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Other clustering algorithms 
 The following types of algorithms will be considered: 

 
 Graph theory based clustering algorithms. 
 Competitive learning algorithms. 
 Valley seeking clustering algorithms. 
 Cost optimization clustering algorithms based on: 

• Branch and bound approach. 
• Simulated annealing methodology. 
• Deterministic annealing. 
• Genetic algorithms. 

 Density-based clustering algorithms. 
 Clustering algorithms for high dimensional data sets. 



Graph theory based clustering algorithms 
In principle, such algorithms  are capable of detecting clusters of various 
shapes, at least when they are well separated. 
    
In the sequel we discuss algorithms that are based on: 

 
 The Minimum Spanning Tree (MST). 

 
 Regions of influence. 

 
 Directed trees. 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms 
Preliminaries: Let  
 𝐺 be the complete graph, each node of which corresponds to a point of 

the data set 𝑋. 
 

 𝑒 = (𝒙𝑖 , 𝒙𝑗) denote an edge of 𝐺 connecting 𝒙𝑖 and 𝒙𝑗. 
 

 𝑤𝑒𝑑(𝒙𝑖 , 𝒙𝑗) denote the weight of the edge 𝑒. 
 
Definitions: 
 Two edges 𝑒1 and 𝑒2 are 𝑘 steps away from each other if the minimum 

path that connects a vertex of 𝑒1 and a vertex of 𝑒2 contains 𝑘 − 1 edges. 
 

 A Spanning Tree of 𝐺 is a connected graph that: 
• Contains all the vertices of the graph. 
• Has no loops. 

 
 The weight of a Spanning Tree is the sum of weights of its edges. 

 
 A Minimum Spanning Tree (MST) of 𝐺 is a spanning tree with minimum 

weight (when all 𝑤𝑒’s are different from each other, the MST is unique). 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Sketch of the algorithm: 
Determine the MST of 𝐺. 

 
 Remove the edges that are “unusually” large compared with their 
neighboring edges (inconsistent edges). 

 
 Identify as clusters the connected components of the MST, after the 
removal of the inconsistent edges. 
 
Identification of inconsistent edges. 
For a given edge 𝑒 of the MST of 𝐺:  
 
 Consider all the edges (except e) that lie 𝑘 steps away (at the most) from 𝑒. 

 
 Determine the mean 𝑚𝑒  and the standard deviation 𝜎𝑒 of their weights. 

 
 If 𝑤𝑒 lies more than 𝑞 (typically 𝑞 = 2) standard deviations 𝜎𝑒 away from 

𝑚𝑒, then: 
• 𝑒 is characterized as inconsistent. 

 Else 
• 𝑒 is characterized as consistent. 

 End  if 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Example:  
 For the MST in the figure and for 𝑘 = 2 and 𝑞 = 3 we have: 
 For 𝑒0: 𝑤𝑒0 = 17, 𝑚𝑒0 = 2.3, 𝜎𝑒0

 

= 0.95. 𝑤𝑒0  lies 15.5 standard 

deviations 𝜎𝑒0  away from 𝑚𝑒0, hence it is inconsistent.  

 
 For 𝑒11: 𝑤𝑒11 = 3, 𝑚𝑒11 = 2.5, 𝜎𝑒11 = 2.12. 𝑤𝑒11  lies 0.24 standard 

deviations 𝜎𝑒11  away from 𝑚𝑒11, hence  it is consistent. 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph and cut the “unusually large” edges. 
•The remaining sub-graphs correspond to the clusters. 

Prerequisite: Definition of 
a threshold for identifying 
“large” edges. 
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Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Remarks: 
 
 The algorithm depends on the choices of 𝑘 and 𝑞. 

 
 The algorithm is insensitive to the order of consideration of the data 

points. 
 

 No initial conditions are required, no convergence issues are arised. 
 

 The algorithm works well for many cases where the clusters are well 
separated. 



Graph theory based clustering algorithms 
Minimum Spanning Tree (MST) algorithms (cont) 
Remarks: 
 A problem may occur when a “large” edge 𝑒 has another “large” edge as 

its neighbor. In this case, 𝑒 is likely not to be characterized as inconsistent 
and the algorithm may fail to unravel the underlying clustering structure 
correctly. 

Example: The vectors of the regions 𝑅1 and 𝑅2 
will probably be assigned to the same cluster. 



