
Multilayered Perceptrons



Classification of non-linearly separable patterns

• A single-layered perceptron can achieve linear separation of patterns
• In the late 1960s the prevailing view on whether solution of non-

linearly separable problems is practical was pessimistic (following
criticism by Minsky and Papert).

• It is necessary to show that:
 There exist architectures capable of non-linear separation of patterns
 There exist effective training algorithms capable of delivering the

synaptic weights needed to achieve non-linear separation of patterns in
the general case.



Classification of non-linearly separable patterns –
The XOR problem (1)

Α/Α x1 x2 Class

1 0 0 0

2 1 0 1

3 0 1 1

4 1 1 0

• Linear separation of the classes with a single-layered perceptron is 
impossible 

• Proof: System of 4 linear inequalities has no solution
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Let us try to construct a solution:
• We need 2 hidden neurons (with intermediate outputs z1 και z2) that separate the

plane of the 3 original inputs into 3 regions Π1, Π2, Π3.
• Consequently, we map the pattens in a new 2-dimensional space.
• For example, we wish patterns 1 και 4 to yield the same output. This will render

the problem linearly separable in the new 2-dimensional space!
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Classification of non-linearly separable patterns –
The XOR problem (2)
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From the equations of the separating lines Η1
and Η2

we can read off the synaptic weights of the 
hidden layer:

The representations of the patterns in the hidden layer 
are linearly separable!
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Classification of non-linearly separable patterns –
The XOR problem (3)
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From the equation of the line
separating the outputs of the hidden
layer:

we can read off the synaptic weights
of the output layer:
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Therefore, our network implements
the XOR function!
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Classification of non-linearly separable patterns –
The XOR problem (4)



EXERCISE: For the XOR problem, find another mapping of the
inputs to the hidden layer neurons, using a different partition of
the 2-dimensional input space, as shown in the diagram below.
Draw the resulting network and find its synaptic weights and
thresholds.
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Classification of non-linearly separable patterns –
The XOR problem (5)



1st layer: Linear 
category boundaries 2nd layer: Convex 

piecewise linear 
bourndaries 3rd layer: Any piecewise 

linear boundaries
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Multi-layered Perceptron



This is a diagram showing the information flow in a perceptron with R layers

Multi-layered Perceptron
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Universal approximation (1)
Question: The XOR problem can be solved with 2 layers of neurons. Can
we solve a general non-linear classification or regression problem using
multi-layered networks?
Answer: A two-layered perceptron suffices in principle, because it is a
universal approximator, i.e.

• Let g(x) be a continuous function of Ν variables, defined on a compact
set .

• Let f(t) be a non-constant, bounded and increasing as well as continuous
function of a single variable.
Then given ε>0 there exists an integer Μ=Μ(ε) and a two-layered
perceptron with Ν inputs, Μ hidden neurons and one (linear) output
neuron:

so that the following inequality holds:
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If the output neuron is non-linear, as in the following diagram, with the
function f bounded:

we can approximate any continuous function taking values between L1
and L2.

1 2L f L≤ ≤

• Linear activation functions in the output layer are more convenient for
solving regression problems.

• Non-inear activation functions in the output layer are more convenient
for solving classification problems.

Universal approximation (2)



Classification problem with Κ classes:

Encoding of desired outputs:

1st method (diagonal encoding): Κ output neurons. The desired
outputs for a pattern belonging to class number k (k=1,2,…,K) are
all equal to L1 except the k-th output, which is equal to L2.

L1 L2        L1 L1 L1

Diagonal encoding of the
2nd class in a problem of 5
classes

Desired outputs (1)



2nd method (binary encoding): Consider a pattern belonging to class k
and the binary representation (a succession of 0s and 1s) using as many
bits, as we need to represent Κ-1. The desired outputs are:
– L1 wherever the binary representation is 0
– L2 wherever the binary representation is 1

Desired outputs (2)

Example: Problem with 10 classes: We need 4 bits.
Representation of the 7th class: Binary representation of 7-1=6:
0 1 1 0.

