because we have J(i) ≤ J∗(i) for all i and vectors J in the constraint set, the
vector J∗ maximizes any linear cost function of the form

∑n

i=1
βiJ(i), where

βi ≥ 0 for all i. If βi > 0 for all i, then J∗ is the unique optimal solution of the
corresponding linear program.

This inequality can be used to show that

J0(i) ≤ J1(i) ≤ min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ1(j)
)

= J2(i), for all i,

and similarly

J(i) = J0(i) ≤ Jk(i) ≤ Jk+1(i), for all i.

Since Jk(i) converges to J*(i) as k → ∞, it follows that we will also have

J(i) = J0(i) ≤ J*(i), for all i.

Thus out of all J satisfying the constraint (4.81), J* is the largest on a
component-by-component basis.

Unfortunately, for large n the dimension of the linear program (4.82)
can be very large and its solution can be impractical, particularly in the
absence of special structure. In this case, we may consider finding an
approximation to J*, which can be used in turn to obtain a (suboptimal)
policy through approximation in value space.

One possibility is to approximate J*(i) with a linear feature-based
architecture

J̃(i, r) =

m
∑

ℓ=1

rℓφℓ(i),
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where r = (r1, . . . , rm) is a vector of parameters, and for each state i, φℓ(i)
are some features. It is then possible to determine r by using J̃(i, r) in
place of J* in the preceding linear programming approach. In particular,
we compute r as the solution of the program

maximize
∑

i∈Ĩ

J̃(i, r)

subject to J̃(i, r) ≤
n
∑

i=1

pij(u)
(

g(i, u, j) + αJ̃(j, r)
)

, i ∈ Ĩ , u ∈ Ũ(i),

where Ĩ is either the state space I = {1, . . . , n} or a suitably chosen subset
of I, and Ũ(i) is either U(i) or a suitably chosen subset of U(i). This is a
linear program because J̃(i, r) is assumed linear in the parameter vector r.

The major difficulty with this approximation approach is that while
the dimension of r may be moderate, the number of constraints can be ex-
tremely large. It can be as large as nm, where n is the number of states and
m is the maximum number of elements of the control constraint sets U(i).
Thus for a large problem it is essential to reduce drastically the number of
constraints. Random sampling methods may be used to select a suitable
subset of the constraints to enforce (perhaps using some known subopti-
mal policies), and progressively enrich the subset as necessary. With such
constraint sampling schemes, the linear programming approach may be
practical even for problems with a very large number of states. Its appli-
cation, however, may require considerable sophistication, and a substantial
amount of computation (see de Farias and Van Roy [DFV03], [DFV04],
[DeF04]).

We finally mention the possibility of using linear programming to
evaluate approximately the cost function Jµ of a stationary policy µ in
the context of approximate PI. The motivation for this is that the linear
program to evaluate a given policy involves fewer constraints.

4.11 APPROXIMATION IN POLICY SPACE

We will now consider briefly an alternative to approximation in value space:
approximation within the space of policies. In particular, we parametrize
stationary policies with a parameter vector r and denote them by µ̃(r),
with components µ̃(i, r), i = 1, . . . , n. The parametrization may be feature-
based and/or may involve a neural network. The idea is then to optimize
some measure of performance with respect to the parameter r.

Note that it is possible for a suboptimal control scheme to employ
both types of approximation: in policy space and in value space, with a
distinct architecture for each case (examples of such schemes have been
discussed briefly in Sections 2.1.5 and 4.7.3). When neural networks are
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Production

Center
Delay

Retail

Storage

Demand

Figure 4.11.1. Illustration of a simple supply chain system.

used, this is known as the simultaneous use of a “policy network” (or “actor
network”) and a “value network” (or “critic network”), each with its own
set of parameters (see the following discussion on expert training).

Let us provide two examples where policy parametrizations are nat-
ural.

Example 4.11.1: (Supply chain parametrization)

There are many problems where the general structure of an optimal or near-
optimal policy is known through analysis or insight into the problem’s struc-
ture. An important case are supply chain systems involving production, in-
ventory, and retail centers that are connected with transportation links. A
simple example is illustrated in Fig. 4.11.1. Here a retail center places orders
to the production center, depending on current stock. There may be orders
in transit, and demand and delays can be stochastic. Such a problem can be
formulated by DP but can be very difficult to solve exactly. However, intu-
itively, a near-optimal policy has a simple form: When the retail inventory
goes below some critical level r1, order an amount to bring the inventory to a
target level r2. Here a policy is specified by the parameter vector r = (r1, r2),
and can be trained by one of the methods of this section. This type of ap-
proach readily extends to the case of a complex network of production/retail
centers, multiple products, etc.

Example 4.11.2: (Policy parametrization through cost
parametrization)

In an important approach for parametrization of policies we start with a para-
metric cost function approximation J̃(j, r). We then define a parametrization
in policy policy through the one-step lookahead minimization

µ̃(i, r) ∈ arg min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + J̃(j, r)
)

,

where J̃ is a function of a given form that depends on r. For example, J̃

may be a linear feature-based architecture, with features possibly obtained
through a separately trained neural network. The policies µ̃(r) thus defined
form a class of one-step lookahead policies parametrized by r. We may then
determine r through some form of policy training method.



Sec. 4.11 Approximation in Policy Space 73

System

Environment

Cost

Uncertainty

Control

Controller

Current State

I, r) µ̃(·, r)

i u = µ̃(i, r) ˜
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Figure 4.11.2 The optimization framework for approximation in policy space.
Here policies are parametrized with a parameter vector r and denoted by µ̃(r),
with components µ̃(i, r), i = 1, . . . , n. Each parameter value r determines a policy
µ(r), and a cost Jµ̃(r)(i0) for each initial state i0, as indicated in the figure. The
optimization approach determines r through the minimization

min
r

E
{

Jµ̃(r)(i0)
}

,

where the expected value above is taken with respect to a suitable probability
distribution of i0.

In what follows we will discuss briefly two training approaches for
approximation in policy space.

4.11.1 Training by Cost Optimization - Policy Gradient and
Random Search Methods

According to the first approach, we parametrize the policies by the param-
eter vector r, and we optimize the corresponding expected cost over r. In
particular, we determine r through the minimization

min
r

E
{

Jµ̃(r)(i0)
}

, (4.83)

where Jµ̃(r)(i0) is the cost of the policy µ̃(r) starting from the initial state i0,
and the expected value above is taken with respect to a suitable probability
distribution of the initial state i0 (cf. Fig. 4.11.2). In the case where the
initial state i0 is known and fixed, the method involves just minimization of
Jµ̃(r)(i0) over r, This simplifies a great deal the minimization, particularly
when the problem is deterministic.

Gradient Methods for Cost Optimization

Let us first consider methods that perform the minimization (4.83) by
using a gradient method, and for simplicity let us assume that the initial
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condition i0 is known. Thus the problem is to minimize Jµ̃(r)(i0) over r by
using the gradient method

rk+1 = rk − γk∇Jµ̃(rk)(i0), k = 0, 1, . . . , (4.84)

assuming that Jµ̃(r)(i0) is differentiable with respect to r. Here γk is a
positive stepsize parameter, and ∇(·) denotes gradient with respect to r

evaluated at the current iterate rk.
The difficulty with this method is that the gradient ∇Jµ̃(rk)(i0) may

not be explicitly available. In this case, the gradient must be approximated
by finite differences of cost function values Jµ̃(rk)(i0). Unfortunately, in the
case of a stochastic problem, the cost function values may be computable
only through Monte Carlo simulation. This may introduce a large amount
of noise, so it is likely that many samples will need to be averaged in
order to obtain sufficiently accurate gradients, thereby making the method
inefficient. On the other hand, when the problem is deterministic, this
difficulty does not appear, and the use of the gradient method (4.84) or
other methods that do not rely on the use of gradients (such as coordinate
descent) is facilitated.