Graph theory based clustering algorithms 
Algorithms based on Regions of Influence (ROI) 
Definition: The region of influence of two distinct vectors 𝒙𝑖 , 𝒙𝑗 ∈ 𝑋 is defined 

as: 
 𝑅(𝒙𝑖 , 𝒙𝑗) = 𝒙:  𝑐𝑜𝑛𝑑(𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗), 𝑑(𝒙𝑖 , 𝒙𝑗)), 𝒙𝑖 ≠ 𝒙𝑗  

 
where 𝑐𝑜𝑛𝑑(𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗), 𝑑(𝒙𝑖 , 𝒙𝑗)) may be defined as: 
 
a)  𝑑2(𝒙, 𝒙𝑖) + 𝑑2(𝒙, 𝒙𝑗) < 𝑑2(𝒙𝑖 , 𝒙𝑗),  

b)  max 𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)} <  𝑑(𝒙𝑖 , 𝒙𝑗) , 

c)  𝑑2(𝒙, 𝒙𝑖) + 𝑑2(𝒙, 𝒙𝑗) < 𝑑2(𝒙𝑖 , 𝒙𝑗)  𝑂𝑅 𝜎 min {𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)}  <  𝑑(𝒙𝑖 , 𝒙𝑗) , 

d)  max 𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)} < 𝑑(𝒙𝑖 , 𝒙𝑗)  𝑂𝑅 𝜎 min {𝑑(𝒙, 𝒙𝑖), 𝑑(𝒙, 𝒙𝑗)} <  𝑑(𝒙𝑖 , 𝒙𝑗)  

 
where 𝜎 affects the size of the ROI defined by 𝒙𝑖, 𝒙𝑗 and is called relative edge 

consistency. 



Graph theory based clustering algorithms 
Algorithms based on Regions of Influence (cont) 
Algorithm based on ROI 

 For 𝑖 = 1 to 𝑁 

• For 𝑗 = 𝑖 + 1 to 𝑁 

 Determine the region of influence 𝑅(𝒙𝑖 , 𝒙𝑗) 

 If 𝑅(𝒙𝑖 , 𝒙𝑗) ∩ 𝑋 − 𝒙𝑖 , 𝒙𝑗 = ∅ then 
o Add the edge connecting 𝒙𝑖 , 𝒙𝑗. 

End if 
• End For 

 End For 
Determine the connected components of the resulted graph and identify 
them as clusters. 

In words: 
 The edge 𝒙𝑖 , 𝒙𝑗  is added to the graph if no other 𝒙𝑞 ∈ 𝑋 lies in 𝑅 𝒙𝑖 , 𝒙𝑗 . 

 
 Since for 𝒙𝑖 and 𝒙𝑗 close to each other it is likely that 𝑅(𝒙𝑖 , 𝒙𝑗) contains no 

other vectors in 𝑋, it is expected that close to each other points will be 
assigned to the same cluster. 



Graph theory based clustering algorithms 
Algorithms based on Regions of Influence (cont) 
Remarks: 
• The algorithm is insensitive to the order in which the pairs are considered. 

 
• In order to exclude (possible) edges connecting distant points, one could 

use a procedure like the one described previously for removing “unusually 
large” edges. 
 

• In the choices of cond in (c) and (d), σ must be chosen a priori. 
 

• For the resulting graphs:  
 if the choice (a) is used for 𝑐𝑜𝑛𝑑, they are called relative neighborhood 

graphs (RNGs) 
 if the choice (b) is used for 𝑐𝑜𝑛𝑑 , they are called Gabriel graphs (GGs) 
 

• Experimental results  show that better clusterings are produced when (c) 
and (d) conditions are used in the place of 𝑐𝑜𝑛𝑑, instead of (a) and (b). 



Graph theory based clustering algorithms 
Algorithms based on Directed Trees 
 
Definitions: 
 A directed graph is a graph whose edges are directed. 

 
 A set of edges 𝑒𝑖1 , … , 𝑒𝑖𝑞 constitute a directed path from a vertex 𝐴 to a 

vertex 𝐵, if,  
• 𝐴 is the initial vertex of 𝑒𝑖1   

• 𝐵 is the final vertex of 𝑒𝑖𝑞 

• The destination vertex of the edge 𝑒𝑖𝑗, 𝑗 =  1, … , 𝑞 − 1, is the 

departure vertex of the edge𝑒𝑖𝑗+1. 

(In figure (a) the sequence 𝑒1, 𝑒2, 𝑒3 constitute a directed path 
connecting the vertices 𝐴 and 𝐵). 



Graph theory based clustering algorithms 
Algorithms based on Directed Trees (cont) 
 
 A directed tree is a directed graph with a specific node 𝐴, known as root, 

such that, 
• From every node 𝐵 ≠ 𝐴 of the tree departs exactly one edge. 
• No edge departs from 𝐴. 
• No circles are encountered (see figure (b) in the previous slide). 

 
 The neighborhood of a point 𝒙𝑖𝑋 is defined as 

 
   𝜌𝑖(𝜃) = 𝒙𝑗 ∈ 𝑋: 𝑑 𝒙𝑖 , 𝒙𝑗 ≤ 𝜃, 𝒙𝑖 ≠ 𝒙𝑗  
 
where 𝜃 determines the neighborhood size. 