L1 L2        L2         L1

Binary representation of
the 7ης class in a 10-class
problem
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Activation functions



Cost function:

GRADIENT DESCENT:
• We update the synaptic weights moving opposite to the gradient of Ε with

respect to these weights:

• We need a systematic computationally efficient method of calculating the
gradient.

• We organize our calculations by layer:
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Calculation of derivatives: Extensive use of the chain rule:
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What have we achieved so far?
For a given layer r we have written the derivative of the cost function with
respect to the weights as a sum of terms, with each term depending on:

• Already known local information, originating strictly from the previous layer.
• Information depending on the given layer and all subsequent layers, which is

unknown to us and calls for additional calculations. Let us concentrate on these.
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We focus on parts of the flow diagram (coloured red):

The Backpropagation Algorithm (3)
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The Backpropagation Algorithm (4)



What have we achieved?
• We have reduced the unknown information from the layer r, to known

information plus information that depends only on layer r+1 and subsequent
layers.

• The deltas can be evaluated starting from the last layer and moving towards
previous layers (backpropagation).

• To complete the picture, we only need to “initialize” the deltas, i.e. to calculate
their values for the last layer R:
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Calculation of activation function derivatives:

1st case:

2nd case:

In both cases, the derivative is a function of the activation function itself.

The Backpropagation Algorithm (6)



Initialization: With small weights uniformly distributed between –α and α, where
α is a small positive real number.

Iterative steps:
-Forward calculations:
Calculation of the outputs of every neuron in the network, starting from the 
first layer and progressing towards the output layer:

Cost function calculation:

-Backward calculations:
Calculation of all deltas for each layer starting from the output layer R 
according to the relations:

-Weight updates:

Termination:
• When the cost drops below a given threshold
• Or the norm of the cost function gradient drops below a given threshold
• *To avoid overfitting, apply termination criterion on validation set
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The Backpropagation Algorithm (7)



REMARK:
For weight updates, all patterns μ are taken into account:

The update takes place after all patterns in the training set have
been presented to the network (batch mode).

Variation: Update takes place after presenting each training
pattern (incremental mode):
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The Backpropagation Algorithm (8)



• How to decide about the number of weights? Too many
weights mean unnecessary complexity for our model,
which inevitably leads to overfitting.

• The usual practice is to start with a reasonably large
number of weights and eliminate the least useful ones.

• Modified cost functions are used for training, which help
push the least informative weights towards very low
values.

• After training ends, these are altogether eliminated
(pruned) and the pruned network is used for testing.

Weight Pruning – Regularization (1)



Weight decay: Minimize regularized cost function (as in ridge 
regression):

• It is better to use a different λ for each layer of weights.
• It is not good to include biases (thresholds) in the norm, as

these have a distinct function to play in the network and it
is not wise to eliminate them.

Weight elimination: Minimize modified cost function: 

• When a weight drops below T, the corresponding
regularizing term goes to zero fast. For weights much
larger than T, the term is close to 1. Less significant
weights are pushed towards zero.

Weight Pruning – Regularization (2)
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1st order algorithms (1)

Gradient descent-back propagation:

Eδ ε= − ∇w

Small step ε: Very slow progress
Large step: Oscillations (zig-zags)

(All synaptic weights of the network are 
considered as components of a single 
weight vector)



Gradient descent with momentum:

1st order algorithms (2)

1 1 1,t t tE aδ ε δ δ− − −= − ∇ + = −w w w w w

The second term brings about a partial alignment of the old and new 
weight updates, so that oscillations are somewhat diminished.



