
Support Vector Machines:
Linear Classification



• Consider a problem of two linearly separable classes.
• The perceptron algorithm terminates on finding any discriminative hyperplane

between the two classes of the patterns.
• All possible solutions are considered as equivalent. There is no provision for

characterising some of these solutions as preferable.
• Is it possible to formulate a criterion for choosing among the possible solutions?

MAXIMUM MARGIN CRITERION:
We seek to find a hyperplane which
separates the classes completely, so that:

 This hyperplane is equidistant from the
closest patterns of the two classes. The
distance between the hyperplance and
the closest pattern is called the margin

 The margin is the maximum possible
The patterns that are closest to the
hyperplane (and therefore their distance
from the hyperplane is equal to the margin)
are called support vectors.

Margin and support vectors

Two discriminating straight lines in a two
dimensional space. Note the margin (m1 και m2
respectively in the two cases). The maximum
margin is achieved in the case of the straight line
ε1.
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• Equation of discriminating hyperplane:

• Distance of vector from the hyperplane:

• Obviously, if we multiply all synaptic weights by a coefficient ρ, the discriminating
hyperplane does not change. We can therefore select ρ, so that the following
condition holds for the support vectors :

• With this assumption, the margin is equal to:

• Moreover:

• Equivalently: (outputs +1 and -1 for the 2 classes)
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We arrive at the following optimization problem:

• Minimization of:

• Under the constraints:

(this is a quadratic optimization problem under linear inequality constraints)

We introduce Lagrange multipliers.
The Lagrangian:

• Unique solution:
There is a unique hyperplane which solves the problem, because
 The cost function is convex
 The linear inequality constraints always form a convex domain containing the

solution.
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The solution is furnished by the conditions:

KARUSH-KUHN-TUCKER CONDITIONS

i.e.:
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Notice the similarity with the 
perceptron rule! Remember 
the dual variables!
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1st case: Active constraint
Alignment of vectors and
with a positive coefficient of
proportionality.

2nd case: Inactive constraint. The
constraint does not affect the minimum and
thereforei it xw
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Schematically:
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Obviously, the constraints which are active at the solution point correspond to the 
support vectors, because at that point the following holds:



Α/Α x1 x2 t

1 0 0 -1
2 1 0 -1
3 0 1 -1
4 1 1 1

x1

x2

4

2

3

(0,0) (1,0)

(1,1)(0,1)

1

(0,3/2)

(1,1/2)

Example: AND problem (1)

Inputs and desired outputs for the AND 
problem

• Pattern number 4 is the sole member of its class. Necessarily, it is a support
vector.

• It is easy to see by the maximum margin requirement that patterns number
2 and 3 are also support vectors.

• It follows that the optimal discriminating straight line passes through the
points (0,3/2) και (1,1/2) on the (x1,x2) plane.



Example: AND problem (2)

• Let us confirm the Karush-Kuhn-Tucker conditions
• The discriminating straight line passes through the points (0,3/2) και (1,1/2):

• Equation of the discriminating line:

• The pattern (1,1) is a support vector, therefore:

• It follows that:

• We can immediately confirm that the patterns (1,0) and (0,1) are support 
vectors:
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Example: AND problem (3)

• Let us examine the Lagrange multipliers:
• The pattern (0,0) is not a support vector, therefore
• We expect that the remaining Lagrange multipliers, corresponding to

support vectors, are positive. We can find them using the conditions:

• Therefore:

• Solving this system of linear equations we get:

• The Lagrange multipliers are positive, as expected.
4 2 34, 2, 2λ λ λ= = =

1 0a =

4 4

1 1
0,i i i i i

i i
t tλ λ

= =

= =∑ ∑w x

4 2 3

4 2 3

0
2 1 1 0
2 1 0 1

λ λ λ

λ λ λ

− − =

       
= − −       

       

FreeText
λ



The dual problem
• In the majority of cases it is not possible to find analytically the solution

indicated by the Karush-Kuhn-Tucker conditions. In these cases we are
obliged to solve the optimization problem iteratively using appropriate
algorithms