 
 Also let 

• 𝑛𝑖 = |𝜌𝑖(𝜃)| be the number of points of 𝑋 lying within 𝜌𝑖(𝜃) 
• 𝑔𝑖𝑗 = (𝑛𝑗 − 𝑛𝑖)/𝑑(𝒙𝑖 , 𝒙𝑗) 

 
Main philosophy of the algorithm 
Identify the directed trees in a graph whose vertices are points of 𝑋, so  that 
each directed tree corresponds to a cluster. 



Graph theory based clustering algorithms 
Algorithms based on Directed Trees (cont.) 
Clustering Algorithm based on Directed Trees 
 Set 𝜃 to a specific value. 
 Determine 𝑛𝑖, 𝑖 = 1,… ,𝑁. 
 Compute 𝑔𝑖𝑗, 𝑖, 𝑗 = 1,… ,𝑁, 𝑖 ≠ 𝑗. 

 For 𝑖 = 1 to 𝑁 

• If 𝑛𝑖 = 0 then 
 𝒙𝑖 is the root of a new directed tree. 

• Else 
 Determine 𝒙𝑟 such that 𝑔𝑖𝑟 = 𝑚𝑎𝑥𝑥𝑗∈𝜌𝑖 𝜃 𝑔𝑖𝑗  

 If 𝑔𝑖𝑟 < 0 then 
o 𝒙𝑖 is the root of a new directed tree. 

 Else if 𝑔𝑖𝑟 > 0 then 
o 𝒙𝑟 is the parent of 𝒙𝑖 (there exists a directed edge from 𝒙𝑖 to 𝒙𝑟). 

𝑔𝑖𝑗 = (𝑛𝑗 − 𝑛𝑖)/𝑑(𝒙𝑖 , 𝒙𝑗) 



Graph theory based clustering algorithms 
Algorithms based on Directed Trees (cont.) 
Clustering Algorithm based on Directed Trees 

 Else if 𝑔𝑖𝑟 = 0 then 

o Define 𝑇𝑖 = 𝒙𝑗: 𝒙𝑗 ∈ 𝜌𝑖 𝜃 , 𝑔𝑖𝑗 = 0 . 

o Eliminate all the elements 𝒙𝑗 ∈ 𝑇𝑖, for which there exists a directed 

path from 𝒙𝑗 to 𝒙𝑖. 

o If the resulting Ti is empty then 
     * 𝒙𝑖 is the root of a new directed tree 
o Else 
      * The parent  of 𝒙𝑖 is 𝒙𝑞 such that 𝑑(𝒙𝑖 , 𝒙𝑞) = 𝑚𝑖𝑛𝒙𝑠∈𝑇𝑖𝑑(𝒙𝑖 , 𝒙𝑠). 

o End if 
 End if 

• End if 
 End for 
 Identify as clusters the directed trees formed above. 



Graph theory based clustering algorithms 
Algorithms based on Directed Trees (cont.) 
Remarks: 
• The root 𝒙𝑖 of a directed tree is the point in 𝜌𝑖 𝜃  with the most dense 

neighborhood. 
• The branch that handles the case 𝑔𝑖𝑟 = 0 ensures that no circles occur. 
• The algorithm is sensitive to the order of consideration of the data points. 
• For proper choice of 𝜃 and large 𝑁, this scheme behaves as a mode-

seeking algorithm (see below). 
 

Example: In the figure below, the size of the edge of the grid is 1 and 𝜃 = 1.1.   
                  The above algorithm gives the directed trees shown in the figure. 

𝑔𝑖𝑗 = (𝑛𝑗 − 𝑛𝑖)/𝑑(𝒙𝑖 , 𝒙𝑗) 



Competitive learning clustering algorithms 
The main idea 
 Employ a set of representatives 𝒘𝑗 (in the sequel we consider only point 

representatives). 
 Move them to regions of the vector space that are “dense” in vectors of 𝑋. 

 
Comments 
 In general, representatives are updated each time a new vector 𝒙 ∈ 𝑋 is 

presented to the algorithm (pattern mode algorithms). 
 These algorithms do not necessarily stem from the optimization of a cost 

function. 
 

The strategy 
 For a given vector 𝒙 

• All representatives compete to each other 
• The winner (representative that lies closest to 𝒙) moves towards 𝒙. 
• The losers (the rest of the representatives) either remain unchanged or 

they move towards 𝒙 but at a much slower rate. 



Competitive learning clustering algorithms 
Generalized Competitive Learning Scheme (GCLS) 
𝑡 = 0  
𝑚 = 𝑚𝑖𝑛𝑖𝑡 (initial number of representatives) 
(A) Initialize any other necessary parameters (depending on the specific 

algorithm). 
Repeat 
 𝑡 = 𝑡 + 1 
 Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
 (B) Determine the winning representative 𝒘𝑗(𝑡 − 1). 
 (C) If ((𝒙 is not “similar” to 𝒘𝑗(𝑡 − 1)) 𝑂𝑅 (other condition)) 𝐴𝑁𝐷 (𝑚 < 𝑚𝑚𝑎𝑥) then 

 𝑚 = 𝑚 + 1 
 𝒘𝑚 = 𝒙 

           Else 
 (D) Parameter updating 

                 𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂ℎ 𝒙,𝒘𝑞 𝑡 − 1 , 𝑖𝑓 𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 + 𝜂′ℎ 𝒙,𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

           End 
(E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
Assign each 𝒙 ∈ 𝑋 to the cluster whose representative 𝒘𝑗 lies closest to 𝒙. 

maximum allowable 
number of clusters 

maximum allowable 
number of iterations 



Competitive learning clustering algorithms 
Remarks: 

• ℎ 𝒙,𝒘𝑞  is an appropriately defined function (see below). 

