
Support Vector Machines:

Non-linear classification

1
2

1 1 1

P P P

D i i j i j ij

i i j

L t t Q  
  

  

1

0
P

i i

i

t


 0, 1,2,...,i i P  

Dual problem: Training task

Maximize with respect to λi of:

under the constraints:

Reminder: The dual problem for a linearly separable classification problem
with two classes C1 and C2:

Patterns:

Target outpts:

ij i jQ  x x

Dual problem: Classification task

For every new pattern :

, 1, 2,i i Px

, 1, 2, ,it i P

0 1

0 2

() 0

() 0

i i new i new

i

i i new i new

i

t w C

t w C





    

    





x x x

x x x

1 21 , 1i i i it C t C      x x

newx

 Now we suppose that our problem is not linearly separable. The first

observation we can make is that it is generally possible to transform a non-

linearly separable problem to a linearly separable one if we somehow

increase the dimensionality of the problem by mapping the space of input

vectors to a higher dimensional space. First, let us consider a simple example.

Increasing the dimensionality

2 classes, as shown in the diagram.
Obviously, the classes are non-lineraly
separable. Our linear SVM cannot cope
with this problem.

A simple problem

x

The discriminating straight line is of the
form:

We had to use one more weight than
before. The new patterns „live” in a two-
dimensional space. Still, they belong to a
one-dimensional curve (manifold)
embedded into this space.

x

x2
Idea: Let us transform the input data, in
order to render the problem lineary
separable. We enhance the patterns,
introducing a second feature equal to the
square of the original feature. We then
classify the enhanced patterns easily using
an SVM in the plane (x,x2).

2

1 2 0 0w x w x w  

For problems of higher complexity, we may want to use polynomials of higher
degree D, so that the equation for the separating surface becomes:

Naturally, the number of weights increases with D (linearly in one
dimension, but we will soon discover that the complexity increases much
more rapidly in more dimensions).

0

1

0
D

k

k

k

w x w


 

In short, we increase the number of dimensions and attempt to classify
patterns of the form:

2() (1, , , ,)Dx x x xΦ

Classification in one dimensional problems (1)

Possible solution: Remember that in the dual formulation the number of
parameters is equal to the number of patterns, not to the number of
dimensions. So if we retort to the dual formulation, the problem is non-
existent! No extra parameters are needed.

With our extra dimensions coming into play, Q becomes:

Evidently, the complexity of calculating Q has increased.

What have we achieved using the dual formulation in conjunction with
polynomials of degree D?

• We have kept the number of weights under control: We have the same
number of free parameters as in the case of the linear SVM.

• However: There is additional complexity in the calculation of the matrix Q.

0

D
k k

ij i j

k

Q x x




Classification in one dimensional problems (2)

Imagine that a deus ex machina appears in our sleep and promises to take
care of the computational burden imposed by the extra complexity.

Reassured, we cheer up and we attempt to add features depending on more
complicated functions of the patterns.

For example, we can try extra features originating from a Fourier expansion:

1

2
() [, sin(), cos()], ,1x kx kx k k D   Φ

0

[sin()sin() cos() cos()]
D

ij i j i j

k

Q kx kx kx kx


 

And, having been offered free lunch, we can try more extreme things. For
example, let us consider an infinity of features originating from a continuous
Fourier transformation:

() [sin(), cos()], , 0x rx rx r r D   Φ

0

[sin()sin() cos()cos()]

D

ij i j i jQ rx rx rx rx dr 

0 1

Classification in one dimensional problems (3)

Deus ex machina: The kernel trick (1)

1

0

1 ()

1

DD
i jk k

ij i j

k i j

x x
Q x x

x x






 




1

1
2

1

1
[sin()sin() cos()cos()]

2

sin[()()]1
cos[()]

2 2sin[() / 2]

D

ij i j i j

k

D
i j

i j

k i j

Q kx kx kx kx

D x x
k x x

x x





  

 
   







0 0

sin[()]
[sin()sin() cos()cos()] cos[()]

D D
i j

ij i j i j i j

i j

D x x
Q rx rx rx rx dr r x x dr

x x


    

 

The crucial observation is that in all three cases there exists a function ,
so that:

() () (,)x y K x y Φ Φ

(,)K x y

Κ(.) is called a KERNEL FUNCTION. Every element of the matrix Q is
evaluated in closed form. There is no need to evaluate the sums, or the
infinite series, or the integrals. The complexity of evaluating Q is Ο(P2)
independently of the dimension of the enhanced pattern space.

