
Clustering algorithms
Konstantinos Koutroumbas

Unit 11
– Deterministic annealing
– Genetic algorithms
– Density-based clustering algorithms
 (DBSCAN, DENCLUE)
– Spectral clustering

1 koutroum@noa.gr

mailto:koutroum@noa.gr

Deterministic Annealing (DA)
 It is inspired by the phase transition phenomenon observed when the

temperature of a material changes. It involves the parameter 𝛽 = 1/𝑇,
where 𝑇 is defined as in simulated annealing.

 The Goal of DA: Locate a set of representatives 𝒘𝑗, 𝑗 = 1,… ,𝑚 (𝑚 is fixed)

in appropriate positions so that a distortion function 𝐽 is minimized.
 𝐽 is defined as

𝐽 = −
1

𝛽
 𝑙𝑛 𝑒−𝛽𝑑(𝒙𝑖,𝒘𝑗)

𝑚

𝑗=1

𝑁

𝑖=1

 Then, the optimal value of a specific 𝒘𝑟 satisfies the following condition:

𝜕𝐽

𝜕𝒘𝑟
= 𝑃𝑖𝑟

𝜕𝑑(𝒙𝑖 , 𝒘𝑟)

𝜕𝒘𝑟

𝑁

𝑖=1
= 0

 where

𝑃𝑖𝑟 =
𝑒−𝛽𝑑(𝒙𝑖,𝒘𝑟)

 𝑒−𝛽𝑑(𝒙𝑖,𝒘𝑗)𝑚
𝑗=1

 𝑃𝑖𝑟 may be interpreted as the probability that 𝒙𝑖 belongs to 𝐶𝑟, 𝑟 = 1,… ,𝑚.

Assumption: 𝑑(𝒙,𝒘)
is a convex function of

𝒘 for fixed 𝒙.

Deterministic Annealing
Assumption: 𝑑(𝒙,𝒘) is a convex function of 𝒘 for fixed 𝒙.
Stages of the algorithm

• For 𝛽 ⟶ 0, all 𝑃𝑖𝑗’s are almost equal to
1

𝑚
, for all 𝒙𝑖’s, 𝑖 = 1,… ,𝑁. Thus

𝜕𝑑(𝒙𝑖 , 𝒘𝑟)

𝜕𝒘𝑟

𝑁

𝑖=1
= 0

 Since 𝑑(𝒙,𝒘) is a convex function, 𝑑 𝒙1, 𝒘𝑟 +⋯+ 𝑑 𝒙𝑁, 𝒘𝑟 is a convex
function. All representatives coincide with its unique global minimum (all the
data belong to a single cluster).

• As 𝛽 increases, it reaches a critical value where 𝑃𝑖𝑟’s “depart sufficiently”

from the uniform model. Then the representatives split up in order to
provide an optimal presentation of the data set at the new phase.

• The increase of 𝛽 continues until 𝑃𝑖𝑗 approach the hard clustering model

(for all 𝒙𝑖, 𝑃𝑖𝑟 ≈ 1 for a specific 𝑟, and 𝑃𝑖𝑗 ≈ 0, for 𝑗 ≠ 𝑟).

Deterministic Annealing
Application: For the squared Euclidean distance 𝑑 𝒙,𝒘 = 𝒙 − 𝒘 𝑇 𝒙 − 𝒘
it is

𝜕𝐽

𝜕𝒘𝑟
= 𝑃𝑖𝑟

𝜕𝑑(𝒙𝑖 , 𝒘𝑟)

𝜕𝒘𝑟

𝑁

𝑖=1
= 2 𝑃𝑖𝑟 𝒙𝑖 −𝒘𝑟

𝑁

𝑖=1
= 0 ⇔ 𝒘𝑟 =

 𝑃𝑖𝑟𝒙𝑖
𝑁
𝑖=1

 𝑃𝑖𝑟
𝑁
𝑖=1

Remarks:
• It is not guaranteed that it reaches the globally optimum clustering.

• If 𝑚 is chosen greater than the “actual” number of clusters, the algorithm

has the ability to represent the data properly.