 
• 𝜂 and 𝜂′ are the learning rates controlling the updating of the winner and 

the losers, respectively (𝜂′ may differ from looser to looser). 
 

• A threshold of similarity 𝛩 (carefully chosen) controls the similarity 
between 𝒙 and its closest representative 𝒘𝑗.  

If 𝑑(𝒙,𝒘𝑗) > 𝛩, for some distance measure, 𝒙 and 𝒘𝑗 are considered as 

dissimilar. 
 

• A termination criterion may be the small variation of 𝑾 = 𝒘1
𝑇 , … ,𝒘𝑚

𝑇 𝑇 
for at least 𝑁 iterations (𝑁 is the cardinality of 𝑋), i.e., for any pair of 𝑡1, 𝑡2, 
with 𝑝 − 1 ∙ 𝑁 ≤ 𝑡1, 𝑡2 ≤ 𝑝 ∙ 𝑁, 𝑝 ∈ 𝑍, to hold ||𝑾(𝑡1) −𝑾(𝑡2)|| < 𝜀. 
 

• With appropriate choices of (A), (B), (C) and (D), most competitive learning 
algorithms may be viewed as special cases of GCLS. 



Competitive learning clustering algorithms 
Basic Competitive Learning Algorithm 
Here the number of representatives 𝑚 is constant.  
The algorithm 
 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
• (B) Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

  𝑑(𝒙,𝒘𝑗(𝑡 − 1)) = 𝑚𝑖𝑛𝑘=1,…,𝑚𝑑(𝒙,𝒘𝑘(𝑡 − 1)) (*). 

• (D) Parameter updating 

            𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑖𝑓𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• End 
 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
 Assign each 𝒙𝑋 to the cluster whose representative 𝒘𝑗 lies closest to 𝒙. 

------------------ 
(*) 𝑑(∙) may be any distance (e.g., Euclidean dist., Itakura-Saito distortion). 
Also, similarity measures may be used (in this case min is replaced by max). 

𝜂 ∈ (0,1) 



Competitive learning clustering algorithms 
Basic Competitive Learning Algorithm (cont.) 
 
Remarks: 
• In this scheme losers remain unchanged. The winner, after the updating, 

lies in the line segment formed by 𝒘𝑗 (𝑡 − 1) and 𝒙. 
 
 
 
 

• A priori knowledge of the number of clusters 𝑚 is required. 
 

• If a representative is initialized far away from the regions where the points 
of 𝑋 lie, it will never win. 

     Possible solution: Initialize all representatives using vectors of 𝑋. 
 
• Versions of the algorithm with variable learning rate have also been 

studied. Specifically, 𝜂𝑡 → 0, as 𝑡 → ∞, but not too fast(*) 

-------------------- 
(*)  𝜂𝑡

∞
𝑡=1 = ∞ and  𝜂𝑡

2∞
𝑡=1 < ∞ (stochastic algorithms) 

𝒘𝑗 𝑡 = 𝒘𝑗 𝑡 − 1 + 𝜂 𝒙 − 𝒘𝑗 𝑡 − 1  

⟺𝒘𝑗 𝑡 = 1 − 𝜂 𝒘𝑗 𝑡 − 1 + 𝜂𝒙 

𝒘𝑗(𝑡 − 1) 

𝒙 𝒘𝑗(𝑡) 



Competitive learning clustering algorithms 
Leaky Learning Algorithm 
The same with the Basic Competitive Learning Algorithm except part (D), the 
updating equation of the representatives, which becomes 
 

𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂𝑤ℎ 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑖𝑓 𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 + 𝜂𝑙ℎ 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
where 𝜂𝑤 and 𝜂𝑙 are the learning rates in (0, 1) and 𝜂𝑤 ≫ 𝜂𝑙. 
 
Remarks: 
• All representatives move towards 𝒙 but the losers move at a much slower 

rate than the winner does. 
• The algorithm does not suffer from the problem of poor initialization of 

the representatives (why?). 
• An algorithm in the same spirit is the “neural-gas” algorithm, where 𝜂𝑙 

varies from loser to loser and decays as the corresponding representatives 
lie away from 𝒙. This algorithm results from the optimization of a cost 
function. 

