Clustering algorithms Konstantinos Koutroumbas

Unit 10

- Graph theory-based clustering algorithms
- Competitive learning clustering algorithms
- Valley seeking clustering algorithms
- Branch & bound clustering algorithms
- Simulated annealing-based clustering algorithm

Other clustering algorithms

- \triangleright The following types of algorithms will be considered:
	- \triangleright Graph theory based clustering algorithms.
	- \triangleright Competitive learning algorithms.
	- \triangleright Valley seeking clustering algorithms.
	- \triangleright Cost optimization clustering algorithms based on:
		- Branch and bound approach.
		- Simulated annealing methodology.
		- Deterministic annealing.
		- Genetic algorithms.
	- \triangleright Density-based clustering algorithms.
	- \triangleright Clustering algorithms for high dimensional data sets.

In principle, such algorithms are capable of detecting clusters of various shapes, at least when they are well separated.

In the sequel we discuss algorithms that are based on:

- \triangleright The Minimum Spanning Tree (MST).
- \triangleright Regions of influence.
- Directed trees.

Minimum Spanning Tree (MST) algorithms

Preliminaries: Let

- \triangleright G be the complete graph, each node of which corresponds to a point of the data set X .
- \triangleright $e = (x_i, x_j)$ denote an edge of G connecting x_i and x_j .

 \triangleright $w_e \equiv d(x_i, x_j)$ denote the weight of the edge e.

Definitions:

- \triangleright Two edges e_1 and e_2 are k steps away from each other if the minimum path that connects a vertex of e_1 and a vertex of e_2 contains $k - 1$ edges.
- \triangleright A Spanning Tree of G is a connected graph that:
	- Contains all the vertices of the graph.
	- Has no loops.
- \triangleright The weight of a Spanning Tree is the sum of weights of its edges.
- \triangleright A Minimum Spanning Tree (MST) of G is a spanning tree with minimum weight (when all w_e 's are different from each other, the MST is unique).

Minimum Spanning Tree (MST) algorithms (cont) Sketch of the algorithm: \triangleright Determine the MST of G.

 \triangleright Remove the edges that are "unusually" large compared with their neighboring edges (inconsistent edges).

 \triangleright Identify as clusters the connected components of the MST, after the removal of the inconsistent edges.

Identification of inconsistent edges. For a given edge e of the MST of G :

- **Consider all the edges (except** *e***) that lie k steps away (at the most) from e.**
- **Determine the mean** m_e **and the standard deviation** σ_e **of their weights.**
- If w_e lies more than q (typically $q=2$) standard deviations σ_e away from m_e , then:
	- e is characterized as inconsistent.
- Else
	- e is characterized as consistent.
- End if

Minimum Spanning Tree (MST) algorithms (cont) Example:

- For the MST in the figure and for $k = 2$ and $q = 3$ we have:
- For $e_0: w_{e_0} = 17$, $m_{e_0} = 2.3$, $\sigma_{e_0} = 0.95$. w_{e_0} lies 15.5 standard deviations σ_{e_0} away from m_{e_0} , hence it is inconsistent.
- For e_{11} : $w_{e_{11}} = 3$, $m_{e_{11}} = 2.5$, $\sigma_{e_{11}} = 2.12$. $w_{e_{11}}$ lies 0.24 standard deviations $\sigma_{e_{11}}$ away from $m_{e_{11}}$, hence it is consistent.

- •**Define** a **complete** graph with vertices the data points and edges the segments connecting every pair of vertices.
- •**Weight** each edge by the distance between its two end-points.
- •**Define** the MST of the graph **and cut** the **"unusually large"** edges.
- •The remaining sub-graphs **correspond** to the clusters.

- •**Define** a **complete** graph with vertices the data points and edges the segments connecting every pair of vertices.
- •**Weight** each edge by the distance between its two end-points.
- •**Define** the MST of the graph **and cut** the **"unusually large"** edges.
- •The remaining sub-graphs **correspond** to the clusters.

- •**Define** a **complete** graph with vertices the data points and edges the segments connecting every pair of vertices.
- •**Weight** each edge by the distance between its two end-points.
- •**Define** the MST of the graph **and cut** the **"unusually large"** edges.
- •The remaining sub-graphs **correspond** to the clusters.

