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+» Statistical nature of feature vectors

X=X % |

< Assign the pattern represented by feature vector X
to the most probable of the available classes

WD, Dy s,y

Thatis X —> @; @ P(@;|X)
MaxXimum



CLASSIFIERS BASED ON BAYES DECISION
THEORY

Abraham Wald (1902-1950)

Thomas Bayes (1707-1761)



< Computation of a-posteriori probabilities
» Assume known
e a-priori probabilities

P(w),P(®,)...,P(w,)
X p(>_<\a)i),i =12..M

This is also known as the likelihood of
X W.r. to w..



> The Bayes rule (M=2)

P(X)P(@|X) = p(X@)P(w,) =

p()_(|a)i )P(w;)
p(X)

P(w,|X) =

where

p(x) = Z p(X|e,)P(e,)



% The Bayes classification rule (for two classes M=2)
> Given X classify it according to the rule

If P(o,|x) > P(a,[X) x> @,

If P(w,|x) > P(@|x) x > o,

» Equivalently: classify X according to the rule

p(X@,)P(@,)(><) p(X@,)P(e,)

» For equiprobable classes the test becomes

p(X|ew,) ><)P(X|@,)




p(x|w)

_ p(x|lw,)

Ly

R(—> ) and R,(— w,)



% Equivalently in words: Divide space in two regions

If Xxe R, = XiIn @,
If XeR, = XIn o,

 Probability of error

> Total shaded area
Xo

> P, = j p( X|@, )dx + j p( X[, )dx

—00

%+ Bayesian classifier is OPTIMAL with respect to
minimising the classification error probability!!!!



p(xjw)

» Indeed: Moving the threshold the total shaded
area INCREASES by the extra “grey” area.



 The Bayes classification rule for many (M>2) classes:
> Given X classify it to ; if:

P(w, ‘i() > P(w; ‘i() V] #I

> Such a choice also minimizes the classification error
probability

“ Minimizing the average risk
» For each wrong decision, a penalty term is assigned since
some decisions are more sensitive than others
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> For M=2
e Define the loss matrix

e

A,

)

2“21 122

. A, penalty term for deciding class @, |,

although the pattern belongs to @, , etc.

> Risk with respect to o,

=y | PO d X+

Ry

Jy | P(Y)dx

Ry
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> Risk with respect to @,

r, = 2y | P(X|@,)d X+ 2y, [ p(X0,)dX
R, R,

s —,  Probabilities of wrong decisions,
weighted by the penalty terms

» Average risk

r=nP(®)+r,P(®,)
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< Choose R, and R, so that r is minimized

< Then assign X to @, if
(y= 2, p(Xlo)P(@,) + Ay P(X|@,)P@,) <

l, =4, p()_(‘a)l)P(a)l) + Ay p()_(‘a)z)P(wz)

s Equivalently:
assign X in @,(®w,) if

p()_(‘a)l) P(w,) A, =1,
> (<
p()_(‘a)z) P(w,) A, A4

512 . likelihood ratio
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o 1
L P(w,) = P(a)z)zzand Ay =4, =0

X—>w, If P(X|la,) > P()_(a)z)@

Ao

X—>w, If P(Xw,)> P()_(a)l)%

21

If 4,, =4, = Minimum classification
error probability

14



p(Xl,) =%exp<—x2>

p(X,) =%exp(—(x—1)2>

P(0) =P(@,) =

0 0.5
L=
SRR
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» Then the threshold value is:
X, for minimum P, :

X, . exp(—=x?) = exp(—(x-1)°) =

XO:E

/A

» Threshold X, for minimum r
X1 exp(—=x?) = 2exp(—(x-1)°) =
g (1-/n2) = I
2 2
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Thus )A(0 moves to the leftof — = X,
(WHY?) 2
—p(xjw,)

p(x|w)
FaX

X
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
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DISCRIMINANT FUNCTIONS
DECISION SURFACES