𝒘𝑗(𝑡 − 1) 

𝒙 
𝒘𝑗(𝑡) 

𝒘𝑞(𝑡 − 1) 
𝒘𝑞(𝑡) 



Competitive learning clustering algorithms 
Conscientious Competitive Learning Algorithms 
Main Idea: Discourage a representative 𝒘𝑞  from winning if it has won many 
times in the past. Do this by assigning a “conscience” to each representative. 
A simple implementation 
 Equip each representative 𝒘𝑞, 𝑞 = 1,… ,𝑚, with a counter 𝑓𝑞 that counts 

the times that 𝒘𝑞  wins. 
 At part (A) (initialization stage) of GCLS set 𝑓𝑞 = 1, 𝑞 = 1,… ,𝑚. 
 Define the distance 𝑑∗ 𝒙,𝒘𝑞  as 

   𝑑∗ 𝒙,𝒘𝑞 = 𝑑 𝒙,𝒘𝑞 𝑓𝑞. 
(the distance is penalized to discourage representatives that have won 
many times) 
 

 Part (B) becomes 
• The representative 𝒘𝑗 is the winner on 𝒙 if 

   𝑑∗ 𝒙,𝒘𝑗 = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑
∗ 𝒙,𝒘𝑞  

• Set 𝑓𝑗  (𝑡) = 𝑓𝑗(𝑡 − 1) + 1  
 

 Parts (C) and (D) are the same as in the Basic Competitive Learning 
Algorithm 

 Also 𝑚 = 𝑚𝑖𝑛𝑖𝑡 = 𝑚𝑚𝑎𝑥  



Competitive learning clustering algorithms 
Conscientious Competitive Learning Algorithms 
The algorithm 
 Set 𝑓𝑞 = 1, 𝑞 = 1,… ,𝑚 

 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙𝑋 to the algorithm. 

• (B) Compute 𝑑∗ 𝒙,𝒘𝑞(𝑡 − 1) = 𝑑 𝒙,𝒘𝑞(𝑡 − 1) 𝑓𝑞 , 𝑞 = 1,… ,𝑚. 

    Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

   𝑑∗ 𝒙,𝒘𝑗(𝑡 − 1) = 𝑚𝑖𝑛𝑞=1,…,𝑚𝑑
∗ 𝒙,𝒘𝑞(𝑡 − 1) . 

          Set 𝑓𝑗  (𝑡) = 𝑓𝑗(𝑡 − 1) + 1 

• (D) Parameter updating 

            𝒘𝑞 𝑡 =  
𝒘𝑞 𝑡 − 1 + 𝜂 𝒙 − 𝒘𝑞 𝑡 − 1 , 𝑖𝑓 𝒘𝑞 ≡ 𝒘𝑗 (𝑤𝑖𝑛𝑛𝑒𝑟)

𝒘𝑞 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• End 
 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
 Assign each 𝒙 ∈ 𝑋 to the cluster whose representative 𝒘𝑗 lies closest to 𝒙. 



Self-organizing maps (*) 
 It is used for data visualization (maps high dim. Data→ 1-d or 2-d maps) and 

(“loose”) clustering. 
Here interrelation between representatives is assumed. 
 For each representative 𝒘𝑗 a topological neighborhood of representatives 

𝑄𝑗(𝑡) is defined, centered at 𝒘𝑗. 

As 𝑡 (no. of iterations) increases, 𝑄𝑗(𝑡) shrinks and concentrates around 𝒘𝑗. 

  The neighborhood is defined with respect to the indices 𝑗 and it is 
independent of the geometrical distances between representatives in the  

       vector space.  Assuming that in fig. (c) the 
neighborhood of 𝒘𝑗 
constitutes of 𝒘𝑗−1 and 𝒘𝑗+1,  
 
𝒘2 and 𝒘4 are the topo- 
logical neighbors of 𝒘3 

although  
𝒘6 and 𝒘7 are closer in 
terms of the geometrical 
distance to 𝒘3) 



Self-organizing maps (*) 
 Here interrelation between representatives is assumed. 
 For each representative 𝒘𝑗 a neighborhood of representatives 𝑄𝑗(𝑡) is 

defined, centered at 𝒘𝑗. 
 As 𝑡 (number of iterations) increases, 𝑄𝑗(𝑡) shrinks and concentrates 

around 𝒘𝑗. 
  The neighborhood is defined with respect to the indices 𝑗 and it is 

independent of the distances between representatives in the vector 
space.  



Self-organizing maps (*) 
 If 𝒘𝑗 wins on the current input 𝒙 all the representatives in 𝑄𝑗(𝑡) are 

updated (Self Organizing Map (SOM) scheme). 
 SOM (in its simplest version) may be viewed as a special case of GCLS if 

 
• Parts (A), (B) and (C) are defined as in the basic competitive learning 

scheme. 
• In part (D), if 𝒘𝑗 wins on 𝒙, the updating equation becomes: 

 

𝒘𝑘 𝑡 =  
𝒘𝑘 𝑡 − 1 + 𝜂𝑡

𝑘,𝑗 𝒙 − 𝒘𝑘 𝑡 − 1 , 𝑖𝑓 𝒘𝑘 ∈ 𝑄𝑗(𝑡) 

𝒘𝑘 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 
    where 𝜂𝑡

𝑘,𝑗 is a variable learning rate, which decreases with 𝑡 and with 
the topological distance between the 𝑘-th and the 𝑗-th representatives.  
 