- •**Define** a **complete** graph with vertices the data points and edges the segments connecting every pair of vertices.
- •**Weight** each edge by the distance between its two end-points.
- •**Define** the MST of the graph **and cut** the **"unusually large"** edges.
- •The remaining sub-graphs **correspond** to the clusters.

- •**Define** a **complete** graph with vertices the data points and edges the segments connecting every pair of vertices.
- •**Weight** each edge by the distance between its two end-points.
- •**Define** the MST of the graph **and cut** the **"unusually large"** edges.
- •The remaining sub-graphs **correspond** to the clusters.

- •**Define** a **complete** graph with vertices the data points and edges the segments connecting every pair of vertices.
- •**Weight** each edge by the distance between its two end-points.
- •**Define** the MST of the graph **and cut** the **"unusually large"** edges.
- •The remaining sub-graphs **correspond** to the clusters.

Minimum Spanning Tree (MST) algorithms (cont) **Remarks:**

- \triangleright The algorithm **depends** on the choices of k and q.
- \triangleright The algorithm is insensitive to the order of consideration of the data points.
- \triangleright No initial conditions are required, no convergence issues are arised.
- \triangleright The algorithm works well for many cases where the clusters are well separated.

Minimum Spanning Tree (MST) algorithms (cont)

Remarks:

 \triangleright A **problem** may occur when a "large" edge e has another "large" edge as its neighbor. In this case, e is likely not to be characterized as inconsistent and the algorithm may fail to unravel the underlying clustering structure correctly.

Algorithms based on Regions of Influence (ROI)

Definition: The region of influence of two distinct vectors $\boldsymbol{x}_i, \boldsymbol{x}_j \in X$ is defined as:

 $R(\pmb{x}_i, \pmb{x}_j) = \big\{\pmb{x}: \, \mathit{cond}(d(\pmb{x}, \pmb{x}_i), d(\pmb{x}, \pmb{x}_j), d(\pmb{x}_i, \pmb{x}_j)), \pmb{x}_i \neq \pmb{x}_j\big\}$

where $cond(d(\pmb{x}, \pmb{x}_i), d(\pmb{x}, \pmb{x}_j), d(\pmb{x}_i, \pmb{x}_j))$ may be defined as:

a)
$$
d^2(x, x_i) + d^2(x, x_j) < d^2(x_i, x_j),
$$

b)
$$
\max\{d(x,x_i),d(x,x_j)\} < d(x_i,x_j)\},
$$

(a)

- c) $(d^2(x, x_i) + d^2(x, x_j) < d^2(x_i, x_j))$ OR $(\sigma \min\{d(x, x_i), d(x, x_j)\} < d(x_i, x_j)),$
- d) $\{\max\{d(x, x_i), d(x, x_j)\} < d(x_i, x_j)\}$ OR $(\sigma \min\{d(x, x_i), d(x, x_j)\} < d(x_i, x_j)$

where σ affects the size of the ROI defined by x_i , x_j and is called relative edge consistency. \mathcal{X}_i

 (c)

 (d)

(b)

Algorithms based on Regions of Influence (cont)

Algorithm based on ROI

- \triangleright For $i = 1$ to N
	- For $i = i + 1$ to N
		- $-$ **Determine** the region of influence $R(x_i, x_j)$
		- $\;\;$ If $R(\pmb{x}_{i},\pmb{x}_{j}) \cap \big(X \big\{\pmb{x}_{i},\pmb{x}_{j}\big\}\big) = \pmb{\varnothing}$ then
			- o Add the edge connecting x_i , x_j .

 $-Fnd$ if

• End For

 \triangleright End For

Determine the connected components of the resulted graph and **identify** them as clusters.

In words:

- ≻ The edge (x_i, x_j) is **added** to the graph **if** no other x_q ∈ *X* lies in $R(x_i, x_j)$.
- Since for x_i and x_j close to each other it is likely that $R(x_i, x_j)$ contains no other vectors in X , it is expected that close to each other points will be assigned to the same cluster.

Algorithms based on Regions of Influence (cont)

Remarks:

- The algorithm is insensitive to the order in which the pairs are considered.
- In order to exclude (possible) edges connecting distant points, one could use a procedure like the one described previously for removing "unusually large" edges.
- In the choices of *cond* in (c) and (d), *σ* must be chosen *a priori*.
- For the resulting graphs:
	- $-$ if the choice (a) is used for $cond$, they are called relative neighborhood graphs (RNGs)
	- $-$ if the choice (b) is used for $cond$, they are called Gabriel graphs (GGs)
- Experimental results show that better clusterings are produced when (c) and (d) conditions are used in the place of $cond$, instead of (a) and (b).