There is extensive literature on alternative and more efficient policy
gradient methods for stochastic problems, which are based on gradient
approximations through sampling. A popular type of method is based
on the use of randomized policies [i.e., policies that map a state i to a
probability distribution over the set of controls U(i), rather than mapping
onto a single control].† The method also uses a convenient gradient formula
that involves the natural logarithm of the sampling distribution, and is
known as the log-likelihood trick . We will next provide an outline of the
ideas underlying this method.

Policy Gradient Methods for Randomized Policies

The detailed description and analysis of randomized policies and the asso-
ciated policy gradient methods are beyond our scope. To get a sense of the
general principle underlying this gradient-based approach, let us digress
from the DP context of this chapter, and consider the generic optimization
problem

min
z∈Z

F (z),

† The AlphaGo and AlphaZero programs (Silver et al. [SHM16], [SHS17])

also use randomized policies, and a policy adjustment scheme that involves in-

cremental changes along “directions of improvement.” However, these changes

are implemented through the MCTS algorithm used by these programs, without

the explicit use of a gradient (see the discussion in Section 2.4.2). Thus it may

be said that the AlphaGo and AlphaZero programs involve a form of approxi-

mation in policy space (as well as approximation in value space), which bears

resemblance but cannot be classified as a policy gradient method.
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where Z is a subset of the m-dimensional space ℜm, and F is some real-
valued function over ℜm.

We will take the unusual step of converting this problem to the
stochastic optimization problem

min
p∈PZ

Ep

{

F (z)
}

, (4.85)

where z is viewed as a random variable, PZ is the set of probability dis-
tributions over Z, p denotes the generic distribution in PZ , and Ep{·} de-
notes expected value with respect to p. Of course this enlarges the search
space from Z to PZ , but it allows the use of randomization schemes and
simulation-based methods, even if the original problem is deterministic.

In a stochastic DP context, such as the SSP and discounted problems
that we focused on in this chapter, the cost function is already stochastic,
but to obtain a problem of the form (4.85), we must enlarge the set of
policies to include randomized policies , mapping a state i into a probability
distribution over the set of controls U(i).

Suppose now that we restrict attention to a subset P̃Z ⊂ PZ of prob-
ability distributions p(z; r) that are parametrized by some continuous pa-
rameter r, e.g., a vector in some m-dimensional space. In other words, we
approximate the stochastic optimization problem (4.85) with the restricted
problem

min
r

Ep(z;r)

{

F (z)
}

.

Then we may use a gradient method for solving this problem, such as

rk+1 = rk − γk∇
(

Ep(z;rk)

{

F (z)
}

)

, k = 0, 1, . . . , (4.86)

where∇(·) denotes gradient with respect to r of the function in parentheses,
evaluated at the current iterate rk.

A key fact here is that there is a useful formula for the gradient in
Eq. (4.86), which involves the gradient with respect to r of the natural
logarithm log

(

p(z; rk)
)

. Indeed, assuming for notational convenience that
p(z; rk) is a discrete distribution, we have

∇
(

Ep(z;rk)

{

F (z)
}

)

= ∇

(

∑

z∈Z

p(z; rk)F (z)

)

=
∑

z∈Z

∇p(z; rk)F (z)

=
∑

z∈Z

p(z; rk)
∇p(z; rk)

p(z; rk)
F (z)

=
∑

z∈Z

p(z; rk)∇
(

log
(

p(z; rk)
)

)

F (z),
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and finally

∇
(

Ep(z;rk)

{

F (z)
}

)

= Ep(z;rk)

{

∇
(

log
(

p(z; rk)
)

)

F (z)

}

.

The preceding formula suggests an incremental implementation of the gra-
dient iteration (4.86) that approximates the expected value in the right
side above with a single sample. This is in the spirit of the incremen-
tal/stochastic gradient training methods that we have discussed in Sections
3.1.3 and 3.2.1. The typical iteration of this method is as follows.

Sample-Based Gradient Method for Parametric Approxima-
tion of minz∈Z F (z)

Let rk be the current parameter vector.

(a) Obtain a sample zk according to the distribution p(z; rk).

(b) Compute the gradient ∇
(

log
(

p(zk; rk)
)

)

.

(c) Iterate according to

rk+1 = rk − γk∇
(

log
(

p(zk; rk)
)

)

F (zk). (4.87)

The advantage of the preceding sample-based method is its simplicity
and generality. It allows the use of parametric approximation for any min-
imization problem, as long as the logarithm of the sampling distribution
p(z; r) can be differentiated with respect to r, and samples of z can be
obtained using the distribution p(z; r).

Another major advantage is that the iteration (4.87) requires the
sample cost values F (zk) but not the gradient of F . As a result the iteration
has a model-free character : we don’t need to know the form of the function
F as long as we have a simulator that produces the cost function value F (z)
for any given z. There are, however, some challenging issues to consider.

The first of these is that the problem solved is a randomized version of
the original. If the gradient iteration (4.87) produces a parameter r in the
limit and the distribution p(z; r) is not atomic (i.e., it is not concentrated a
single point), then a solution z ∈ Z must be extracted from p(z; r). In the
SSP and discounted problems of this chapter, the subset P̃Z of parametric
distributions typically contains the atomic distributions, while it can be
shown that minimization over the set of all distributions PZ produces the
same optimal value as minimization over Z (the use of randomized policies
does not improve the optimal cost of the problem), so this difficulty does
not arise.
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Another issue is how to design the approximation architecture and
how to collect the samples zk. Different methods must strike a balance
of convenient implementation, and a reasonable guarantee that the search
space Z is sufficiently well explored.

Finally, we must deal with the issue of efficient computation of the
sampled gradient

∇
(

log
(

p(zk; rk)
))

.

In the context of DP, including the SSP and discounted problems that we
have been dealing with, there are some specialized procedures and corre-
sponding parametrizations to approximate this gradient conveniently. The
following is an example.

Example 4.11.3 (Policy Gradient Method - Discounted Cost)

Consider the α-discounted problem and denote by z the infinite horizon state-
control trajectory:

z = {i0, u0, i1, u1, . . .}.

We consider a parametrization of randomized policies with parameter r, so
the control at state i is generated according to a distribution p(u | i; r) over
U(i). Then for a given r, the state-control trajectory z is a random vector
with probability distribution denoted p(z; r). The cost corresponding to the
trajectory z is

F (z) =

∞
∑

m=0

α
m
g(im, um, im+1),

and the problem is to minimize

Ep(z;r)

{

F (z)
}

,

over r.
To apply the sample-based gradient method (4.87), given the current

iterate rk, we must generate the sample state-control trajectory zk, according
to the distribution p(z; rk), compute the corresponding cost F (zk), and also
calculate the gradient

∇

(

log
(

p(zk; rk)
)

)

. (4.88)

Let us assume a model-based context where the transition probabilities pij(u)
are known, and let us also assume that the logarithm of the randomized policy
distribution p(u | i; r) is differentiable with respect to r. Then the logarithm
that is differentiated in Eq. (4.88) can be written as

log
(

p(zk; rk)
)

= log

∞
∏

m=0

pimim+1(um)p(um | im; rk)

=

∞
∑

m=0

log
(

pimim+1(um)
)

+

∞
∑

m=0

log
(

p(um | im; rk)
)

,
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and its gradient (4.88), which is needed in the iteration (4.87), is given by

∇

(

log
(

p(zk; rk)
)

)

=

∞
∑

m=0

log
(

pimim+1(um)
)

+

∞
∑

m=0

∇

(

log
(

p(um | im; rk)
)

)

.

(4.89)
Thus the policy gradient method (4.87) is very simple to implement: for

the given parameter vector rk, we generate a sample trajectory zk using the
corresponding randomized policy p(u | i; rk), we calculate the corresponding
sample cost F (zk), and the gradient (4.88) using the expression (4.89), and
we update rk using Eq. (4.87).

Policy gradient methods for other types of DP problems can be sim-
ilarly developed, including for model-free contexts. A further discussion is
beyond our scope, and we refer to the end-of-chapter literature for a variety
of specific methods.