 After convergence, neighboring representatives also lie “close” in terms of 
their geometrical distance in the vector space (topographical ordering) 
(see fig. (d)). 



Self-organizing maps (*) 
 

The algorithm 
 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
• (B) Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

𝑑 𝒙,𝒘𝑗(𝑡 − 1) = min 𝑑 𝒙,𝒘𝑘(𝑡 − 1)𝑘=1,…,𝑚  

• (D) Parameter updating 

𝒘𝑘 𝑡 =  
𝒘𝑘 𝑡 − 1 + 𝜂𝑡

𝑘,𝑗 𝒙 − 𝒘𝑘 𝑡 − 1 , 𝑖𝑓 𝒘𝑘 ∈ 𝑄𝑗(𝑡) 

𝒘𝑘 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

• End 
 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) 
 



Self-organizing maps (*) 
Example 

(a) 

(b) 

(c) 

(d) 

𝒘1 
𝒘2 

𝒘3 

𝒘4 

𝒘1 
𝒘2 

𝒘3 

𝒘4 

𝒘1 

𝒘3 

𝒘2 𝒘4 
𝒘1 

𝒘2 

𝒘3 

𝒘4 



Self-organizing maps (*) 
How to represent the result of a SOM 
NOTE: After SOM convergence the topological ordering  of the 𝑚 
representatives will comply with their “geometrical ordering”. 
 
Produce an image 𝐴 of size  
• 𝑚 for the 1-d case or 
• 𝑘 × 𝑘 for the 2-d case (𝑚 = 𝑘2) 
As follows 
 
For each representative (pixel of 𝐴): 
Compute its average distance 𝑑𝑎𝑣𝑔 from its neighboring representatives 

Draw the associate pixel of 𝐴 with a color so that: 
The larger the 𝑑𝑎𝑣𝑔, the darker the color will be. 

 
Then lighter areas surrounded by darker areas in 𝐴 are indicative of 
clustering structure in the data. 
  



Supervised Learning Vector Quantization (VQ) 
 In this case  
 each cluster is treated as a class (𝑚 compact classes are assumed) 
 the available vectors have known class labels. 
 
The goal: 
Use a set of  𝑚 representatives and place them in such a way so that each 
class is “optimally” represented. 
 
The simplest version of VQ (LVQ1) may be obtained from GCLS as follows: 
 Parts (A), (B) and (C) are the same with the basic competitive learning 

scheme. 
 In part (D) the updating for 𝒘𝑗’ s is carried out as follows 
 

𝒘𝑗 𝑡 =

𝒘𝑗 𝑡 − 1 + 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗  𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 − 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝒘𝑗(𝑡 − 1) 

𝒙 
𝒘𝑗(𝑡) 

𝒘𝑞(𝑡 − 1) 
𝒘𝑞(𝑡) 



Supervised Learning Vector Quantization (VQ) 
The algorithm 
 𝑡 = 0 

 Repeat 
• 𝑡 = 𝑡 + 1 

• Present a new randomly selected 𝒙 ∈ 𝑋 to the algorithm. 
• (B) Determine the winning representative 𝒘𝑗 on 𝒙 as the one for which 

𝑑 𝒙,𝒘𝑗(𝑡 − 1) = min 𝑑 𝒙,𝒘𝑘(𝑡 − 1)𝑘=1,…,𝑚  

• (D) Parameter updating 

𝒘𝑗 𝑡 =

𝒘𝑗 𝑡 − 1 + 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 − 𝜂 𝑡 𝒙 − 𝒘𝑗 𝑡 − 1 , 𝑖𝑓 𝒘𝑗𝑤𝑟𝑜𝑛𝑔𝑙𝑦 𝑤𝑖𝑛𝑠 𝑜𝑛 𝒙

𝒘𝑗 𝑡 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 (E) Until (convergence occurred) 𝑂𝑅 (𝑡 > 𝑡𝑚𝑎𝑥) (max allowable no of iter.) 
 In words:  
 𝒘𝑗 is moved: 

• Towards 𝒙 if 𝒘𝑗 wins and 𝒙 belongs to the 𝑗-th class. 
• Away from 𝒙 if 𝒘𝑗 wins and x does not belong to the 𝑗-th class. 

 All other representatives remain unaltered. 



Valley seeking clustering algorithms 
Let 𝑝(𝒙) be the density function describing the distribution of the vectors in 𝑋. 
 Clusters may be viewed as peaks of 𝑝(𝒙) separated by valleys. 
    Thus one may 
• Identify these valleys and 
• Try to move the borders of the clusters in these valleys. 