This is coupled wrt 𝒘𝑟

Clustering using genetic algorithms (GA)
A few hints concerning genetic algorithms
 They have been inspired by the natural selection mechanism (Darwin).
 They consider a population of solutions of the problem at hand and they

perform certain operators on this, so that the new population of the same
size is improved compared to the previous one (wrt a criterion function 𝐹).

 The solutions are coded and the operators are applied on the coded
versions of the solutions.

The most well-known operators are:
Reproduction:
• It ensures that, in probability, the better (worse) a solution in the current

population is, the more (less) replicates it has in the next population.
• A simple implementation:

 For each solution 𝑠𝑖, out of the population of the 𝑝 solutions, compute
the associated criterion function value 𝐹 𝑠𝑖 .

 (it is assumed that the higher the value of 𝐹, the better the solution)

 Assign to each 𝑠𝑖 a probability 𝑝𝑖 = 𝐹 𝑠𝑖 / 𝐹 𝑠𝑗
𝑝
𝑗=1 .

 Perform sampling with replacement to produce the next solution
population.

Clustering using genetic algorithms (GA)
Crossover:
• It applies to the temporary population produced after the application of

the reproduction operator.
• It selects pairs of solutions randomly, splits them at a random position and

exchanges their second parts.

Mutation:
• It applies to the temporary population produced after the application of

the crossover operator.
• It selects randomly an element of a solution and alters it with some

probability.
• It may be viewed as a way out of getting stuck in local minima.

 Aspects/Parameters that affect the performance of the algorithm

The coding of the solutions.
The number of solutions in a population, p.
The probability with which two solutions are selected for crossover.
The probability with which an element of a solution is mutated.

Clustering using genetic algorithms (GA)
 GA Algorithmic scheme
𝑡 = 0

Choose an initial population 𝑡 of solutions.
Repeat
• Apply reproduction on 𝑡 and let𝑡

′ be the resulting temporary
population.

• Apply crossover on 𝑡
′ and let 𝑡

′′ be the resulting temporary population.
• Apply mutation on 𝑡

′′ and let 𝑡+1 be the resulting population.
• 𝑡 = 𝑡 + 1

Until a termination condition is met.

Return
• either the best solution of the last population,
• or the best solution found during the evolution of the algorithm.

Clustering using genetic algorithms (GA)
 Genetic Algorithms in Clustering
 The characteristics of a simple GA hard clustering algorithm suitable for
 compact clusters, whose number m is fixed, is discussed next.

A (not unique) way to code a solution is via the cluster representatives.

 𝒘1, 𝒘2, … ,𝒘𝑚

The cost function in use is

𝐽 = 𝑢𝑖𝑗𝑑(𝒙𝑖 , 𝒘𝑗)
𝑁

𝑖=1

where

𝑢𝑖𝑗 =
1, 𝑖𝑓𝑑 𝒙𝑖 , 𝒘𝑗 = 𝑚𝑖𝑛𝑘=1,…,𝑚𝑑 𝒙𝑖 , 𝒘𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑖 = 1,… ,𝑁

The allowable cut points for the crossover operator are between different
representatives.
The mutation operator selects randomly a coordinate and decides
randomly to add a small random number to it.

The criterion function can
be defined e.g., as

𝐹 𝑠𝑖 = 𝑒−𝐽 𝑠𝑖

Clustering using genetic algorithms (GA)
 Remark:
 An alternative to the above scheme results if prior to the application of

the reproduction operator, the hard clustering algorithm (GHAS), described
in a previous lecture, runs 𝑝 times, each time using a different solution of
the current population as the initial state. The 𝑝 resulting solutions
constitute the population on which the reproduction operator will be
applied.

Density-based algorithms for large data sets
 These algorithms:
 Consider clusters as regions in the l-dimensional space that are “dense” in

points of 𝑋.

 Have, in principle, the ability to recover arbitrarily shaped clusters
 (however, difficulties may arise in the case where the clusters differ in terms of their

 density).

 Handle efficiently outliers.