The main drawback of policy gradient methods is potential unrelia-
bility due to the stochastic uncertainty corrupting the calculation of the
gradients, the slow convergence that is typical of gradient methods in many
settings, and the presence of local minima. For this reason, methods based
on random search have been considered as potentially more reliable alterna-
tives to policy gradient methods. Viewed from a high level, random search
methods are similar to policy gradient methods in that they aim at itera-
tive cost improvement through sampling. However, they need not involve
randomized policies, they are not subject to cost differentiability restric-
tions, and they offer some global convergence guarantees, so in principle
they are not affected much by local minima.

Random Search and Cross-Entropy Methods

Random search methods explore the space of the parameter vector r in
some randomized but intelligent fashion. There are several types of ran-
dom search methods for general optimization, and some of them have been
suggested for approximate DP. We will briefly describe the cross-entropy

method , which has gained considerable attention.
The method bears resemblance to policy gradient methods, in that

it generates a parameter sequence {rk} by changing rk to rk+1 along a
direction of “improvement.” This direction is obtained by using the policy
µ̃(rk) to generate randomly cost samples corresponding to a set of sam-
ple parameter values that are concentrated around rk. The current set of
sample parameters are then screened: some are accepted and the rest are
rejected, based on a cost improvement criterion. Then rk+1 is determined
as a “central point” or as the “sample mean” in the set of accepted sample
parameters, some more samples are generated randomly around rk+1, and
the process is repeated; see Fig. 4.11.3. Thus successive iterates rk are
“central points” of successively better groups of samples, so in some broad



Sec. 4.11 Approximation in Policy Space 79

Ek

Ek+1

rk+1

rk

Figure 4.11.3 Schematic illustration of the cross entropy method. At the current
iterate rk, we construct an ellipsoid Ek centered at rk. We generate a number of
random samples within Ek, and we “accept” a subset of the samples that have
“low” cost. We then choose rk+1 to be the sample mean of the accepted samples,
and construct a sample “covariance” matrix of the accepted samples. We then
form the new ellipsoid Ek+1 using this matrix and a suitable radius parameter,
and continue. Notice the resemblance with a policy gradient method: we move
from rk to rk+1 in a direction of cost improvement.

sense, the random sample generation process is guided by cost improve-
ment. This idea is shared with evolutionary programming; see e.g., the
books [Bac96], [DeJ06], and the paper by Salimans et al. [SHC17], which
provides references to many other works.

The cross-entropy method is very simple to implement, does not suffer
from the fragility of gradient-based optimization, does not involve random-
ized policies, and relies on some supportive theory; we refer to the literature
for details. Like all random search methods, its convergence rate guaran-
tees are limited, and its success depends on domain-specific insight and the
skilled use of heuristics. However, the method is well-suited for the use of
parallel computation, and has gained a favorable reputation through some
impressive successes. In particular, it was used for learning a high-scoring
strategy in the game of tetris; see Szita and Lorinz [SzL06], and Thiery and
Scherrer [ThS09]. There have also been reports of domain-specific successes
with related random search methods; see Salimans et al. [SHC17].

4.11.2 Expert Supervised Training

According to the second approximation in policy space approach, we choose
the parameter r by “training” on a large number of sample state-control
pairs (is, us), s = 1, . . . , q, such that for each s, us is a “good” control at
state is. This can be done for example by solving the least squares problem

min
r

q
∑

s=1

∥

∥us − µ̃(is, r)
∥

∥

2
(4.90)
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(possibly with added regularization). In particular, we may determine us

by a human or a software “expert” that can choose “near-optimal” controls
at given states, so µ̃ is trained to match the behavior of the expert. We
have also discussed this approach in Section 2.1.3, in the context of finite
horizon problems. In the context of artificial intelligence, it comes within
the framework of supervised learning methods.†

Another possibility is to suitably select a large number of sample
states is, s = 1, . . . , q, and generate the controls us, s = 1, . . . , q, through
a one-step lookahead minimization of the form

us = arg min
u∈U(is)

n
∑

j=1

pij(u)
(

g(is, u, j) + J̃k+1(j)
)

, (4.91)

where J̃ is a suitable one-step lookahead function (multistep lookahead
can also be used). Similarly, once a parametric Q-factor approximation
architecture Q̃(i, u, r) is chosen, we can select a large number of sample
states is, s = 1, . . . , q, and then compute the controls us, s = 1, . . . , q,
through the one-step lookahead minimization

us = arg min
u∈U(is)

Q̃(is, u, r). (4.92)

In this case, we will be collecting sample state-control pairs (is, us), s =
1, . . . , q, using approximation in value space through Eq. (4.91) or Eq.
(4.92), and then applying approximation in policy space through Eq. (4.90).

Of course in the expert training approach we cannot expect to obtain
a policy that performs better than the expert with which it is trained,
in the case of Eq. (4.90), or the one-step lookahead policy that is based
on the approximation J̃ or Q̃, in the case of Eq. (4.91) or Eq. (4.92),
respectively. However, a major advantage is that once the parametrized
policy is obtained, the on-line implementation of the policy is fast and
does not involve extensive calculations such as minimizations of the form
(4.91). This advantage is generally shared by schemes that are based on
approximation in policy space.

† Tesauro [Tes89a], [Tes89b] constructed a backgammon player, trained by

a neural network and a supervised learning approach (called “comparison learn-

ing”), which used examples from human expert play (he was the expert who

provided the training samples). However, his subsequent TD-based algorithm

[Tes92], [Tes94], [Tes95], performed substantially better, and his rollout-based

algorithm [TeG96] performed even better. The Deepchess program by David,

Netanyahu, and Wolf [DNW16] provides another example of an expert super-

vised training approach.
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4.12 NOTES AND SOURCES

In this chapter we have provided an introduction to infinite horizon DP with
a view towards approximate solution methods that are suitable for large-
scale problems. We have restricted ourselves to finite-state problems with
perfect state information. Infinite-state problems as well as partial state
information and average cost problems exhibit more complex behaviors
and present many challenges for approximate DP methods. The theory of
these problems is developed in several books, including the author’s [Ber12]
and [Ber18a]. The latter book contains much recent advanced research on
infinite-state deterministic and stochastic shortest path problems. The
book by Puterman [Put94] contains a detailed account of discounted and
average cost finite-state Markovian decision problems.

The methods of VI and PI, and their optimistic variants are the cor-
nerstones of infinite horizon DP, and they serve as the principal points
of departure for approximations. In addition to the computational topics
covered in this chapter, we should mention that both VI and PI can be
implemented via distributed asynchronous computation; see the author’s
papers on DP and fixed point computations [Ber82], [Ber83], the paper
by Williams and Baird on asynchronous PI [WiB93], and the series of pa-
pers by Bertsekas and Yu [BeY10], [BeY12], [YuB13a] on asynchronous
optimistic PI and Q-learning. Generally, asynchronous and distributed al-
gorithms are natural in computational contexts involving simulation, which
by its nature is well suited to both multiprocessing and asynchronous im-
plementation.

The variational form of Bellman’s equation (Section 4.2) has been
used in various contexts, involving error bounds for value iteration, since
the early days of DP theory, see e.g., [Ber12], Section 2.1.1. The variational
form of Bellman’s equation is also implicit in the adaptive aggregation
framework of Bertsekas and Castanon [BeC89]. In the context of RL, the
variational equation has been used in various algorithmic contexts under
the name reward shaping or potential-based shaping (we have used the term
“cost shaping” here as we are focusing on cost minimization); see e.g., the
papers by Ng, Harada, and Russell [NHR99], Wiewiora [Wie03], Asmuth,
Littman, and Zinkov [ALZ08], Devlin and Kudenko [DeK11], Grzes [Grz17]
for some representative works. While reward shaping does not change the
optimal policies of the original DP problem, it may change significantly
the suboptimal policies produced by approximate DP methods that use
linear feature-based approximation. Basically, with reward shaping and a
linear approximation architecture, V is used as an extra feature. This is
closely related with the idea of using approximate cost functions of policies
as basis functions in approximation architectures; see the discussion in the
neuro-dynamic programming book [BeT96], Section 3.1.4.