 
A simple method in this spirit. 
Preliminaries 
 Let the distance 𝑑(𝒙, 𝒚) be defined as 
   𝑑 𝒙, 𝒚 = 𝒚 − 𝒙 𝑇𝐴 𝒚 − 𝒙  

      where 𝐴 is a positive definite matrix 
 
 Let the local region of 𝒙, 𝑉(𝒙), be defined as 
   𝑉 𝒙 = 𝒚 ∈ 𝑋 − 𝒙 : 𝑑 𝒙, 𝒚 ≤ 𝑎  
      where 𝑎 is a user-defined parameter 
 

 𝑘𝑗
𝑖 be the number of vectors of the 𝑗 cluster that belong to 𝑉 𝒙𝑖 − 𝒙𝑖 .  

 𝑐𝑖 ∈ 1,… ,𝑚  denote the cluster to which 𝒙𝑖 will be assigned. 



Valley seeking clustering algorithms 
 Valley-Seeking algorithm 
 Fix 𝑎. 
 Fix the number of clusters 𝑚. 
 Define an initial clustering 𝑋. 
 Repeat 

• For 𝑖 = 1 to 𝑁 

–Find 𝑗:  𝑘𝑗
𝑖 = max 𝑘𝑞

𝑖
𝑞=1,…,𝑚

 

Set 𝑐𝑖 = 𝑗 
• End For 

 
• For 𝑖 = 1 to 𝑁 

Assign 𝒙𝑖 to cluster 𝐶𝑐𝑖. 

• End For 
 Until no reclustering of vectors occurs. 



Valley seeking clustering algorithms 
 The algorithm  
 Centers a window defined by 𝑑(𝒙, 𝒚) ≤ 𝑎 at 𝒙 and counts the points from 

different clusters in it. 
 Assigns 𝒙 to the cluster with the larger number of points in the window 

(the cluster that corresponds to the highest local pdf). 
 

In other words: 
 The boundary is moved away from the “winning” cluster. 

 
Remarks: 
• The algorithm is sensitive to 𝑎. It is suggested to perform several runs, for 

different values of 𝑎. 
• The algorithm is of a mode-seeking nature (if more than enough clusters 

are initially appointed, some of them will become empty). 



Valley seeking clustering algorithms 
 Example: Let 𝑋 = 𝒙1, … , 𝒙10  and 𝑎 = 1.1415 (> 2). 𝑋 contains two 
physical clusters: 𝐶1 = 𝒙1, … , 𝒙5 , 𝐶2 = 𝒙6, … , 𝒙10 . 
(a) Initially two clusters are considered separated by 𝑏1. After the 

convergence of the algorithm, 𝐶1 and 𝐶2 are identified (equivalently, 𝑏1 is 
moved between x4 and x6). 
 

(b) Initially two clusters are considered separated by 𝑏1, 𝑏2 and 𝑏3. After the 
convergence of the algorithm, 𝐶1 and 𝐶2 are identified (equivalently 𝑏1 and 
𝑏2 are moved to the area where 𝑏3 lies). 

 
(c) Initially three clusters are considered separated by 𝑏1, 𝑏2, 𝑏3, 𝑏4. After the 

convergence of the algorithm, only two clusters are identified, 𝐶1 and 𝐶2 

(equivalently 𝑏1, 𝑏2, 𝑏3 and 𝑏4 are moved between 𝒙4 and 𝒙6). 



Branch and Bound Clustering algorithms 
 They compute the globally optimal solution to combinatorial problems. 
 They avoid exhaustive search via the employment of a monotonic criterion 

𝐽. 
Monotonic criterion 𝐽: if 𝑘 vectors of 𝑋 have been assigned to clusters, the 
assignment of an extra vector to a cluster does not decrease the value of 𝐽. 
 
Consider the following 3-vectors, 2-class case: 
 
121: 1st, 3rd vectors belong to class 1 

         2nd vector belongs  to class 2. 
         (leaf of the tree) 
 
12𝑥: 1st vector belongs to class 1 

         2nd vector belongs to class 2 

         3rd vector is unassigned  
         (Partial clustering- node of the tree). 



Branch and Bound Clustering algorithms 
 How exhaustive search is avoided 
 Let 𝐵 be the best value for criterion 𝐽 computed so far. 
 If at a node of the tree, the corresponding value of 𝐽 is greater than 𝐵, no 

further search is performed for all subsequent descendants springing from 
this node. 