Algorithms based on Directed Trees

Definitions:

- \triangleright A directed graph is a graph whose edges are directed.
- \triangleright A set of edges $e_{i_1},...,e_{i_q}$ constitute a directed <u>path</u> from a vertex A to a vertex B , if,
	- A is the initial vertex of e_{i_1}
	- B is the final vertex of e_{i_q}
	- The destination vertex of the edge $e_{i_j}, j = 1, ..., q 1$, is the departure vertex of the edge $e_{i_{j+1}}$.

(In figure (a) the sequence e_1 , e_2 , e_3 constitute a directed path connecting the vertices A and B).

Algorithms based on Directed Trees (cont)

- \triangleright A directed tree is a directed graph with a specific node A, known as root, such that,
	- From every node $B \neq A$ of the tree **departs** exactly one edge.
	- No edge departs from A.
	- No circles are encountered (see figure (b) in the previous slide).
- \triangleright The neighborhood of a point $x_i \in X$ is defined as

$$
\rho_i(\theta) = \{x_j \in X : d(x_i, x_j) \leq \theta, x_i \neq x_j\}
$$

where θ determines the neighborhood size.

- \triangleright Also let
	- $n_i = |\rho_i(\theta)|$ be the number of points of X lying within $\rho_i(\theta)$
	- $g_{ij} = (n_j n_i)/d(x_i, x_j)$

Main philosophy of the algorithm

Identify the directed trees in a graph whose vertices are points of X , so that each directed tree corresponds to a cluster.

Algorithms based on Directed Trees (cont.)

Clustering Algorithm based on Directed Trees

- \triangleright **Set** θ to a specific value.
- \triangleright Determine n_i , $i = 1, ..., N$.

$$
\text{ Compute } g_{ij}, i, j = 1, \dots, N, i \neq j.
$$

- \triangleright For $i=1$ to N
	- If $n_i = 0$ then
		- $\boldsymbol{\mathsf{u}}$ is the root of a new directed tree.
	- Else
		- $-$ Determine \boldsymbol{x}_r such that $g_{ir} = max_{x_j \in \rho_i(\theta)} g_{ij}$
		- If g_{ir} < 0 then
			- o \mathbf{x}_i is the root of a new directed tree.
		- Else if $g_{ir} > 0$ then
			- o x_r is the parent of x_i (there exists a directed edge from x_i to x_r).

 \bullet

 $g_{ij} = (n_j - n_i)/d(x_i, x_j)$

Algorithms based on Directed Trees (cont.)

Clustering Algorithm based on Directed Trees

- Else if $g_{ir} = 0$ then

o Define $T_i = \{\pmb{x}_j \colon \pmb{x}_j \in \rho_i(\theta)$, $g_{ij} = 0\}.$

o Eliminate all the elements $x_j \in T_i$, for which there exists a directed path from x_j to x_i .

 $\mathsf o\,$ If the resulting T_i is empty then

 * \boldsymbol{x}_{i} is the root of a new directed tree

o Else

* The parent of x_i is x_q such that $d(x_i, x_q) = min_{x_s \in T_i} d(x_i, x_s)$.

- o End if
- $-$ End if
- End if
- \triangleright End for
- **Identify** as clusters the directed trees formed above.

Algorithms based on Directed Trees (cont.)

Remarks:

- The root x_i of a directed tree is the point in $\rho_i(\theta)$ with the most dense neighborhood.
- The branch that handles the case $g_{ir} = 0$ ensures that no circles occur.
- The algorithm is sensitive to the order of consideration of the data points.
- For proper choice of θ and large N, this scheme **behaves** as a modeseeking algorithm (see below).

Example: In the figure below, the size of the edge of the grid is 1 and $\theta = 1.1$. The above algorithm gives the directed trees shown in the figure.

The main idea

- \triangleright **Employ** a set of representatives w_j (in the sequel we consider only point representatives).
- \triangleright **Move** them to regions of the vector space that are "dense" in vectors of X.

Comments

- \triangleright In general, representatives are **updated** each time a new vector \boldsymbol{x} ∈ *X* is presented to the algorithm (pattern mode algorithms).
- \triangleright These algorithms do not necessarily stem from the optimization of a cost function.