Fitted VI algorithms have been used for finite horizon problems since
the early days of DP. They are conceptually simple and easily imple-
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mentable, and they are in wide use for approximation of either optimal costs
or Q-factors (see e.g., Gordon [Gor95], Longstaff and Schwartz [LoS01], Or-
moneit and Sen [OrS02], Ernst, Geurts, and Wehenkel [EGW06], Antos,
Munos, and Szepesvari [AMS07], and Munos and Szepesvari [MuS08]).

The performance bound of Props. 4.6.1 and 4.6.3 for multistep looka-
head, rollout, and terminal cost function approximation are sharper ver-
sions of earlier results for one step lookahead, terminal cost function ap-
proximation, but no rollout; see Prop. 6.1.1 in the author’s DP textbook
[Ber17] (and earlier editions), as well as [Ber18a], Section 2.2. The approx-
imate PI method of Section 4.7.3 has been proposed by Fern, Yoon, and
Givan [FYG06], and variants have also been discussed and analyzed by
several other authors. The method (with some variations) has been used
to train a tetris playing computer program that performs impressively bet-
ter than programs that are based on other variants of approximate policy
iteration, and various other methods; see Scherrer [Sch13], Scherrer et al.
[SGG15], and Gabillon, Ghavamzadeh, and Scherrer [GGS13], who also
provide an analysis of the method.

Q-learning (Section 4.8) was first proposed by Watkins [Wat89], and
had a major impact in the development of the field. A rigorous convergence
proof of Q-learning was given by Tsitsiklis [Tsi94], in a more general frame-
work that combined several ideas from stochastic approximation theory and
the theory of distributed asynchronous computation. This proof covered
discounted problems, and SSP problems where all policies are proper. It
also covered SSP problems with improper policies, assuming that the Q-
learning iterates are either nonnegative or bounded. Convergence without
the nonnegativity or the boundedness assumption was shown by Yu and
Bertsekas [YuB13b]. Optimistic asynchronous versions of PI based on Q-
learning, which have solid convergence properties, are given by Bertsekas
and Yu [BeY10], [BeY12], [YuB13a]. The distinctive feature of these meth-
ods is that the policy evaluation process aims towards the solution of an
optimal stopping problem rather than towards to solution of the linear
system of Bellman equations associated with the policy; this is needed for
the convergence proof, to avoid the pathological behavior first identified by
Williams and Baird [WiB93], and noted earlier.

The advantage updating idea, which was noted in the context of finite
horizon problems in Section 3.3, can be readily extended to infinite horizon
problems. In this context, it was proposed by Baird [Bai93], [Bai94]; see
[BeT96], Section 6.6. A related variant of approximate policy iteration and
Q-learning, called differential training, has been proposed by the author in
[Ber97b] (see also Weaver and Baxter [WeB99]).

Projected equations (Section 4.9) underlie Galerkin methods, which
have a long history in scientific computation. They are widely used for
many types of problems, including the approximate solution of large linear
systems arising from discretization of partial differential and integral equa-
tions. The connection of approximate policy evaluation based on projected
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equations with Galerkin methods was first discussed by Yu and Bertsekas
[YuB10], and Bertsekas [Ber11c], and is potentially important as it may
lead to cross-fertilization of ideas. However, the Monte Carlo simulation
ideas that are central in approximate DP differentiate the projected equa-
tion methods of the present chapter from the Galerkin methodology. On
the other hand, Galerkin methods apply to a wide range of problems, far
beyond DP, and the simulation-based ideas of approximate DP can conse-
quently be extended to apply more broadly (see [Ber12], Section 7.3).

Temporal difference methods originated in RL, where they are viewed
as a means to encode the error in predicting future costs of a given pol-
icy, which is associated and an approximation architecture. They were
introduced in the works of Samuel [Sam59], [Sam67] on a checkers-playing
program. The work by Sutton [Sut88], following earlier work by Barto,
Sutton, and Anderson [BSA83], formalized temporal differences and pro-
posed the TD(λ) method. This was a major development and motivated a
lot of research in simulation-based DP, particularly following an impressive
early success with the backgammon playing program of Tesauro [Tes92],
[Tes94].

The three methods TD(λ), LSTD(λ), and LSPE(λ) are discussed in
detail in the journal and textbook RL literature. For a discussion that
extends our presentation of Section 4.9, see Chapters 6 and 7 of the book
[Ber12].

The convergence of TD(λ) was proved by Tsitsiklis and Van Roy
[TsV97], with extensions in [TsV99a] and [TsV99b]. The author’s papers
[Ber16b], [Ber18d] describe the connection of TD and proximal methods,
a central methodology in convex optimization. In particular, TD(λ) is
shown to be a stochastic version of the proximal algorithm for solving
linear systems of equations, and extensions of TD(λ) for solving nonlinear
systems of equations are described.

The LSTD(λ) algorithm was first proposed by Bradtke and Barto
[BrB96] for λ = 0, and was extended for λ > 0 later by Boyan [Boy02].
Convergence analyses of LSTD(λ) under assumptions of increasing general-
ity were given by Nedić and Bertsekas [NeB03], Bertsekas and Yu [BeY09],
and Yu [Yu12].

The LSPE(λ) algorithm was first proposed by Bertsekas and Ioffe
[BeI96] under the name λ-policy iteration, and it was used to train a tetris
playing program using the feature-based linear architecture described in
Example 3.1.3. The motivation for λ-policy iteration was to provide a
better alternative to TD(λ)-based policy iteration, which failed within the
tetris context. LSPE(λ) was also given in the book [BeT96], Section 2.3.1,
with subsequent contributions by Nedic, Borkar, Yu, Scherrer, and the
author [NeB03], [BBN04], [YuB07], [BeY09], [YuB09], [Ber11b], [Yu12],
[Sch13], [Ber18a].

In our discussion here, we did not go much into the implementation
details of TD(λ), LSTD(λ), and LSPE(λ); see the approximate DP/RL
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textbooks cited earlier, and the paper by Bertsekas and Yu [BeY09], which
adapts the TD methodology to the solution of large systems of linear equa-
tions.

Policy gradient methods have a long history. For a detailed discus-
sion and references we refer to the book by Sutton and Barto [SuB18],
the monograph by Deisenroth, Neumann, and Peters [DNP11], and the
survey by Grondman et. al. [GBL12]. The use of the log-likelihood trick
in the context of simulation-based DP is generally attributed to Williams
[Wil92]. Early works on simulation-based policy gradient schemes for var-
ious DP problems have been given by Glynn [Gly87], L’Ecuyer [L’Ec91],
Fu and Hu [FuH94], Jaakkola, Singh, and Jordan [JSJ95], Cao and Chen
[CaC97], Cao and Wan [CaW98]. The more recent works of Marbach and
Tsitsiklis [MaT01], [MaT03], Konda and Tsitsiklis [KoT99], [KoT03], and
Sutton et. al. [SMS99] have been influential. For textbook discussions of
the cross-entropy method, see Rubinstein and Kroese [RuK04], [RuK17],
and Busoniu et. al. [BBD10], and for surveys see de Boer et. al. [BKM05],
and Kroese et. al. [KRC13].

4.13 APPENDIX: MATHEMATICAL ANALYSIS

In this appendix we provide proofs of the mathematical results stated in
this chapter. We also prove some supplementary results that are described
in the chapter without formal statement.

We will make heavy use of the DP operators T and Tµ, particularly
for the discounted problem:

(TJ)(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ(j)
)

, i = 1, . . . , n,

(TµJ)(i) =
n
∑

i=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ(j)
)

, i = 1, . . . , n.

A key property is the monotonicity of these operators, i.e.,

TJ ≥ TJ ′, TµJ ≥ TµJ ′, for all J and J ′ with J ≥ J ′.