• However, we can exploit the Karush-Kuhn-Tucker conditions in order to
reformulate the problem in terms of the dual variables only. Let us
introduce the conditions
into the original Lagrangian:

This helps us eliminate the synaptic weights as follows:
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whereupon the Lagrangian becomes:

Dual Problem Formulation

Maximize, with respect to λi :

under the constraints:
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REMARK 1: The inequality constraints are now simpler, since they are mutually
orthogonal. However, the cost function is more complicated: its contours changed
from hyperspheres to hyperellipses.
REMARK 2: The dual formulation helps us devise iterative algorithms for finding
the support vectors and the synaptic weights.
REMARK 3: In the dual problem, the threshold w0 is absent from the Lagrangian.
Once the λi s are determined, the threshold is found using any support vector via
the relation:

REMARK 4: After completion of the training phase, any new pattern is
classified as follows:

The patterns are appear in inner product form both in the Lagrangian and in the
classification rule. This is very important because it will help us generalize the
SVM formulation for the classification of non-linearly separable data.
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Example: AND problem (dual formulation)
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Since all relations are symmetric with respect to       and     , we 
seek a solution with
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Let us examine the following cases:
Α) All patterns are support vectors
Β) Pattern number 1  is not a support vector
Γ) Patterns number 2, 3 are not support vectors
Δ) Pattern number 4 is not a support vector
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Example: AND problem (dual formulation) (2)



CASE Α) All patterns are support vectors
Using the constraint, we eliminate 
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We have reached an absurd conclusion: There is no maximum, therefore there 
is no solution with all the patterns as support vectors. 

Graphical representation of .
There is no maximum.
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Example: AND problem (dual formulation) (3)



CASE Β) Pattern #1 is not a support vector: 1 0λ =
2 2
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Example: AND problem (dual formulation) (4)



CASE D) Pattern 4 is not a support vector:

⇒
2
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Concluding, case (B) yields the maximum value of the dual Lagrangial. The
solution entails patterns #2, #3 and #4 as support vectors. As expected, we
obtain again what we had verified earlier as a solution of the Karush-Kuhn-
Tucker conditions.

Example: AND problem (dual formulation) (4)



Linearly non-separable classes (1)



 The training patterns belong to one of the following classes:

1) Rightly classified patterns outside the margin:

2) Rightly classified patterns inside the margin:

3) Wrongly classified patterns:
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Linearly non-separable classes (2)



 We can unify all cases as follows:

1)
2)
3)

• : Auxiliary (slack) variables.
• They are non-negative.
• For correctly classified patterns outside the margin, they are zero.
• For all other patters, they are positive.
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Optimization scheme:
• Maximize the margin
• Minimize the # number of patterns with            

Cost function:

where C is a constant and

• I(.) non-differentiable.  In practice, we use the alternative:
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Optimization problem
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 Lagrangian:

 Karush-Kuhn-Tucker conditions:
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 The dual problem:
Maximize, with respect to λ:

under the constraints: 

 Remark: The only difference with the case of linearly separable 
classes is the presence of C in the constraints. 
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 Example:

 Observe the influence of C (0,2 left, 1000 right).

Linearly non-separable classes (8)



Problem: High computational cost. We employ techniques that break 
down the problem into smaller ones: 
We initialize the process using a subset of the training set (working set).
We optimize the dual Lagrangian for this subset and find the support 
vectors. 

• The support vectors remain in the working set. The remaining 
vectors are substituted by other patterns not belonging to the working 
set. These are the patterns that violate the KKT conditions most 
severely. 

• The process is repeated many times and guarantees the ongoing 
descent of the cost function. 

• Platt’s algorithm uses working sets with just 2 patterns. Optimization 
within the working set can be done analytically. 

Training algorithms



 The most popular practice is to reformulate the problem as many 2-class 
problems (one class “versus” all others).