Deus ex machina: The kernel trick (2)

0 1

0 2

[() ()] 0

[() ()] 0

i i new i new

i

i i new i new

i

t x x w x C

t x x w x C





    

    





Φ Φ

Φ Φ

The benefit obtained in the classification phase is easily recognized: The
conditions for classifying a new pattern:

can be written as:

Therefore, there is no need to evaluate the inner products. Once again,
finding the class to which a pattern belongs does not depend on the
dimension of the enhanced pattern space.

Knowledge of the kernel is sufficient for both training and classification.
Knowledge of the functions Φ is not required. The kernel is all that is
required.

0 1

0 2

(,) 0

(,) 0

i i new i new

i

i i new i new

i

t K x x w x C

t K x x w x C





   

   





2 2

1 1 1 2 1() [1, 2 ,..., 2 , ,..., , 2 ,..., 2]N N N Nx x x x x x x xΦ x

2 2

1 1 1 2 1() [1, 2 ,..., 2 , ,..., , 2 ,..., 2]N N N Ny y y y y y y yΦ y

2 2

1 1 1 1

2 2 2

1 1

2 2

1 1 1 1

() () 1 2 2

(1) 1 2 () 1 2 ()

1 2 2

N N N N

i i i i i j i j

i j

N N

i i i i

N N N N

i i i i i j i j

i j

x y x y x x y y

x y x y

x y x y x x y y

 

 

    

         

   

  

 

  

Φ x Φ y

x y x y x y

2() () (1)   Φ x Φ y x y

Again, there is no need to calculate the sum of the O(Ν2) terms to evaluate
the inner product.

The kernel trick: Multi dimensional patterns (1)

Generalization to patterns of more than one dimension is straightforward: For
a pattern of Ν dimensions, using polynomials up to second degree, the
enhanced patterns and the inner products that we use for classification are as
follows:

2()O N terms

()just O N

distinct terms

Polynomial

degree

terms

Φ(x)

Q:

Computational

cost without

trick

Q:

Computational

cost with trick

Kernel Example: 100 inputs

Cost without

trick

Cost with

trick

2 N2/2 N2 P2/4 N P2/2 2500 P2 50 P2

3 N3/6 N3 P2/12 N P2/2 83000 P2 50 P2

4 N4/12 N4 P2/48 N P2/2 1960000 P2 50 P2

2(1) x y

3(1) x y
4(1) x y

Enhancement of the original space using polynomials. Analysis of the
computational cost for the matrix Q as a function of the number of inputs Ν
and the number of patterns P. The computational burden does not increase
with the degree of the polynomials.

The kernel trick: Multi dimensional patterns (2)

In every case, the requirement is that a function exists, so that:(,)K x y

() () (,)K Φ x Φ y x y

A simplification of the dual Lagrangian results:

0 1

0 2

(,) 0

(,) 0

i i new i new

i

i i new i new

i

t K w C

t K w C





   

   





x x x

x x x

Also, the rule for the classification of new patterns in the testing face is
simplified:

1
2

1 1 1

P P P

D i i j i j ij

i i j

L t t Q  
  

   (,)ij i jQ K x x

The kernel trick: Multi dimensional patterns (3)

Knowledge of the kernel is sufficient for both training and classification.
Knowledge of the functions Φ is not required. The kernel is all that is required.

Mercer’s condition (1)

Question number 1: Under which conditions is a function Κ(x,y) a kernel
function, and therefore we can use it directly in the Lagrangian without
problems?

Answer: If for ANY function g(x) of finite norm:

the following condition holds:

then there exists a function Φ(x) such that the following equation is true:

2[()]g d   x x

(,) () () 0K g g d d  x y x y x y

(,) () () () ()i i

i

K     x y x y Φ x Φ y

Question number 3: Suppose that I insert arbitrarily into the Lagrangian a
function Κ(x,y) which does not satisfy Mercer’s condition. Am I in danger?

Answer:

•In this case, the quadratic optimization problem may not be convex.

•It is possible that I will end up with an infinite value of the Lagrangian and the
problem may have no solution.

•This also depends on the training patterns themselves. The method may work
for a classification problem, but not for a different one.

•Finally, the geometrical insight of mapping the original data to a higher
dimensional space is lost.

Mercer’s condition (2)

Question number 2: How easy is it to prove that a function Κ(x,y) satisfies
Mercer’s conditon, and therefore is a suitable kernel?