The strategy

- \triangleright For a given vector \boldsymbol{x}
	- All representatives **compete** to each other
	- The winner (representative that lies closest to x) moves towards x .
	- The losers (the rest of the representatives) either remain unchanged **or** they move towards x but at a much slower rate.

Generalized Competitive Learning Scheme (GCLS)

- $t = 0$
- $m = m_{init}$ (initial number of representatives)
- (A) **Initialize** any other necessary parameters (depending on the specific algorithm). maximum allowable

Repeat

- $\geq t = t + 1$
- **Present** a new randomly selected $x \in X$ to the algorithm.
- \triangleright (B) **Determine** the winning representative $w_i(t-1)$.

 \triangleright (C) <u>If</u> ((**x** is **not** "similar" to $w_i(t-1)$) OR (other condition)) AND ($m < m_{max}$) then

$$
- m = m + 1
$$

\n
$$
- w_m = x
$$

\nElse
\n
$$
- (D) Parameter updating
$$

\n
$$
w_q(t) = \begin{cases} w_q(t-1) + \eta h(x, w_q(t-1)), & \text{if } w_q \equiv w_j \text{ (winner)} \\ w_q(t-1) + \eta' h(x, w_q(t-1)), & \text{otherwise} \end{cases}
$$

\nEnd
\n(E) Until (convergence occurred) OR $(t > t_{max})^\circ$ O
\n
$$
w_q(t) = \begin{cases} \frac{\text{End}}{\text{maximum allowable}} \\ \text{number of iterations} \end{cases}
$$

number of clusters

Assign each $\boldsymbol{x} \in X$ to the cluster whose representative \boldsymbol{w}_j lies closest to \boldsymbol{x} .

Remarks:

- $h(x, w_a)$ is an appropriately defined function (see below).
- η and η' are the learning rates controlling the updating of the winner and the losers, respectively (η' may differ from looser to looser).
- A threshold of similarity Θ (carefully chosen) controls the similarity between x and its closest representative w_j .

 $I = \inf d(x, w_i) > \Theta$, for some distance measure, x and w_i are considered as dissimilar.

- A termination criterion may be the small variation of $\boldsymbol{W} = [\boldsymbol{w}_1^T,...,\boldsymbol{w}_m^T]^T$ for at least N iterations (N is the cardinality of X), i.e., for any pair of t_1, t_2 , with $(p-1) \cdot N \le t_1, t_2 \le p \cdot N, p \in Z$, to hold $||W(t_1) - W(t_2)|| < \varepsilon$.
- With appropriate choices of (A), (B), (C) and (D), most competitive learning algorithms may be viewed as special cases of GCLS.

Basic Competitive Learning Algorithm

Here the number of representatives m is **constant**.

The algorithm

 \triangleright t = 0

Repeat

- $t = t + 1$
- **Present** a new randomly selected $x \in X$ to the algorithm.
- (B) **Determine** the winning representative w_i on x as the one for which

$$
d(x, w_j(t-1)) = min_{k=1,\dots,m} d(x, w_k(t-1))
$$
 (*).

- (D) *Parameter updating* $w_q(t) = \{$ $w_q(t-1) + \eta \left(x - w_q(t-1)\right)$, if $w_q \equiv w_j$ (winner) $w_q(t-1)$, otherwise $\eta \in (0,1)$
- End

- \triangleright (E) Until (convergence occurred) OR ($t > t_{max}$)
- \triangleright **Assign** each $x \in X$ to the cluster whose representative w_j lies closest to x.

^(*) $d(·)$ may be any distance (e.g., Euclidean dist., Itakura-Saito distortion). Also, similarity measures **may** be **used** (in this case min is **replaced by** max).

Basic Competitive Learning Algorithm (cont.)