Also for the discounted problem, we have the “constant shift” property,
which states that if the functions J is increased uniformly by a constant c,
then the functions TJ and TµJ are also increased uniformly by the constant
αc.
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4.13.1 Proofs for Stochastic Shortest Path Problems

We provide the proofs of Props. 4.2.1-4.2.5 from Section 4.2. A key insight
for the analysis is that the expected cost incurred within an m-stage block
vanishes exponentially as the start of the block moves forward (here m is
the integer specified by Assumption 4.2.1, i.e., the termination state can
be reached within m steps with positive probability from every starting
state). In particular, the cost in the m stages between km and (k+1)m−1
is bounded in absolute value by ρkC, where

C = m max
i=1,...,n
j=1,...,n,t
u∈U(i)

∣

∣g(i, u, j)
∣

∣. (4.93)

Thus, we have

∣

∣Jπ(i)
∣

∣ ≤
∞
∑

k=0

ρkC =
1

1− ρ
C. (4.94)

This shows that the “tail” of the cost series,

∞
∑

k=mK

E
{

g
(

xk, µk(xk), wk

)

}

,

vanishes as K increases to ∞, since the probability that xmK 6= t decreases
like ρK [cf. Eq. (4.6)]. Intuitively, since the “tail” of the cost series can
be neglected as K → ∞, it is valid to take the limit in the finite horizon
DP algorithm, and obtain the infinite horizon Bellman equation and VI
convergence. Mathematically, this is the essence of the following proofs.

Proposition 4.2.1: (Convergence of VI) Given any initial con-
ditions J0(1), . . . , J0(n), the sequence

{

Jk(i)
}

generated by the VI
algorithm

Jk+1(i) = min
u∈U(i)



pit(u)g(i, u, t) +
n
∑

j=1

pij(u)
(

g(i, u, j) + Jk(j)
)



 ,

(4.95)
converges to the optimal cost J*(i) for each i = 1, . . . , n.

Proof: For every positive integer K, initial state x0, and policy π =
{µ0, µ1, . . .}, we break down the cost Jπ(x0) into the portions incurred
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over the first mK stages and over the remaining stages:

Jπ(x0) = lim
N→∞

E

{

N−1
∑

k=0

g
(

xk, µk(xk), wk

)

}

= E

{

mK−1
∑

k=0

g
(

xk, µk(xk), wk

)

}

+ lim
N→∞

E

{

N−1
∑

k=mK

g
(

xk, µk(xk), wk

)

}

.

The expected cost during theKthm-stage cycle [stagesKm to (K+1)m−1]
is upper bounded by CρK [cf. Eqs. (4.6) and (4.94)], so that

∣

∣

∣

∣

∣

lim
N→∞

E

{

N−1
∑

k=mK

g
(

xk, µk(xk), wk

)

}∣

∣

∣

∣

∣

≤ C

∞
∑

k=K

ρk =
ρKC

1− ρ
.

Also, denoting J0(t) = 0, let us view J0 as a terminal cost function and
bound its expected value under π after mK stages. We have

∣

∣

∣
E
{

J0(xmK)
}

∣

∣

∣
=

∣

∣

∣

∣

∣

n
∑

i=1

P (xmK = i | x0, π)J0(i)

∣

∣

∣

∣

∣

≤

(

n
∑

i=1

P (xmK = i | x0, π)

)

max
i=1,...,n

∣

∣J0(i)
∣

∣

≤ ρK max
i=1,...,n

∣

∣J0(i)
∣

∣,

since the probability that xmK 6= t is less or equal to ρK for any policy.
Combining the preceding relations, we obtain

−ρK max
i=1,...,n

∣

∣J0(i)
∣

∣+ Jπ(x0)−
ρKC

1− ρ

≤ E

{

J0(xmK) +

mK−1
∑

k=0

g
(

xk, µk(xk), wk

)

}

≤ ρK max
i=1,...,n

∣

∣J0(i)
∣

∣+ Jπ(x0) +
ρKC

1− ρ
.

(4.96)

Note that the expected value in the middle term of the above inequalities is
the mK-stage cost of policy π starting from state x0, with a terminal cost
J0(xmK); the minimum of this cost over all π is equal to the value JmK(x0),
which is generated by the DP recursion (4.95) after mK iterations. Thus,
by taking the minimum over π in Eq. (4.96), we obtain for all x0 and K,

−ρK max
i=1,...,n

∣

∣J0(i)
∣

∣+ J*(x0)−
ρKC

1− ρ

≤ JmK(x0)

≤ ρK max
i=1,...,n

∣

∣J0(i)
∣

∣ + J*(x0) +
ρKC

1− ρ
,
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and by taking the limit as K → ∞, we obtain

lim
K→∞

JmK(x0) = J*(x0)

for all x0. Since

∣

∣JmK+ℓ(x0)− JmK(x0)
∣

∣ ≤ ρKC, ℓ = 1, . . . ,m,

we see that limK→∞ JmK+ℓ(x0) is the same for all ℓ = 1, . . . ,m, so that

lim
k→∞

Jk(x0) = J*(x0).

Q.E.D.

Proposition 4.2.2: (Bellman’s Equation) The optimal cost func-
tion J* =

(

J*(1), . . . , J*(n)
)

satisfies for all i = 1, . . . , n, the equation

J*(i) = min
u∈U(i)



pit(u)g(i, u, t) +

n
∑

j=1

pij(u)
(

g(i, u, j) + J*(j)
)



 ,

and in fact it is the unique solution of this equation.

Proof: By taking the limit as k → ∞ in the DP iteration (4.95) and
using the result of Prop. 4.2.1, we see that J*(1), . . . , J*(n) satisfy Bell-
man’s equation (we are using here the fact that the limit and minimization
operations commute when the minimization is over a finite number of al-
ternatives). To show uniqueness, observe that if J(1), . . . , J(n) satisfy Bell-
man’s equation, then the DP iteration (4.95) starting from J(1), . . . , J(n)
just replicates J(1), . . . , J(n). It follows from the convergence result of
Prop. 4.2.1 that J(i) = J*(i) for all i. Q.E.D.

Proposition 4.2.3: (VI and Bellman’s Equation for Policies)
For any stationary policy µ, the corresponding cost function Jµ =
(

Jµ(1), . . . , Jµ(n)
)

satisfies for all i = 1, . . . , n the equation

Jµ(i) = pit
(

µ(i)
)

g(i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ Jµ(j)
)

,
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and is in fact the unique solution of this equation. Furthermore, given
any initial conditions J0(1), . . . , J0(n), the sequence

{

Jk(i)
}

generated
by the VI algorithm that is specific to µ,

Jk+1(i) = pit
(

µ(i)
)

g(i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ Jk(j)
)

,

converges to the cost Jµ(i) for each i.

Proof: Given µ, consider a modified stochastic shortest path problem,
which is the same as the original except that the control constraint set
contains only one element for each state i, the control µ(i); i.e., the control
constraint set is Ũ(i) =

{

µ(i)
}

instead of U(i). From Prop. 4.2.2, Jµ solves
uniquely Bellman’s equation for this modified problem, i.e., for all i,

Jµ(i) = pit
(

µ(i)
)

g(i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ Jµ(j)
)

.

From Prop. 4.2.1, the VI algorithm converges to Jµ(i). Q.E.D.

Proposition 4.2.4: (Optimality Condition) A stationary policy
µ is optimal if and only if for every state i, µ(i) attains the minimum
in Bellman’s equation (4.7).

Proof: We have that µ(i) attains the minimum in Eq. (4.7) if and only if
for all i = 1, . . . , n, we have

J*(i) = pit(u)g(i, u, t) + min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + J*(j)
)

= pit
(

µ(i)
)

g(i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i)
)

+ J*(j)
)

.