+If R;, R, are contiguous: ~ g(X) = P(a)i‘)_() - P(o, ‘)_() =0

R, P(a]x) > Ple;|%)

: g(x)=0
R;: P(a)j‘)_() > P(a)i‘)_()

is the surface separating the regions. On one side is
positive (+), on the other is negative (-). It is known
as Decision Surface

18



% If f(.) monotonic, the rule remains the same if we use:

x> if 1 f(P(@[x)> f (P(;|x)) Vi ]
g:(x)= f(P(w ‘)_()) is a discriminant function

< In general, discriminant functions can be defined
independent of the Bayesian rule. They lead to
suboptimal solutions, yet if chosen appropriately, can be
computationally more tractable.

19



BAYESIAN CLASSIFIER FOR NORMAL
DISTRIBUTIONS

% Multivariate Gaussian pdf

(X)) = — 16Xp(—%(>_<—gi)T2il(>_<—gi)j

(277)5‘2i|E

u, =E[x]

D E[(>_<—gi)(>_<—£i)T]

called covariance matrix

20



* In(-) is monotonic. Define:

> 0;(x)=In( p()_(‘a)i)P(a)i ) =
In p(Xj@.)+In P(w,)

> gm=—%<z—gifzﬁ<x—gi>+lnP(wi>+ci

¢ —(g) In 27 - (%) In[s,

2
5 :[G 02)
0 o -



> 0i(x)= (u.lx + 1)
T 552 : +,Ui22)+|n(Pwi)+Ci
Thatis, 0.(X) is quadratic and the surfaces

9;(X)-9;(x)=0
quadrics, ellipsoids, parabolas, hyperbolas,

pairs of lines.

For example:

3 [
w,
T - \\
e \
w 1
0t ‘: )
\\\ \ )
3t
-3 -2 1

Lo
4 \ )
,/
1 [ \'\I‘
wy W
f‘j
/ \
2 / 0()2 \\\.
-5
-10 5 0 5 2, 22
(b)



s Decision Hyperplanes

il
> Quadratic terms: X 2 X

If ALL 2, =2 (the same)
terms are not of interest.
involved in comparisons.
we can write:

the quadratic
They are not

Then, equivalently,

g;(X) =W, X+Ww,

=

Wi = In P(wi)_%ﬁ

TiE_ly

Discriminant functions are LINEAR
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> Let in addition:
. Y =c“l. Then

1
0; (X) = —5 f1. X+Wig
O

e 0;(X)=0;(x)—g;(x)=0

=W (X—X,)

24



> Nondiagonal: X # o“/
T
e Q;(X)=w (x—X,)=0

’ V—V:Z_l(ﬁ-_ﬁj)
Nt

2

A L e s e

i e P(a)j))

HE. _Ej

s-1
1

=(x'27"x)?

H)—( >

not normal to Mo~ M
> Decision hyperplane < AL
normal to =™ (u. — /_zj)
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»» Minimum Distance Classifiers

» P(w)= % equiprobable

. gi(>_<)=—%(>_<—gi)T2_l(>_<—gi)

> T=0°l: Assign X > @ :

Euclidean Distance: E — HX H
smaller

> Y#o°l: Assign X > @ :

Mahalanobis Distance: dm = (()_( —,ui)T T ()_( a

smaller

1))’
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(b)
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Given @, @, P(@) = P(w,) and p(X@,) = N(u,, %),

0 3 1.9-¢'0:3
p(l(‘wz) T N(Ez’ 2), S {O} M, = {3} g {0.3 1.9}

1.0
classify the vector Xx= {2 2} using Bayesian classification :

3 { 0.95 —0.15}

.2:

—-0.15 0.55
e Compute Mahalanobisd_ from s, s1,: d%ni=[1.0, 2.2]

1.0 0
21{2 2} =2.952, d2%n2 =[-2.0, -0.8] z{ 8} =3.672

e Classify X — w,. Observethatd., <dg,

28



“+ CURSE OF DIMENSIONALITY

> In all the methods, so far, we saw that the highest
the number of points, N, the better the resulting
estimate.