Remarks:

• In this scheme losers **remain** unchanged. The winner, after the updating, **lies** in the line segment formed by w_j $(t - 1)$ and x .

$$
w_j(t) = w_j(t-1) + \eta\left(x - w_j(t-1)\right)
$$

\n
$$
\Leftrightarrow w_j(t) = (1 - \eta)w_j(t-1) + \eta x
$$

\n
$$
w_j(t-1)
$$

\n
$$
w_j(t)
$$

- A *priori* knowledge of the number of clusters *m* is required.
- If a representative is initialized far away from the regions where the points of X lie, it will never win. Possible solution: **Initialize** all representatives using vectors of X.
- Versions of the algorithm with variable learning rate have also been studied. Specifically, $\eta_t \to 0$, as $t \to \infty$, but not too fast(*)

(*) $\sum_{t=1}^{\infty} \eta_t = \infty$ and $\sum_{t=1}^{\infty} \eta_t^2 < \infty$ (**stochastic** algorithms)

Leaky Learning Algorithm

The same with the Basic Competitive Learning Algorithm except part (D), the updating equation of the representatives, which becomes

$$
w_q(t) = \begin{cases} w_q(t-1) + \eta_w h\left(x - w_q(t-1)\right), & \text{if } w_q \equiv w_j \text{ (winner)}\\ w_q(t-1) + \eta_l h\left(x - w_q(t-1)\right), & \text{otherwise} \end{cases}
$$

 $\boldsymbol{\chi}$

 $W_q(t-1)$

 $W_q(t)$

where η_w and η_l are the learning rates in (0, 1) and $\eta_w \gg \eta_l$. $w_j(t-1) w_j(t)$

Remarks:

- All representatives move towards x but the losers move at a much slower rate than the winner does.
- The algorithm does not suffer from the problem of poor initialization of the representatives (why?).
- An algorithm in the same spirit is the "neural-gas" algorithm, where η_1 varies from loser to loser and decays as the corresponding representatives lie away from x . This algorithm **results** from the optimization of a cost function.

Conscientious Competitive Learning Algorithms

Main Idea: **Discourage** a representative w_a from winning *if it has won many times in the past*. Do this by assigning a "conscience" to each representative. A simple implementation

- \triangleright **Equip** each representative w_q , $q = 1, ..., m$, with a counter f_q that counts the times that w_q wins.
- At part (A) (initialization stage) of GCLS set $f_q = 1, q = 1, ..., m$.
- ≻ Define the distance $d^*(x, w_q)$ as $d^{*}(x, w_{q}) = d(x, w_{q})f_{q}.$

(the distance is penalized to discourage representatives that have won many times)

\triangleright Part (B) becomes

• The representative w_j is the winner on \bm{x} if

$$
d^*(\mathbf{x}, \mathbf{w}_j) = min_{q=1,\dots,m} d^*(\mathbf{x}, \mathbf{w}_q)
$$

• Set
$$
f_j(t) = f_j(t-1) + 1
$$

 \triangleright Parts (C) and (D) are the same as in the Basic Competitive Learning Algorithm

$$
\triangleright \text{ Also } m = m_{init} = m_{max}
$$

Conscientious Competitive Learning Algorithms

- *The algorithm*
- Set $f_q = 1, q = 1, ..., m$
- \triangleright t = 0

Repeat

- $t = t + 1$
- **Present** a new randomly selected $\boldsymbol{x} \in X$ to the algorithm.
- (B) **Compute** $d^*(x, w_q(t-1)) = d(x, w_q(t-1))f_q$, $q = 1, ..., m$. **Determine** the winning representative w_i on x as the one for which $d^*(x, w_j(t-1)) = min_{q=1,\dots,m} d^*(x, w_q(t-1)).$ **Set** $f_i(t) = f_i(t-1) + 1$
- (D) *Parameter updating*

$$
w_q(t) = \begin{cases} w_q(t-1) + \eta \left(x - w_q(t-1) \right), & \text{if } w_q \equiv w_j \text{ (winner)}\\ w_q(t-1), & \text{otherwise} \end{cases}
$$

- End
- \triangleright (E) Until (convergence occurred) OR ($t > t_{max}$)
- **Ex** Assign each $x \in X$ to the cluster whose representative w_j lies closest to x .

- It is **used** for data visualization (maps high dim. Data→ 1-d or 2-d maps) and ("loose") clustering.
- \triangleright Here interrelation between representatives is assumed.
- \triangleright For each representative w_i a topological neighborhood of representatives $Q_j(t)$ is defined, centered at w_j .
- As t (no. of iterations) increases, $Q_j(t)$ shrinks and concentrates around w_j .
- \triangleright The neighborhood is defined with respect to the indices *j* and it is independent of the geometrical distances between representatives in the

- \triangleright Here interrelation between representatives is assumed.
- For each representative w_i a neighborhood of representatives $Q_i(t)$ is defined, centered at w_j .
- As t (number of iterations) increases, $Q_i(t)$ shrinks and concentrates around w_j .
- \triangleright The neighborhood is defined with respect to the indices *j* and it is independent of the distances between representatives in the vector space.