Proposition 4.2.3 and this equation imply that Jµ(i) = J*(i) for all i.
Conversely, if Jµ(i) = J*(i) for all i, Props. 4.2.2 and 4.2.3 imply this
equation. Q.E.D.
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Proposition 4.2.5: (Contraction Property of the DP Opera-
tor) The DP operators T and Tµ of Eqs. (4.8) and (4.9) are contrac-
tion mappings with respect to some weighted norm

‖J‖ = max
i=1,...,n

∣

∣J(i)
∣

∣

v(i)
,

defined by some vector v =
(

v(1), . . . , v(n)
)

with positive components.
In other words, there exist positive scalar ρ < 1 and ρµ < 1 such that
for any two n-dimensional vectors J and J ′, we have

‖TJ − TJ ′‖ ≤ ρ ‖J − J ′‖, ‖TµJ − TµJ ′‖ ≤ ρµ ‖J − J ′‖.

Proof: We first define the vector v using the problem of Example 4.2.1.
In particular, we let v(i) be the maximal expected number of steps to
termination starting from state i. From Bellman’s equation in Example
4.2.1, we have for all i = 1, . . . , n, and stationary policies µ,

v(i) = 1 + max
u∈U(i)

n
∑

j=1

pij(u)v(j) ≥ 1 +

n
∑

j=1

pij
(

µ(i)
)

v(j), i = 1, . . . , n.

Thus we obtain for all µ,

n
∑

j=1

pij
(

µ(i)
)

v(j) ≤ v(i)− 1 ≤ ρ v(i), i = 1, . . . , n, (4.97)

where ρ is defined by

ρ = max
i=1,...,n

v(i)− 1

v(i)
.

Since v(i) ≥ 1 for all i, we have ρ < 1.
We will now show that Eq. (4.97) implies the desired contraction

property. Indeed, consider the operator Tµ, which when applied to a vector
J =

(

J(1), . . . , J(n)
)

produces the vector TµJ =
(

(TµJ)(1), . . . , (TµJ)(n)
)

defined by

(TµJ)(i) = pit
(

µ(i)
)

g(i, µ(i), t
)

+

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ J(j)
)

,
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for all i = 1, . . . , n. We have for all J , J ′, and i

(TµJ)(i) = (TµJ ′)(i) +

n
∑

j=1

pij
(

µ(i)
)(

J(j)− J ′(j)
)

= (TµJ ′)(i) +

n
∑

j=1

pij
(

µ(i)
)

v(j)

(

J(j)− J ′(j)
)

v(j)

≤ (TµJ ′)(i) +
n
∑

j=1

pij
(

µ(i)
)

v(j) ‖J − J ′‖

≤ (TµJ ′)(i) + ρ v(i) ‖J − J ′‖,

where the last inequality follows from Eq. (4.97). By minimizing both sides
over all µ(i) ∈ U(i), we obtain

(TJ)(i) ≤ (TJ ′)(i) + ρ v(i) ‖J − J ′‖, i = 1, . . . , n.

Thus we have
(TJ)(i)− (TJ ′)(i)

v(i)
≤ ρ ‖J − J ′‖, i = 1, . . . , n.

Similarly, by reversing the roles of J and J ′, we obtain

(TJ ′)(i)− (TJ)(i)

v(i)
≤ ρ ‖J − J ′‖, i = 1, . . . , n.

By combining the preceding two inequalities, we have
∣

∣(TJ)(i)− (TJ ′)(i)
∣

∣

v(i)
≤ ρ ‖J − J ′‖, i = 1, . . . , n,

and by maximizing the left-hand side over i, the contraction property ‖TJ−
TJ ′‖ ≤ ρ‖J − J ′‖ follows. Q.E.D.

4.13.2 Proofs for Discounted Problems

Since we have shown that the discounted problem can be converted to
the equivalent SSP problem of Fig. 4.3.1, we can apply Props. 4.2.1-4.2.4.
Then Props. 4.3.1-4.3.4 are obtained from the construction of Fig. 4.3.1.
The contraction property of Prop. 4.3.5 can also be proved in the same
way, since in the SSP problem of Fig. 4.3.1, the expected number of steps
to terminate starting from a state i 6= t can be obtained as the mean of a
geometrically distributed random variable with parameter 1− α:

v(i) = 1 · (1−α) + 2 ·α(1−α) + 3 ·α2(1−α) + · · · =
1

1− α
, i = 1, . . . , n.

so that the modulus of contraction is

ρ =
v(i)− 1

v(i)
= α.

Thus by applying Prop. 4.2.5, we obtain Prop. 4.3.5. Note that there is
similar contraction property for Tµ.
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4.13.3 Convergence of Exact and Optimistic Policy Iteration

We provide a proof of the convergence of exact PI for the case of a dis-
counted problem. The proof for the SSP problem is similar.

Proposition 4.5.1: (Convergence of Exact PI) For both the
SSP and the discounted problems, the exact PI algorithm generates
an improving sequence of policies [i.e., Jµk+1(i) ≤ Jµk (i) for all i and
k] and terminates with an optimal policy.

Proof: For any k, consider the sequence generated by the VI algorithm
for policy µk+1:

JN+1(i) =

n
∑

j=1

pij
(

µk+1(i)
)

(

g
(

i, µk+1(i), j
)

+ αJN (j)
)

, i = 1, . . . , n,

where N = 0, 1, . . ., and

J0(i) = Jµk (i), i = 1, . . . , n.

From Eqs. (4.34) and (4.33), we have

J0(i) =

n
∑

j=1

pij
(

µk(i)
)

(

g
(

i, µk(i), j
)

+ αJ0(j)
)

≥
n
∑

j=1

pij
(

µk+1(i)
)

(

g
(

i, µk+1(i), j
)

+ αJ0(j)
)

= J1(i),

for all i. By using the above inequality we obtain

J1(i) =

n
∑

j=1

pij
(

µk+1(i)
)

(

g
(

i, µk+1(i), j
)

+ αJ0(j)
)

≥

n
∑

j=1

pij
(

µk+1(i)
)

(

g
(

i, µk+1(i), j
)

+ αJ1(j)
)

= J2(i),

for all i, and by continuing similarly we have

J0(i) ≥ J1(i) ≥ · · · ≥ JN (i) ≥ JN+1(i) ≥ · · · , i = 1, . . . , n. (4.98)
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Since by Prop. 4.3.3, JN (i) → Jµk+1(i), we obtain J0(i) ≥ Jµk+1(i) or

Jµk(i) ≥ Jµk+1(i), i = 1, . . . , n, k = 0, 1, . . . .

Thus the sequence of generated policies is improving, and since the number
of stationary policies is finite, we must after a finite number of iterations,
say k + 1, obtain Jµk(i) = Jµk+1(i) for all i. Then we will have equality
throughout in Eq. (4.98), which means that

Jµk (i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµk (j)
)

, i = 1, . . . , n.

Thus the costs Jµk (1), . . . , Jµk(n) solve Bellman’s equation, and by Prop.
4.3.2, it follows that Jµk (i) = J*(i) and that µk is optimal. Q.E.D.

We provide a proof of convergence of optimistic PI for discounted
problems.

Proposition 4.5.2: (Convergence of Optimistic PI) For the dis-
counted problem, the sequences {Jk} and {µk} generated by the opti-
mistic PI algorithm satisfy

Jk → J*, Jµk → J*.

Proof: First we choose a scalar r such that the vector J̄0 defined by J̄0 =
J0+r e, satisfies T J̄0 ≤ J̄0 [here and later, e is the unit vector, i.e., e(i) = 1
for all i]. This can be done since if r is such that TJ0 − J0 ≤ (1 − α)r e,
we have

T J̄0 = TJ0 + αr e ≤ J0 + r e = J̄0,

where e = (1, 1, . . . , 1)′ is the unit vector.
With J̄0 so chosen, define for all k, J̄k+1 = T

mk

µk J̄k. Then since we

have
T (J + re) = TJ + αr e, Tµ(J + re) = Tµ + αr e

for any J and µ, it can be seen by induction that for all k and m =
0, 1, . . . ,mk, the vectors Jk+1 = Tm

µkJk and J̄k+1 = Tm
µk J̄k differ by a mul-

tiple of the unit vector, namely

rαm0+···+mk−1+me.