 In certain cases, it is possible that a pattern be assigned to more than one 
class. 

Multi-class problems



• In the regression task, we still wish to control model complexity by keeping the norm
of the weight vector small enough.

• Additionally, we welcome the existence of patterns with a small vertical deviation
from the regressing hyperplane, but we wish to penalize patterns which are far from
this hyperplane.

• Thus we need a balance between our desire for minimization of the weight vector and
our desire to penalize patterns which are far away from the proposed regressing
hyperplane.

• To fulfill our second desire, we employ the so called linear ε-insensitive loss function.

• Patterns corresponding to error less than ε do not get penalized at all.
• Patterns with error greater than ε are penalized in a linear manner with respect to their

error (distance from the regressing hyperplane).

Support vector regression (1)
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0i iy w− ⋅ −w x

Linear ε-insensitive
loss function
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According to our rationale, we wish to minimize the following cost function:

We introduce auxilliary (slack) variables to facilitate the solution.

• If we can write
• If we can write
• If we can write
• If we can write

The slack variables are zero inside the margin defined by the linear ε-insensitive loss
function, and positive outside the margin. They represent the vertical distance from the
border of this margin. Therefore we can rewrite the cost function as follows:
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In all cases, our constraints look like this:

and the problem becomes:
Minimize:

Under the constraints: i.e.

Introduce Lagrange multipliers. The corresponding primal Lagrangian is:
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The solution is furnished by the conditions:

KARUSH-KUHN-TUCKER CONDITIONS
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i i j j i j
i j

λ λ λ λ
= =

= − − ⋅∑∑w x x

( )( ) ( ) ( )' ' ' ' ' '1
0 2

1 1 1 1
( , , , , , ) ( )

P P P P

i i j j i j i i i i i
i j i i

L w yλ λ η η λ λ λ λ λ λ ε λ λ
= = = =

= − − − ⋅ + − − +∑∑ ∑ ∑w x x

Using (B):

( ) ( )( )' ' '

1 1 1
( )

P P P

i i i i i j j i j
i i j

λ λ λ λ λ λ
= = =

− ⋅ = − − ⋅∑ ∑∑w x x x

Substituting, we eliminate all dependence on the primal
variables, hence obtaining the dual form of the
Lagrangian:

Support vector regression (6)



Dual Problem Formulation
Maximize, with respect to , :

under the constraints:

Solution for w:

( )( ) ( ) ( )' ' ' '1
2

1 1 1 1
( )

P P P P

i i j j i j i i i i i
i j i i

yλ λ λ λ λ λ ε λ λ
= = = =

− − − ⋅ + − − +∑∑ ∑ ∑x x

iλ
'
iλ

( )'
1

0
P

i i
i

λ λ
=

− =∑

'0 , 0 , 1, 2,...,i iC C i Pλ λ≤ ≤ ≤ ≤ =

Support vector regression (7)

( )'
1

P

i i i
i

λ λ
=

= −∑w x



Prediction for unknown pattern:

• is estimated from the patterns that lie on the border of the margin, where 
the constraints are equal to zero. In practice a      is calculated for each such 
pattern, and the final       is obtained as the average of all such values.   

•Lagrange multipliers for patterns strictly within the margin are zero. This 
follows from the fact that the          are strictly zero within the margin. Therefore 
the corresponding constraints are not active (they are satisfied as strict 
inequalities, rather than equalities) and therefore the corresponding Lagrange 
multipliers are zero by the KKT:

•It follows that support vectors are all vectors on the boundary or outside the 
margin.  

( )'0 0
1

( )
P

new new i i i new
i

y w wλ λ
=

= ⋅ + = − ⋅ +∑w x x x

0w

0w
0w

Support vector regression (8)

( )
( )

0

' '
0

0, 1, 2,...,

0, 1, 2,...,
i i i i

i i i i

y w i P

w y i P

λ ε ξ

λ ε ξ

− + ⋅ + + + = =

− ⋅ − + + + = =

w x

w x

',i iξ ξ
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