- \triangleright If w_i wins on the current input x all the representatives in $Q_i(t)$ are updated (Self Organizing Map (SOM) scheme).
- \triangleright SOM (in its simplest version) may be viewed as a special case of GCLS if
	- Parts (A), (B) and (C) are defined as in the basic competitive learning scheme.
	- In part (D), if w_i wins on x , the updating equation becomes:

$$
w_k(t) = \begin{cases} w_k(t-1) + \eta_t{}^{k,j}(x - w_k(t-1)), & \text{if } w_k \in Q_j(t) \\ w_k(t-1), & \text{otherwise} \end{cases}
$$

where $\eta_t{}^{k,j}$ is a *variable* learning rate, which decreases with t and with the topological distance between the k -th and the j -th representatives.

 After convergence, neighboring representatives also lie "close" in terms of their geometrical distance in the vector space (topographical ordering) (see fig. (d)).

The algorithm

 \triangleright t = 0

Repeat

- $t = t + 1$
- **Present** a new randomly selected $x \in X$ to the algorithm.
- (B) **Determine** the winning representative w_i on x as the one for which

$$
d(x, w_j(t-1)) = \min_{k=1,\dots,m} d(x, w_k(t-1))
$$

• (D) *Parameter updating*

$$
w_k(t) = \begin{cases} w_k(t-1) + \eta_t{}^{k,j}(x - w_k(t-1)), & \text{if } w_k \in Q_j(t) \\ w_k(t-1), & \text{otherwise} \end{cases}
$$

- End
- \triangleright (E) Until (convergence occurred) OR ($t > t_{max}$)

Example

How to represent the result of a SOM

NOTE: After SOM convergence the topological ordering of the **representatives** will comply with their "geometrical ordering".

Produce an **image** A of size

- \cdot *m* for the 1-d case or
- $k \times k$ for the 2-d case $(m = k^2)$

As follows

For **each representative** (pixel of A):

Compute its **average distance** d_{avg} from its neighboring representatives Draw the associate pixel of \vec{A} with a color so that:

<u>The larger the d_{aya} *, the darker the color will be.*</u>

Then **lighter areas surrounded** by **darker areas** in A are indicative of clustering structure in the data.

Supervised Learning Vector Quantization (VQ)

In this case

- \triangleright each cluster is **treated** as a class (*m* compact classes are assumed)
- \triangleright the available vectors have known class labels.

The goal:

Use a set of m representatives and place them in such a way so that each class is "optimally" represented.

The simplest version of VQ (LVQ1) may be obtained from GCLS as follows:

- \triangleright Parts (A), (B) and (C) are the same with the basic competitive learning scheme. $w_j(t-1) w_j(t)$
- \triangleright In part (D) the updating for w_j' s is carried out as follows

$$
w_{q}(t) = \begin{cases} w_{j}(t-1) + \eta(t) \left(x - w_{j}(t-1) \right), & \text{if } w_{j} \text{ correctly wins on } x \\ w_{j}(t-1) - \eta(t) \left(x - w_{j}(t-1) \right), & \text{if } w_{j} \text{wrongly wins on } x \\ w_{j}(t-1), & \text{otherwise} \end{cases}
$$

 $\boldsymbol{\chi}$

 $W_q(t-1)$

Supervised Learning Vector Quantization (VQ)

The algorithm

- \triangleright t = 0
- **Repeat**
	- $t = t + 1$
	- **Present** a new randomly selected $\boldsymbol{x} \in X$ to the algorithm.
	- (B) Determine the winning representative w_i on x as the one for which $d(x, w_i(t-1)) = \min_{k=1,\dots,m} d(x, w_k(t-1))$
	- (D) *Parameter updating*

 $w_j(t) =$ $\pmb{w}_j(t-1)+\eta(t)\left(\pmb{x}-\pmb{w}_j(t-1)\right)$, \quad if \pmb{w}_j correctly wins on \pmb{x} $\pmb{w}_j(t-1) - \eta(t) \left(\pmb{x} - \pmb{w}_j(t-1) \right)$, if \pmb{w}_j wrongly wins on \pmb{x} $W_i(t-1)$, − 1 , ℎ

- \triangleright (E) Until (convergence occurred) OR ($t > t_{max}$) (max allowable no of iter.) **In words:**
- \triangleright w_j is moved:
	- Towards x if w_i wins and x belongs to the *j*-th class.
	- Away from x if w_i wins and x does not belong to the j -th class.
- \triangleright All other representatives remain unaltered.