> If in the one-dimensional space an interval, filled
with N points, is adequately (for good estimation), in
the two-dimensional space the corresponding square
will require N? and in the ¢-dimensional space the ¢-
dimensional cube will require N¢ points.

» The exponential increase in the number of necessary
points in known as the curse of dimensionality. This
IS @ major problem one is confronted with in high
dimensional spaces.

29



“* NAIVE — BAYES CLASSIFIER

> Let xR’ and the goal is to estimate p(x|,)

1=1,2, ..., M. For a "good” estimate of the pdf
one would need, say, N’ points.

» Assume Xy, X,, ..., X, mutually independent. Then:
V4
p(x|a)=TTplx o)
j=1

» In this case, one would require, roughly, N points
for each pdf. Thus, a number of points of the
order N-¢ would suffice.

» It turns out that the Naive — Bayes classifier
works reasonably well even in cases that violate
the independence assumption. 30



“» K Nearest Neighbor Density Estimation

» In Parzen:
e The volume is constant
e The number of points in the volume is varying

> Now:

e Keep the number of points Kk, =k
constant

e Leave the volume to be varying

o Sk
e P(X) = NV ()

31
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¢ The Nearest Neighbor Rule

» Choose k out of the N training vectors, identify the k
nearest ones to x

» Out of these k identify k; that belong to class w:
> Assign X > o, - k >k, Vi ]

» The simplest version
k=1l

» For large N this is not bad. It can be shown that:
if P; is the optimal Bayesian error probability, then:

P, <P, <2P,

33



e o el B AT 2P

» K>, B, — Ps

» For small Pg:
R, =B,
Paw = Py +3(P)°

34



+» VVoronoi tesselation

= x:d(x, %) <d(X,Xx;)i# jj

35



BAYESIAN NETWORKS
¢+ Bayes Probability Chain Rule

p(x1’ X2""’X£) = p(Xf | Xf—l""’xl)' p(Xf—l | XK—Z""’Xl)""
p(xz | Xl)' p(x1)

» Assume now that the conditional dependence for
each x; is limited to a subset of the features
appearing in each of the product terms. That is:

P(%,.%g.0%) = PO4)- [ ] P04 1 A)
where A

A C {Xi—l’ Kigreees Xl}

36



» For example, if &6, then we could assume:
p(X6 | X5’---1X1) e p(xe | X, X4)

Then:

A = {Xs’x4}§ {XS""’XI}

» The above is a generalization of the Naive — Bayes.
For the Naive — Bayes the assumption is:

A=0, for1=1,2, .., ¢

37



» A graphical way to portray conditional dependencies
is given below

£Lq Lo » According to this figure we
® have that:
* Xg IS conditionally dependent on
XA
* X ON X,
Ly ‘ L3 * X, ON Xy, X,
¢ X3 0N X,
o * Xy, X, are conditionally
5 independent on other variables.

2@

» For this case:
o A=

p(X6 | Xs ) X4)' p(X5 | X4)‘ p(X4 | Xy, X1)° p(X3 | Xz)' p(xz)' p(s(l)



» Bayesian Networks

> Definition: A Bayesian Network is a directed acyclic
graph (DAG) where the nodes correspond to random
variables. Each node is associated with a set of
conditional probabilities (densities), p(x;|A;), where x;
is the variable associated with the node and A, is the
set of its parents in the graph.

> A Bayesian Network is specified by:
e The marginal probabilities of its root nodes.

e The conditional probabilities of the non-root nodes,
given their parents, for ALL possible combinations.