 Have time complexity less than 𝑂 𝑁2 .

Typical density-based algorithms are:
• The DBSCAN algorithm.
• The DBCLASD algorithm.
• The DENCLUE algorithm.

Density-based algorithms for large data sets
Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
Algorithm

The “density” around a point 𝒙 is estimated as the number of points in 𝑋 that
fall inside a specific region of the 𝑙-dimensional space surrounding 𝒙.

Notation
• 𝑉𝜀 𝒙 is the hypersphere of radius 𝜀 (user-defined parameter) centered at 𝒙.

• 𝑁𝜀 𝒙 the number of points of 𝑋 lying in 𝑉𝜀 𝒙 .

• 𝑞 is the minimum number of points of 𝑋 that must be contained in 𝑉𝜀 𝒙 , in

order for 𝒙 to be considered an “interior” point of a cluster.

Definitions
1. A point 𝒚 is directly density reachable from a point 𝒙 ∈ 𝑋 if
 (i) 𝒚 ∈ 𝑉𝜀 𝒙
 (ii) 𝑁𝜀 𝒙 ≥ 𝑞 (fig. (a)).
2. A point 𝒚 is density reachable from a point 𝒙 ∈ 𝑋 if there is a sequence of

points 𝒙1, 𝒙2, … , 𝒙𝑝 ∈ 𝑋, with 𝒙1 = 𝒙, 𝒙𝑝 = 𝒚, such that 𝒙𝑖+1 is directly
density reachable from 𝒙𝑖 (fig. (b)).

Density-based algorithms for large data sets
DBSCAN Algorithm (cont.)
3. A point 𝒙 is density connected to a point 𝒚 ∈ 𝑋 if there exists 𝒛 ∈ 𝑋 such
 that both 𝒙 and 𝒚 are density reachable from 𝒛 (fig. (c)).

Example:

Assuming that 𝑞 = 5,

(a) 𝒚 is directly density
reachable from 𝑥, but not vice
versa,

(b) 𝒚 is density reachable from 𝑥,
but not vice versa, and

(c) 𝒙 and 𝒚 are density
connected (in addition, 𝒚 is
density reachable from 𝒙, but
not vice versa).

Density-based algorithms for large data sets
DBSCAN Algorithm (cont.)
4. A cluster 𝐶 in DBSCAN is defined as a nonempty subset of 𝑋 satisfying
 the following conditions:
• If 𝒙 belongs to 𝐶 and 𝒚 ∈ 𝑋 is density reachable from 𝒙, then 𝒚 ∈ 𝐶.
• For each pair (𝒙, 𝒚) ∈ 𝐶, 𝒙 and 𝒚 are density connected.

5. Let 𝐶1, … , 𝐶𝑚 be the clusters in 𝑋. The set of points that are not connected
 in any of the 𝐶1, … , 𝐶𝑚 is known as noise.

6. A point 𝒙 is called a core (noncore) point if it has at least (less than) 𝑞
 points in its neighborhood.
 A noncore point may be either
• a border point of a cluster (that is, density reachable from a core point)

or
• a noisy point (that is, not density reachable from other points in 𝑋).

Density-based algorithms for large data sets
DBSCAN Algorithm (cont.)

Proposition 1: If 𝒙 is a core point and 𝐷 is the set of points in 𝑋 that are
density reachable from x, then 𝐷 is a cluster.

Proposition 2: If 𝐶 is a cluster and 𝒙 is a core point in 𝐶, then 𝐶 equals to the
set of the points 𝒚 ∈ 𝑋 that are density reachable from 𝒙.

Therefore: A cluster is uniquely determined by any of its core points.

Notation
• 𝑋𝑢𝑛 is the set of points in 𝑋 that have not been considered yet.
• 𝑚 denotes the number of clusters.