Let $p(x)$ be the density function describing the distribution of the vectors in X.

 \triangleright Clusters may be **viewed** as peaks of $p(x)$ separated by valleys.

Thus one may

- **Identify** these valleys and
- Try to **move** the borders of the clusters in these valleys.

A simple method in this spirit.

Preliminaries

- \triangleright Let the distance $d(x, y)$ be defined as $d(x, y) = (y - x)^T A (y - x)$ where \boldsymbol{A} is a positive definite matrix
- \triangleright Let the local region of x, $V(x)$, be defined as $V(x) = \{ y \in X - \{x\} : d(x, y) \leq a \}$ where α is a user-defined parameter

 \triangleright k_j^i be the number of vectors of the *j* cluster that belong to $V(x_i) - \{x_i\}$. \triangleright $c_i \in \{1, ..., m\}$ denote the cluster to which \mathbf{x}_i will be assigned.

Valley-Seeking algorithm

- \triangleright Fix a.
- \triangleright Fix the number of clusters m.
- \triangleright **Define** an initial clustering X.
- **Repeat**
	- For $i=1$ to N $-$ Find j : $k_j^i = \max_{q=1,...,m} k_q^i$ $q=1,...,m$ $-$ **Set** $c_i = j$
	- End For
	- For $i=1$ to N

 $-$ **Assign** \boldsymbol{x}_{i} **to** cluster $\mathcal{C}_{c_{i}}.$

- End For
- **Until** no reclustering of vectors occurs.

The algorithm

- **Centers** a window defined by $d(x, y) \le a$ at x and **counts** the points from different clusters in it.
- \triangleright **Assigns** x to the *cluster with the larger number of points* in the window (the cluster that **corresponds** to the highest local pdf).

In other words:

The boundary is **moved away** from the "winning" cluster.

Remarks:

- The algorithm is sensitive to a . It is suggested to perform several runs, for different values of a .
- The algorithm is of a mode-seeking nature (*if more than enough clusters are initially appointed, some of them will become empty*).

Example: Let $X = \{x_1, ..., x_{10}\}$ and $a = 1.1415 (> \sqrt{2})$. X contains two physical clusters: $C_1 = \{x_1, ..., x_5\}, C_2 = \{x_6, ..., x_{10}\}.$ (a) **Initially two** clusters are considered separated by b_1 . After the convergence of the algorithm, C_1 and C_2 are identified (equivalently, b_1 is

 $\boldsymbol{\mathsf{ moved}}$ between \boldsymbol{x}_4 and \boldsymbol{x}_6).

- (b) **Initially** two clusters are considered separated by b_1 , b_2 and b_3 . After the convergence of the algorithm, C_1 and C_2 are identified (equivalently b_1 and b_2 are **moved** to the area where b_3 lies).
- (c) **Initially** three clusters are considered separated by b_1 , b_2 , b_3 , b_4 . After the convergence of the algorithm, only two clusters are identified, C_1 and C_2 (equivalently b_1 , b_2 , b_3 and b_4 are **moved** between x_4 and x_6).

- \triangleright They compute the globally optimal solution to combinatorial problems.
- They *avoid exhaustive search* via the employment of a monotonic criterion \overline{I} .

Monotonic criterion *J: if k vectors of X have been assigned to clusters, the assignment of an extra vector to a cluster does not decrease the value of* .

Consider the following 3-vectors, 2-class case:

- 121: 1st, 3rd vectors belong to class 1 2nd vector belongs to class 2. (leaf of the tree)
- $12x$: 1st vector belongs to class 1 2nd vector belongs to class 2 3 rd vector is unassigned (Partial clustering- node of the tree).