Answer: Not particularly easy, since the condition must hold for any
function g(x) of finite norm.

0() sign[(,)]i i i

i

y t K w x x x

neurons =

support vectors

x

1 1t

2(,)K x x

1(,)K x x

(,)PK x x

0w
2 2t

P Pt

SVM architecture for non-linear classification

Kernel examples (1)

Question number 4: For which functions Κ(x,y) is it known that they satisfy
Mercer’s condition and therefore can be used in conjunction with non-linear SVMs?

Answer:

(,) (1)DK   x y x y

2

2
(,) exp

2
K



 
  

 
 

x y
x y

0 0() (1)D

i i new i i i i

i i

t K w t w       x x x x

2

02
exp

2

i

i i

i

t w


 
  
 
 


x x

Polynomial kernel:

SVM output for pattern x:

Gaussian kernel:

SVM output for pattern x:

Remark: This is an RBF network! The difference with the RBFs we have already
studied is that the centers xi are fixed: They coincide with the support vectors,
since only for these vectors the corresponding λi are non-zero. Moreover, the
weights λi, w0 are determined by the solution of the quadratic programming
problem.

0(,) tanh()K k k  x y x y

0 0tanh()i i i

i

t k k w    x x

Sigmoid-logistic kernel?

SVM output for pattern x:

Remarks:

•This is a 2-layered perceptron with a hyperbolic tangent activation function in
the hidden layer and linear outputs!

•However: Mercer’s condition is satisfied only for some values of k and k0
which in turn depend on the specific classification problem. For this reason, this
kernel is not used as often as a Gaussian kernel.

Kernel examples (2)

Note: When using Gaussian or sigmoid kernels, the original space of the Φ’s is of
infinite dimension and Φ cannot be computed in closed form. This is no problem for
us. The dual formulation allows us to solve the problem based on the sole knowledge
of the kernel function Κ.

x1

x2

1

4

2

3

(0,0) (1,0)

(1,1)(0,1)

Α/Α x1 x2 Target

1 0 0 -1

2 1 0 1

3 0 1 1

4 1 1 -1

The XOR problem: Polynomial Kernel (1)

2

1 1x 

2

3 2x 

2 1 22x x 

2 2 2 2 2 2

1 1 1 2 1 2 2 2 1 1 2 2(,) () () 2 () ()K x y x x y y x y x y x y        x y Φ x Φ y x y

2 2

1 1 2 2() (, 2 ,)x x x xΦ x

The XOR problem: Polynomial Kernel (2)

We choose to employ a 2nd degree polynomial kernel, albeit without the linear
terms. The reason for omitting these terms is that we want to map the original 2
dimensional problem to 3 dimensions, in order to retain the option of visualization.

A mapping to three
dimensions is achieved
using the function:

In the diagram, we can see
the surface onto which the
original square

is mapped.
1 20 1, 0 1x x   

The kernel is:

Looking at the diagram, it
is evident that the patterns
are now linearly separable.

3 2 

2 2 21 1
1 2 3 4 2 3 4 2 4 3 42 2

1 2 3 4

Maximize: 2

Under the constraints: 0, 0, 1,2,3,4

D

i

L

i

          

    

        

      

2() , , 1, ,4ij i jQ i j  x x

0 0 0 0

0 1 0 1

0 0 1 1

0 1 1 4

 
 
 
 
 
 

Q

Let us calculate the matrix Q using the kernel function:

4 4 4

1
2

1 1 1

D i i j i j ij

i i j

L t t Q  
  

  

The dual Lagrangian is:

2 2 21 1
1 2 3 4 2 3 4 2 4 3 42 2

2DL                   

Hence the dual problem becomes:

Of course, when deciding about which patterns are support vectors, all

subsets of the set of patterns in the training set have to be checked. It turns out

in this case that all 4 patterns are support vectors.