  Let  𝑪𝑟 = 𝑐1, … , 𝑐𝑟 , 1 ≤ 𝑟 ≤ 𝑁, denotes a partial clustering where  
      𝑐𝑖 ∈ 1,2, … ,𝑚 , 𝑐𝑖 = 𝑗 if the vector 𝒙𝑖 belongs to cluster 𝐶𝑗 and       

       𝒙𝑟+1, … , 𝒙𝑁 are yet unassigned. 
 For compact clusters and fixed number of clusters, 𝑚, a suitable cost      

function is 

𝐽 𝑪𝑟 = | 𝒙𝑖 −𝒎𝑐𝑖 𝑪𝑟 |2
𝑟

𝑖=1
 

      where 𝒎𝑐𝑖  is the mean vector of the cluster 𝐶𝑐𝑖  

𝒎𝑗 𝑪𝑟 =
1

𝑛𝑗(𝑪𝑟)
 𝒙𝑞

{𝑞=1,…,𝑟,𝑐𝑞=𝑗}
, 𝑗 = 1,… ,𝑚 

        with 𝑛𝑗(𝑪𝑟) being the number of vectors 𝒙 ∈ 𝒙1, … , 𝒙𝑟  that belong to     

        cluster 𝐶𝑗. 



Branch and Bound Clustering algorithms 
Initialization 
• Start from the initial node and go down to a leaf. Let 𝐵 be the cost of the 

corresponding clustering 𝑪 (initially set 𝐵 = +∞, 𝑪 = ∅). 
Main stage 
• Start from the initial node of the tree and go down until 
Either (i) A leaf is encountered.  

oIf the cost 𝐵´ of the corr. clustering 𝑪´ is smaller than 𝐵 then 
  * 𝐵 = 𝐵´ 
 * 𝑪 =𝑪´ is the best clustering found so far 

oEnd if 
Or (ii) a node 𝑞 with value of 𝐽 greater than 𝐵 is encountered. Then 

oNo subsequent clustering branching from 𝑞 is considered. 
oBacktrack to the parent of 𝑞, 𝑞𝑝𝑎𝑟, in order to span a different path. 
oIf all paths branching from 𝑞𝑝𝑎𝑟 have been considered then 

 * Move to the grandparent of 𝑞. 
oEnd if 

End if 
Terminate when all possible paths have been considered explicitly or 
implicitly. 



Branch and Bound Clustering algorithms 
Remarks 
• Variations of the above algorithm, where much tighter bounds of 𝐵 are 

used (that is, many more clusterings are rejected without explicit 
consideration) have also been proposed. 
 

• A disadvantage of the algorithm is the excessive (and unpredictable) 
amount of required computational time. 



Simulated Annealing 
 It guarantees (under certain conditions) in probability, the determination 

of  the globally optimal solution of the problem at hand via the 
minimization of  a cost function 𝐽. 

 It may escape from local minima since it allows moves that temporarily 
may increase the value of 𝐽. 

 
Definitions 
 An important parameter of the algorithm is the “temperature” 𝑇, which  
      starts at a high value and reduces gradually.  
 A sweep is the time the algorithm spends at a given temperature so that  
      the system can enter the “thermal equilibrium” in this temperature. 
 
Notation 
 𝑇𝑚𝑎𝑥 is the initial value of the temperature 𝑇. 
 𝑪𝑖𝑛𝑖𝑡 is the initial clustering. 
 𝑪 is the current clustering. 
 𝑡 is the current sweep. 



Simulated Annealing 
The algorithm: 
• Set 𝑇 = 𝑇𝑚𝑎𝑥 and 𝑪 = 𝑪𝑖𝑛𝑖𝑡. 
• 𝑡 = 0 
• Repeat 
 𝑡 = 𝑡 + 1 

 Repeat 
o Compute 𝐽(𝑪) 
o Produce a new clustering, 𝑪´, by assigning a randomly chosen vector 

from X to a different cluster. 
o Compute 𝐽(𝑪´) 
o If Δ𝐽 = 𝐽(𝑪´) − 𝐽(𝑪) < 0 then 

* (A) 𝑪 = 𝑪´ 
o Else 

* (B) 𝑪 = 𝑪´, with probability 𝑃(Δ𝐽) = 𝑒−Δ𝐽 𝑇 . 
o End if 

 Until an equilibrium state is reached at this temperature. 
 𝑇 = 𝑓(𝑇𝑚𝑎𝑥 , 𝑡) 

• Until a predetermined value 𝑇𝑚𝑖𝑛 for 𝑇 is reached 



Simulated Annealing 
Remarks: 
• For 𝑇∞, it is 𝑝(Δ𝐽) ≈ 1. Thus almost all movements of vectors between 

clusters are allowed. 
• For lower values of 𝑇 fewer moves of type (B) (from lower to higher cost 

clusterings) are allowed. 
• As 𝑇0 the probability of moves of type (B) tends to zero. 
• Thus as 𝑇 decreases, it becomes more probable to reach clusterings that 

correspond to lower values of 𝐽. 
• Keeping 𝑇 positive, we ensure a nonzero probability for escaping from a 

local minimum. 
• We assume that the equilibrium state has been reached 
      ”If for 𝑘 successive random reassignments of vectors, 𝑪 remains   

     unchanged.” 
•  A schedule for lowering T that guarantees convergence to the global 

minimum with probability 1, is 

    𝑇 =
𝑇𝑚𝑎𝑥

ln(1+𝑡)
 

• The method is computationally demanding. 