How exhaustive search is avoided

- \triangleright Let B be the best value for criterion *J* computed so far.
- \triangleright If at a node of the tree, the corresponding value of *J* is greater than *B*, no **further search** is **performed** for all subsequent descendants springing from this node.
- Exercicie Let $C_r = [c_1, ..., c_r], 1 \leq r \leq N$, denotes a partial clustering where $c_i \in \{1,2,...,m\}$, $c_i = j$ if the vector x_i belongs to cluster C_i and $x_{r+1}, ..., x_N$ are yet unassigned.
- \triangleright For compact clusters and fixed number of clusters, m , a suitable cost function is

$$
J(C_r) = \sum_{i=1}^r ||x_i - m_{c_i}(C_r)||^2
$$

where $\boldsymbol{m}_{c_{\boldsymbol{t}}}$ is the mean vector of the cluster $\mathcal{C}_{c_{\boldsymbol{t}}}$

$$
\mathbf{m}_j(\mathbf{C}_r) = \frac{1}{n_j(\mathbf{C}_r)} \sum_{\{q=1,\dots,r,c_q=j\}} x_q, \qquad j=1,\dots,m
$$

with $n_j(\bm{\mathcal{C}}_r)$ being the number of vectors $\bm{x} \in \{\bm{x}_1, ..., \bm{x}_r\}$ that belong to cluster C_j .

Initialization

• Start from the initial node and go down to a leaf. Let B be the cost of the corresponding clustering C (initially set $B = +\infty$, $C = \emptyset$).

 $11x$

111

112

 $12x$

121

122

Main stage

• **Start** from the initial node of the tree and go down **until**

Either (i) A leaf is encountered.

olf the cost B' of the corr. clustering C' is **smaller** than \overline{B} then

 \mathbb{R}^* *B* = *B*^{\prime}

 $*$ $C = C'$ is the best clustering found so far

oEnd if

 $-\text{Or}$ (ii) a node q with value of *J* greater than *B* is encountered. Then oNo subsequent clustering branching from q is considered. o**Backtrack** to the parent of q , q^{par} , in order to span a different path. olf all paths branching from q^{par} have been considered then $*$ **Move** to the grandparent of q .

oEnd if

End if

Terminate when all possible paths have been considered explicitly or implicitly.

Remarks

- Variations of the above algorithm, where much tighter bounds of B are used (that is, many more clusterings are rejected without explicit consideration) have also been proposed.
- A disadvantage of the algorithm is the excessive (and unpredictable) amount of required computational time.

Simulated Annealing

- \triangleright It guarantees (under certain conditions) in probability, the determination of the globally optimal solution of the problem at hand via the minimization of a cost function *.*
- It **may escape** from local minima since it **allows** moves that temporarily may increase the value of *.*

Definitions

- \triangleright An important parameter of the algorithm is the "temperature" T, which **starts** at a high value and **reduces** gradually.
- \triangleright A sweep is the time the algorithm spends at a given temperature so that the system can enter the "thermal equilibrium" in this temperature.

Notation

- \triangleright T_{max} is the initial value of the temperature T.
- \triangleright C_{init} is the initial clustering.
- \triangleright *C* is the current clustering.
- \triangleright t is the current sweep.

Simulated Annealing

The algorithm:

- **Set** $T = T_{max}$ and $C = C_{init}$.
- $t=0$
- **Repeat**
	- $-t = t + 1$
	- *Repeat*
		- o **Compute** $J(C)$
		- o **Produce** a new clustering, C', by assigning a randomly chosen vector from *X* to a different cluster.
		- o **Compute** $J(C')$

o If
$$
\Delta J = J(C') - J(C) < 0
$$
 then
\n*(A) $C = C'$

o Else

* (B) $\mathbf{C} = \mathbf{C}'$, with probability $P(\Delta J) = e^{-\Delta J/T}$.

- o End if
- *Until* an equilibrium state is **reached** at this temperature.

$$
-T = f(T_{max}, t)
$$

Until a predetermined value T_{min} for T is reached

Simulated Annealing

Remarks:

- For $T\rightarrow\infty$, it is $p(\Delta I)\approx 1$. Thus almost all movements of vectors between clusters are allowed.
- For lower values of T fewer moves of type (B) (from lower to higher cost clusterings) are allowed.
- As $T\rightarrow 0$ the probability of moves of type (B) tends to zero.
- \bullet Thus as T decreases, it becomes more probable to reach clusterings that correspond to lower values of *.*
- Keeping T positive, we **ensure** a nonzero probability for escaping from a local minimum.
- We assume that the equilibrium state has been reached

"If for k successive random reassignments of vectors, C remains unchanged."

• A schedule for lowering *T* that guarantees convergence to the global minimum with probability 1, is

$$
T = \frac{T_{max}}{\ln(1+t)}
$$

• The method is computationally demanding.