Our expressions are symmetric with respect to and . We seek a

solution with .
2 3

The XOR problem: Polynomial Kernel (3)

Upon elimination of and the Lagrangian becomes:1 3

2 2

2 2 4 2 44 2 2DL        

Equating the derivatives to zero, we get:

2 4

2

2 4

4 2

4

4 2 2 0

4, 2

4 2 0

D

D

L

L

 


 

 


 
     

  
    

 

and therefore: 1 2 3 46, 4, 2      

•We find w0 by considering that the first pattern is a support vector with output target
equal to -1:

4
2

1 0 0

1

() 1 1i i i

i

t w w


       x x

The XOR problem: Polynomial Kernel (4)

2 2 2 2

1 2 3 46() 4() 4() 2() 1        x x x x x x x x

The output for every new pattern x is given by:

2 2 2 2

1 2 3 46() 4() 4() 2() 1 0         x x x x x x x x

And the discriminating surface of the 2 classes is determined by the equation:

i.e.: 2 2 2

1 2 1 2

2 2

1 1 2 2

0 4 4 2() 1 0

2 4 2 1 0

x x x x

x x x x

     

    

The border between the two classes in the original plane is shown in the
following diagram:

1 2(,)x x

The non-linear SVM has
allocated relatively small space
to the second class. Why?

To understand this, we return to
the 3 dimensional space defined
by Φ.

The XOR problem: Polynomial Kernel (5)

2 2

1 1 2 2

1 2 3

2 4 2 1 0

2 2 2 2 1 0

x x x x    

      

2 1 22x x 

2

1 1x 

2

3 2x 

•The last equation characterizes the discriminating plane in the space of Φ. It is
easy to verify that the images of the original patterns of the training set are
equidistant from this plane (as they ought, since they are support vectors).

•However, the use of the non-linear kernel is responsible for the relatively small
portions of the surface which lie „above” the plane.

•Therefore, the choice of the kernel
is crucial to the achievement of
satisfactory generalization
performance.

•The problem of optimally
choosing an appropriate kernel for
a given classification problem is
open.

The XOR problem: Polynomial Kernel (6)

(0,0) (0,0,0)

(1,0) (1,0,0)

(0,1) (0,0,1)

(1,1) (1, 2,1)









1 2 3 1 1
1 2 32 2

2 2 2

2 2 2 2 1
2

2 (2 2) 2

     
     

  

x Φ

Training patterns

Distance of point from plane :
1 2 32 2 2 2 1 0      

A simple substitution is enough to verify that the absolute
distance of all 4 training patterns from the plane is equal to ¼.

The XOR problem: Polynomial Kernel (7)

Dual Problem Formulation

Maximize, with respect to , :

under the constraints:

Prediction for new pattern

      ' ' ' '1
2

1 1 1 1

(,)
P P P P

i i j j i j i i i i i

i j i i

K y        
   

        x x

i
'

i

 '
1

0
P

i i

i

 


 

'0 , 0 , 1,2,...,i iC C i P     

Non-linear support vector regression

 ' 0

1

(,)
P

new i i i new

i

y K w 


   x x

Kernel Ridge Regression: An Example

• In this example, the prediction power of the kernel ridge regression, in
the presence of Gaussian noise as well as of outliers, will be tested. The
original data were samples from a music recording from Blade Runner
by Vangelis Papathanasiou. A white Gaussian noise was then added at a
15dB level and a number of outliers were intentionally randomly
introduced and “hit” some of the values (10%). The kernel ridge
regression method was used, employing the Gaussian kernel with
σ = 0.004. A bias term was also present, as discussed before. The
prediction (fitted) curve, ŷ(x), for various value of x, is shown in the
figure below, together with the (noisy) data used for training.

0 0.005 0.01 0.015 0.02 0.025
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time in sec

a
m

p
lit

u
d
e

From: Sergios Theodoridis, Machine Learning

Support Vector Regression: An Example

• Consider the same time series used for the nonlinear prediction task,
used in the kernel ridge regression example. This time, the SVR method
was used and optimized around the linear ε-insensitive loss function,
with ε = 0.003. The same Gaussian kernel, with σ = 0.004, was
employed, as in the kernel ridge regression case. Figure (a) below shows
the resulting prediction curve, ŷ(x), as a function of x given in (8). The
curve fits the data samples much better compared to the kernel ridge
regression (Figure (b)), exhibiting the enhanced robustness of the SVR
method, relative to the KKR, in the presence of outliers.

0 0.005 0.01 0.015 0.02 0.025
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time in sec

a
m

p
lit

u
d
e

(a)

0 0.005 0.01 0.015 0.02 0.025
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

time in sec

a
m

p
lit

u
d
e

(b)

The improved performance compared to the kernel ridge regression used is readily observed, by simply observing
the two figures. The encircled points are the support vectors resulting from the optimization, using the

ε-insensitive loss function.

From: Sergios Theodoridis, Machine Learning