39



» The figure below is an example of a Bayesian
Network corresponding to a paradigm from the

medical applications field.
P(S)
True | False
040 | 060
P(H|S) (g P(CIS)

S | True | False ' ____/'\ S | True | False
True | 0.40 | 0.60 / . True | 0.20 | 0.80
False| 0.15 | 085 | .. |False  0.11 0.89

&
IK}H/J
~—, \
f"_( ""\ “ \."‘-\.
I:I-f \:I \ ""
“*x[_{_L \ @ \
\ \
L h
P(H1[H) \ P(C1|C) \
H | True @ False :'!__ C | True | False "
True | 0.95 0.05 ,-/f HEHI' True | 099 0.01 @
False | 0.01 = 0.99 N’ False| 0.10 | 0.90
P(H2[H) P(C2|C)
H | True @ False C | True | False
True | 098 | 0.02 True 098 | 0.02
False| 0.05 095 False | 0.05 | 0.95

40



» Once a DAG has been constructed, the joint
probability can be obtained by multiplying the
marginal (root nodes) and the conditional (non-root
nodes) probabilities.

» Training: Once a topology is given, probabilities are
estimated via the training data set. There are also
methods that learn the topology.

» Probability Inference: This is the most common task
that Bayesian networks help us to solve efficiently.
Given the values of some of the variables in the
graph, known as evidence, the goal is to compute
the conditional probabilities for some of the other
variables, given the evidence.

41



Consider the Bayesian network of the

figure:
P(x1)=0.60 P(y1|x1)=0.40
P(y1|20)=0.30

® @

P(z1|y1)=0.25
P(21]%0)=0.60
@

P(wl|z1)=0.45
P(w1|20)=0.30
0

P(x0)=0.40 P(y0|21)=0.60
Py0]20)=0.70
P(y1)=0.36
P@0)=0.64

P0|y1)=0.75
P(z0|90)=0.40
P(z1)=047
P(z0)=0.53

P(w0|z1)=0.55
P(w0]20)=0.70
Pwl)=0.37
Pw0)=0.63

a) If x is measured to be x=1 (x1), compute

P(w=0|x=1) [P(wO|x1)].

b) If w is measured to be w=1 (w1l) compute

P(x=0|w=1) [ P(xOlw1)].

42



> For a), a set of calculations are required that
propagate from node x to node w. It turns out that
P(wO0|x1) = 0.63.

» For b), the propagation is reversed in direction. It
turns out that P(x0|w1) = 0.4.

> In general, the required inference information is
computed via a combined process of "message
passing” among the nodes of the DAG.

s Complexity:
» For singly connected graphs, message passing

algorithms amount to a complexity linear in the
number of nodes. 43



< 0=NO
% 1=YES

Example

VISIT TO COUNTRY: X

l

HIGH RISK AREA: Y

l

HAS DISEASE: Z

l

CLINICAL TEST: W

P(x)=01
P(x,)=0,9
P(yl | Xl) =0,3

P(yl | Xo) =0,05

P(Zl | yl) =0,
P(Z1 | yo) =0,02

P(w, |z)=0,95
P(w, | z,) =0,03
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Inference

Answer questions like:

*

What is the probability of a person having caught the disease given
that he/she has visited the high risk country?

* What is the probability of the clinical test of someone coming out
positive, given that he/she has visited the high risk country?

% Given that the clinical test of a person has come out positive, what is
the probability that he/she has visited the high risk country?

% Given that the clinical test of a person has come out positive, what is
the probability that he/she has the disease?
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0 ©

Inference

VISIT TO COUNTRY: X

l

HIGH RISK AREA: Y

l

HAS DISEASE: Z

l

CLINICAL TEST: W

% 0=NO

& 1= YES
P(x)=01
P(x,)=0,9
P(yl | Xl) =0,3

P(yl | Xo) =0,05

P(Zl | yl) =0,
P(Z1 | yo) =0,02

P(w, |z)=0,95
P(w, | z,) =0,03
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Inference

VISIT TO COUNTRY: X

l

HIGH RISK AREA: Y

l

HAS DISEASE: Z

l

CLINICAL TEST: W

% 0=NO

& 1= YES
P(x)=01
P(x,)=0,9
P(yl | Xl) =0,3

P(yl | Xo) =0,05

P(Zl | yl) =0,
P(Z1 | yo) =0,02

P(w, |z)=0,95
P(w, | z,) =0,03
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