• We use information about the 
gradient and curvature. 
Assuming that the cost function 
is quadratic, we ignore terms of 
higher than second order

• We seek to find the minimum in 
a SINGLE step

Newton step:

2nd order algorithms: Newton’s method (1)

2( ) ( ) ( ) ...TE E Eδ δ∇ + = ∇ + ∇ +w w w w w

2( ) ( ) ( ) 0TE E Eδ δ∇ + = ∇ + ∇ =w w w w w

2 1( )E Eδ −= − ∇ ∇w

21( ) ( ) ( ) [ ( )] ...
2

T TE E E Eδ δ δ δ+ = +∇ + ∇ +w w w w w w w w



– Problems:

• Complexity of evaluating and inverting the Hessian Matrix

• To ensure local convexity of the cost function, Η must be
positive definite in order to ensure local convexity of the cost
function (this does not hold necessarily)

• Convergence issues

– Simplification:

• The main question: Do methods exist, that use second order
information without explicit evaluation and inversion of the
Hessian?

2E= ∇H

2nd order algorithms: Newton’s method (2)



We still assume that the cost function is quadratic in the weights:

2nd order algorithms: The conjugate gradient method (1)

21( ) ( ) ( ) [ ( )]
2

T TE E E Eδ δ δ δ+ = +∇ + ∇w w w w w w w w

We initialize the weight vector and pick a random direction for our first
update. We choose the weight update vector δw so as to minimize the
cost function along this direction.



• Question: Is it possible to choose the successive directions so that the
minimum of the cost function can be reached after a succession of line
minimizations along each individual direction?

• Answer: Yes! We must choose directions that are conjugate with respect
to the Hessian:

With this choice, and provided that the quadratic approximation is valid,
it can be shown that the minimum of Ε can be found in a number of steps
equal to the total number of weights.
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2nd order algorithms: The conjugate gradient method (2)
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• Question: Can we evaluate the successive weight updates without
explicitly evaluating the Hessian?

• Answer: Yes! The weight update rule is:

where can be evaluated using any of the following formulas:tβ

(Fletcher-Reeves method)

(Polak-Ribiere method)

(Hestenes-Stiefel method)

2nd order algorithms: The conjugate gradient method (3)
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When the norm of the error vector e is
already small (close to the local minimum,
where a quadratic approximation for the
cost function makes sense).

2nd order algorithms: The Levenberg-Marquardt algorithm (1)

: Jacobian= ∇J e



1( ) Eδ µ −= − + ∇w H I

Levenberg:
• We keep μ small close to minima and large

far away from minima
• Close to a minimum the weight update

follows a Newton step
• Away from a minimum, if μ is large enough,

emphasis is placed on gradient descent

1( )T Eδ µ −= − + ∇w J J I
A valid approximation, since the Hessian 
term is dominant close to the minimum, 
where the quadratic approximation for 
the cost function is valid

1[ diag( )]T Eδ µ −= − + ∇w J J H

Variation (Marquardt): Weighted gradient
components according to curvature, so
that zig-zagging is avoided even more

2nd order algorithms: The Levenberg-Marquardt algorithm (2)



• Criterion for updating μ: increase or decrease of the cost function in
the previous step.

• If the cost has increased, our quadratic approximation is not
reasonable, so we boost μ to place emphasis on the gradient descent
term.

• If the cost has decreased, the quadratic approximation is valid, so we
place emphasis on the Hessian term by decreasing μ.

1( )T Eδ µ −= − + ∇w J J I

1[ diag( )]T Eδ µ −= − + ∇w J J H

2nd order algorithms: The Levenberg-Marquardt algorithm (3)



1. Initialization with small weights and small μ
2. Weight adaptation according to the rule

3. If the error grew:
– Ignore the update (we return to the previous weight vector)
– Increase μ: μ=ρ*μ (ρ of the order of 10)
– Return to step 2

4. If the error dropped: 
– Keep the new weights
– Decrease μ: μ=μ/ρ
– Return to step 2

1

1
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2nd order algorithms: The Levenberg-Marquardt algorithm (4)
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