It follows that if J0 is replaced by J̄0 as the starting vector in the algorithm,
the same sequence of policies {µk} will be obtained; i.e., for all k, we have
Tµk J̄k = T J̄k. Moreover, we have limk→∞(J̄k − Jk) = 0.
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Next we will show that J* ≤ J̄k ≤ T kJ̄0 for all k, from which con-
vergence will follow. Indeed, we have Tµ0 J̄0 = T J̄0 ≤ J̄0, from which we
obtain

Tm
µ0 J̄0 ≤ Tm−1

µ0 J̄0, m = 1, 2, . . . ,

so that

Tµ1 J̄1 = T J̄1 ≤ Tµ0 J̄1 = T
m0+1

µ0 J̄0 ≤ T
m0
µ0 J̄0 = J̄1 ≤ Tµ0 J̄0 = T J̄0.

This argument can be continued to show that for all k, we have J̄k ≤ T J̄k−1,
so that

J̄k ≤ T kJ̄0, k = 0, 1, . . . .

On the other hand, since T J̄0 ≤ J̄0, we have J* ≤ J̄0, and it follows that
successive application of any number of operators of the form Tµ to J̄0
produces functions that are bounded from below by J*. Thus,

J* ≤ J̄k ≤ T kJ̄0, k = 0, 1, . . . .

By taking the limit as k → ∞, we obtain limk→∞ J̄k(i) = J*(i) for all i,
and since limk→∞(J̄k − Jk) = 0, we obtain

lim
k→∞

Jk(i) = J*(i), i = 1, . . . , n.

Finally, from the finiteness of the state and control spaces, it follows
that there exists ǫ > 0 such that if maxi

∣

∣J(i)− J*(i)
∣

∣ ≤ ǫ and TµJ = TJ ,
so that µ is optimal. Since Jk → J*, this shows that µk is optimal for all
sufficiently large k. Q.E.D.

4.13.4 Performance Bounds for One-Step Lookahead, Rollout,
and Approximate Policy Iteration

We first prove the basic performance bounds for ℓ-step lookahead schemes
and discounted problems.
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Proposition 4.6.1: (Limited Lookahead Performance Bounds)

(a) Let µ̃ be the ℓ-step lookahead policy corresponding to J̃ . Then

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖J̃ − J*‖, (4.99)

where ‖ · ‖ denotes the maximum norm (4.15).

(b) Let µ̃ be the one-step lookahead policy obtained by minimization
in the equation

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJ̃(j)
)

, i = 1, . . . , n,

(4.100)
where U(i) ⊂ U(i) for all i = 1, . . . , n. Assume that for some
constant c, we have

Ĵ(i) ≤ J̃(i) + c, i = 1, . . . , n. (4.101)

Then

Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n. (4.102)

Proof: (a) In the course of the proof, we will use the contraction property
of T and Tµ (cf. Prop. 4.3.5). Using the triangle inequality, we write for
every k,

‖T k
µ̃J

* − J*‖ ≤
k
∑

m=1

‖Tm
µ̃ J* − Tm−1

µ̃ J*‖ ≤
k
∑

m=1

αm−1‖Tµ̃J* − J*‖.

By taking the limit as k → ∞ and using the fact T k
µ̃J

* → Jµ̃, we obtain

‖Jµ̃ − J*‖ ≤
1

1− α
‖Tµ̃J* − J*‖. (4.103)

Denote Ĵ = T ℓ−1J̃ . The rightmost expression of Eq. (4.103) is esti-
mated by using the triangle inequality and the fact Tµ̃Ĵ = T Ĵ as follows:

‖Tµ̃J* − J*‖ ≤ ‖Tµ̃J* − Tµ̃Ĵ‖+ ‖Tµ̃Ĵ − T Ĵ‖+ ‖T Ĵ − J*‖

= ‖Tµ̃J* − Tµ̃Ĵ‖+ ‖T Ĵ − TJ*‖

≤ 2α‖Ĵ − J*‖

= 2α‖T ℓ−1J̃ − T ℓ−1J*‖

≤ 2αℓ‖J̃ − J*‖.
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By combining the preceding two relations, we obtain Eq. (4.99).

(b) Let us denote by e the unit vector whose components are all equal to
1. Then by assumption, we have

J̃ + ce ≥ Ĵ = Tµ̃J̃ .

Applying Tµ̃ to both sides of this relation, and using the monotonicity and
constant shift property of Tµ̃, we obtain

Tµ̃J̃ + αce ≥ T 2
µ̃ J̃ .

Continuing similarly, we have,

T k
µ̃ J̃ + αkce ≥ T k+1

µ̃ J̃ , k = 0, 1, . . . .

Adding these relations, we obtain

J̃ + (1 + α+ · · ·+ αk)ce ≥ T k+1
µ̃ J̃ , k = 0, 1, . . . .

Taking the limit as k → ∞, and using the fact T k+1
µ̃ J̃ → Jµ̃, we obtain the

desired inequality (4.102). Q.E.D.

We next show the basic cost improvement property of rollout.

Proposition 4.6.2: (Cost Improvement by Rollout) Let µ̃ be
the rollout policy obtained by the one-step lookahead minimization

min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

,

where µ is a base policy [cf. Eq. (4.100) with J̃ = Jµ] and we assume
that µ(i) ∈ U(i) ⊂ U(i) for all i = 1, . . . , n. Then Jµ̃ ≤ Jµ.

Proof: Let us denote

Ĵ(i) = min
u∈U(i)

n
∑

j=1

pij(u)
(

g(i, u, j) + αJµ(j)
)

.

We have for all i = 1, . . . , n,

Ĵ(i) ≤

n
∑

j=1

pij(u)
(

g
(

i, µ(i), j
)

+ αJµ(j)
)

= Jµ(i),
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where the equality on the right holds by Bellman’s equation. Hence the
hypothesis of Prop. 4.6.1(b) holds, and the result follows. Q.E.D.

We finally show the following performance bound for the rollout al-
gorithm with cost function approximation.

Proposition 4.6.3: (Performance Bound of Rollout with Ter-
minal Cost Function Approximation) Let ℓ and m be positive
integers, let µ be a policy, and let J̃ be a function of the state. Consider
a truncated rollout scheme consisting of ℓ-step lookahead, followed by
rollout with a policy µ for m steps, and a terminal cost function ap-
proximation J̃ at the end of the m steps. Let µ̃ be the policy generated
by this scheme.

(a) We have

‖Jµ̃ − J*‖ ≤
2αℓ

1− α
‖Tm

µ J̃ − J*‖,

where Tµ is the DP operator of Eq. (4.14), and ‖ · ‖ denotes the
maximum norm (4.15).

(b) Assume that for some constant c, J̃ and µ satisfy the condition

Ĵ(i) =
n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ̃(j)
)

≤ J̃(i) + c, (4.104)

for all i = 1, . . . , n. Then

Jµ̃(i) ≤ J̃(i) +
c

1− α
, i = 1, . . . , n. (4.105)

Proof: Part (a) is simply Prop. 4.6.1(a) adapted to the truncated rollout
scheme, so we focus on the proof of part (b). We first prove the result
for the case where c = 0. Then the condition (4.104) can be written as
J̃ ≥ TµJ̃ , from which by using the monotonicity of T and Tµ, we have

J̃ ≥ Tm
µ J̃ ≥ TTm

µ J̃ ≥ T ℓ−1Tm
µ J̃ ≥ T ℓTm

µ J̃ = Tµ̃T ℓ−1Tm
µ J̃ , (4.106)

so that
J̃ ≥ T ℓ−1Tm

µ J̃ ≥ Tµ̃T ℓ−1Tm
µ J̃ .

This relation and the monotonicity of Tµ, imply that {T k
µ̃T

ℓ−1Tm
µ J̃} is

monotonically nonincreasing as k increases, and is bounded above by J̃ .
Since by Prop. 4.3.3 (VI convergence), the sequence converges to Jµ̃ as
k → ∞, the result follows.
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To prove the result for general c, we introduce the function J ′ given
by

J ′(i) = J̃(i) +
c

1− α
, i = 1, . . . , n.

Then the condition (4.104) can be written in terms of J ′ as

Ĵ(i) =

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ ′(j)−
αc

1− α

)

≤ J ′(i)−
c

1− α
+ c,

or equivalently as

n
∑

j=1

pij
(

µ(i)
)

(

g
(

i, µ(i), j
)

+ αJ ′(j)
)

≤ J ′(i).

Since adding a constant to the components of J̃ does not change µ̃, we can
replace J̃ with J ′, without changing µ̃. Then by using the version of the
result already proved, we have Jµ̃ ≤ J ′, which is equivalent to the desired
relation (4.105). Q.E.D.

The preceding proof allows a relaxation of the condition (4.104). For
the relation (4.106) to hold it is sufficient that J̃ and µ satisfy the condition

J̃ ≥ Tm
µ J̃ ≥ Tm+1

µ J̃ ,

or the even weaker condition

J̃ ≥ Tm
µ J̃ ≥ TTm

µ J̃ .

There is also an extension of the preceding condition for the case where
m = 0, i.e., there is no rollout. It takes the form

J̃ ≥ T J̃,

and it implies the bound Jµ̃ ≤ J̃ . The proof is based on Eq. (4.106) where
m is taken to be zero. In domain-specific contexts, the preceding conditions
may be translated into meaningful results.

To prove the performance bound of Prop. 4.6.4, we focus on the dis-
counted problem, and we make use of the contraction property of Prop.
4.3.5:

‖TµJ − TµJ ′‖ ≤ α‖J − J ′‖, ‖TJ − TJ ′‖ ≤ α‖J − J ′‖,

for all J , J ′, and µ, where ‖J‖ is the maximum norm

‖J‖ = max
i=1,...,n

∣

∣J(i)
∣

∣.



98 Infinite Horizon Reinforcement Learning Chap. 4

We want to prove the following performance bound.

Proposition 4.6.4: (Performance Bound for Approximate PI)
Consider the discounted problem, and let {µk} be the sequence gener-
ated by the approximate PI algorithm defined by the approximate pol-
icy evaluation (4.44) and the approximate policy improvement (4.45).
Then we have

lim sup
k→∞

‖Jµk − J*‖ ≤
ǫ+ 2αδ

(1− α)2
.

The essence of the proof is contained in the following lemma, which
quantifies the amount of approximate policy improvement at each iteration.

Lemma 4.13.1: Consider the discounted problem, and let J , µ̃, and
µ satisfy

‖J − Jµ‖ ≤ δ, ‖Tµ̃J − TJ‖ ≤ ǫ, (4.107)

where δ and ǫ are some scalars. Then

‖Jµ̃ − J*‖ ≤ α‖Jµ − J*‖+
ǫ+ 2αδ

1− α
. (4.108)

Proof: The contraction property of T and Tµ̃ implies that

‖Tµ̃Jµ − Tµ̃J‖ ≤ αδ, ‖TJ − TJµ‖ ≤ αδ,

and hence
Tµ̃Jµ ≤ Tµ̃J + αδe, TJ ≤ TJµ + αδe,

where e is the unit vector, i.e., e(i) = 1 for all i. Using also Eq. (4.107), we
have

Tµ̃Jµ ≤ Tµ̃J + αδ e ≤ TJ + (ǫ + αδ)e ≤ TJµ + (ǫ+ 2α)e. (4.109)

Combining this inequality with TJµ ≤ TµJµ = Jµ, we obtain

Tµ̃Jµ ≤ Jµ + (ǫ+ 2αδ)e. (4.110)

We will show that this relation implies that

Jµ̃ ≤ Jµ +
ǫ+ 2αδ

1− α
e. (4.111)
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Indeed, by applying Tµ̃ to both sides of Eq. (4.110), we obtain

T 2
µ̃Jµ ≤ Tµ̃Jµ + α(ǫ + 2αδ)e ≤ Jµ + (1 + α)(ǫ + 2αδ)e.

Applying Tµ̃ again to both sides of this relation, and continuing similarly,
we have for all k,

T k
µ̃Jµ ≤ Jµ + (1 + α+ · · ·+ αk−1)(ǫ+ 2αδ)e.

By taking the limit as k → ∞, and by using the VI convergence property
T k
µ̃Jµ → Jµ̃, we obtain Eq. (4.111).

Using now the contraction property of Tµ̃ and Eq. (4.111), we have

Jµ̃ = Tµ̃Jµ̃ = Tµ̃Jµ + (Tµ̃Jµ̃ − Tµ̃Jµ) ≤ Tµ̃Jµ +
α(ǫ + 2αδ)

1− α
e.

Subtracting J* from both sides, we obtain

Jµ̃ − J* ≤ Tµ̃Jµ − J* +
α(ǫ + 2αδ)

1− α
e. (4.112)

Also from the contraction property of T ,

TJµ − J* = TJµ − TJ* ≤ α‖Jµ − J*‖e

which, in conjunction with Eq. (4.109), yields

Tµ̃Jµ − J* ≤ TJµ − J* + (ǫ + 2αδ)e ≤ α‖Jµ − J*‖+ (ǫ + 2αδ)e.

Combining this relation with Eq. (4.112), we obtain

Jµ̃−J* ≤ α‖Jµ−J*‖ e+
α(ǫ+ 2αδ)

1− α
e+(ǫ+2αδ)e = α‖Jµ−J*‖ e+

ǫ+ 2αδ

1− α
e,

which is equivalent to the desired relation (4.108). Q.E.D.

Proof of Prop. 4.6.4: Applying Lemma 4.13.1, we have

‖Jµk+1 − J*‖ ≤ α‖Jµk − J*‖+
ǫ+ 2αδ

1− α
,

which by taking the lim sup of both sides as k → ∞ yields the desired result.
Q.E.D.

We next prove the performance bound for approximate PI, assuming
that the generated policy sequence is convergent. For this proof we use the
triangle inequality, which holds for any norm ‖ · ‖,

‖J + J ′‖ ≤ ‖J‖+ ‖J ′‖, for all J, J ′.
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Proposition 4.6.5: (Performance Bound for Approximate PI
when Policies Converge) Let µ̃ be a policy generated by the ap-
proximate PI algorithm under conditions (4.44), (4.45), and (4.46).
Then we have

max
i=1,...,n

∣

∣Jµ̃(i)− J*(i)
∣

∣ ≤
ǫ+ 2αδ

1− α
.

Proof: Let J̄ be the cost vector obtained by approximate policy evaluation
of µ̃. Then in view of Eqs. (4.44), (4.45), we have

‖J̄ − Jµ̃‖ ≤ δ, ‖Tµ̃J̄ − T J̄‖ ≤ ǫ.

From this relation, the fact Jµ̃ = Tµ̃Jµ̃, and the triangle inequality, we have

‖TJµ̃ − Jµ̃‖ ≤ ‖TJµ̃ − T J̄‖+ ‖T J̄ − Tµ̃J̄‖+ ‖Tµ̃J̄ − Jµ̃‖

= ‖TJµ̃ − T J̄‖+ ‖T J̄ − Tµ̃J̄‖+ ‖Tµ̃J̄ − Tµ̃Jµ̃‖

≤ α‖Jµ̃ − J̄‖+ ǫ+ α‖J̄ − Jµ̃‖

≤ ǫ+ 2αδ.

(4.113)

For every k, by using repeatedly the triangle inequality and the con-
traction property of T , we have

‖T kJµ̃ − Jµ̃‖ ≤

k
∑

ℓ=1

‖T ℓJµ̃ − T ℓ−1Jµ̃‖ ≤

k
∑

ℓ=1

αℓ−1‖TJµ̃ − Jµ̃‖,

and by taking the limit as k → ∞,

‖J* − Jµ̃‖ ≤
1

1− α
‖TJµ̃ − Jµ̃‖.

Combining this relation with Eq. (4.113), we obtain the desired perfor-
mance bound. Q.E.D.
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