Density-based algorithms for large data sets
DBSCAN Algorithm (cont.)
DBSCAN Algorithm
 Set 𝑋𝑢𝑛 = 𝑋
 Set 𝑚 = 0
 While 𝑋𝑢𝑛 ≠ ∅ do

• Arbitrarily select a 𝒙 ∈ 𝑋𝑢𝑛

• If 𝒙 is a noncore point then
Mark 𝒙 as noise point
 𝑋𝑢𝑛 = 𝑋𝑢𝑛 − 𝒙

• End if

• If 𝒙 is a core point then
 𝑚 = 𝑚 + 1
 Determine all density-reachable points 𝒚 ∈ 𝑋 from 𝒙.
 Assign 𝒙 and the previous points to the cluster 𝐶𝑚. The border points
 among them that may have been marked as “noise” are also
 assigned to 𝐶𝑚.
 𝑋𝑢𝑛 = 𝑋𝑢𝑛 − 𝐶𝑚

• End {if}
 End {while}

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Clustering – Density-based algorithms

Clusters are recovered as follows:
•Start a new cluster 𝐶 by choosing a data point 𝒙.
•Assign all the data points that lie in the neighborhood of 𝒙 to the same cluster.
•Repeat recursively the previous step until all neighboring points of ALL 𝒙 ∈ 𝐶 are
assigned to 𝐶.

Prerequisite: Definition of
the neighborhood size

Density-based algorithms for large data sets
DBSCAN Algorithm (cont.)
Important notes:
• If a border point 𝒚 of a cluster 𝐶 is selected, it will be marked initially as a

noise point. However, when (a) a core point 𝒙 in 𝐶 is selected later on, and
(b) 𝒚 is identified as a density-reachable point from 𝒙 then 𝒚 will assigned to
𝐶.

• If an actual noise point 𝒚 is selected, it will be marked as such and since it is
not density reachable by any of the core points in 𝑋, its “noise” label will
remain unaltered.

Remarks:
• The parameters 𝜀 and 𝑞 influence significantly the performance of DBSCAN.

These should be selected such that the algorithm is able to detect the least
“dense” cluster (experimentation with several values for 𝜀 and 𝑞 should be
carried out).

• Implementation of DBSCAN using 𝑅∗-tree data structure can achieve time
complexity of 𝑂 𝑁 log 𝑁2 for low-dimensional data sets.

• DBSCAN is not well suited for cases where clusters exhibit significant
differences in density as well as for applications of high-dimensional data.

Density-based algorithms for large data sets
DENsity-based CLUstEring (DENCLUE) Algorithm
Definitions
The influence function 𝑓𝒚(𝒙) for a point 𝒚 ∈ 𝑋 is a positive function that
 decays to zero as 𝒙 “moves away” from 𝒚 (𝑑(𝒙, 𝒚) → ∞). Typical examples
 are:

𝑓𝒚 𝒙 =
1, 𝑖𝑓 𝑑 𝒙, 𝒚 < 𝜎
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑓𝒚 𝒙 = 𝑒
−
𝑑(𝒙,𝒚)2

2𝜎2

where 𝜎 is a user-defined function.

Τhe density function based on 𝑋 is defined as (Recall the Parzen windows):

𝑓𝛸 𝒙 = 𝑓𝒙𝑖 𝒙
𝑁

𝑖=1

Density-based algorithms for large data sets
DENsity-based CLUstEring (DENCLUE) Algorithm
Definitions
The influence function 𝑓𝒚(𝒙) for a point 𝒚 ∈ 𝑋 is a positive function that
 decays to zero as 𝒙 “moves away” from 𝒚 (𝑑(𝒙, 𝒚) → ∞). Typical examples
 are:

𝑓𝒚 𝒙 =
1, 𝑖𝑓 𝑑 𝒙, 𝒚 < 𝜎
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, 𝑓𝒚 𝒙 = 𝑒
−
𝑑(𝒙,𝒚)2

2𝜎2

where σ is a user-defined function.

Τhe density function based on 𝑋 is defined as (Remember the Parzen
 windows):

𝑓𝛸 𝒙 = 𝑓𝒙𝑖 𝒙
𝑁

𝑖=1

The Goal:
(a) Identify all “significant” local maxima, 𝒙𝑗

∗, 𝑗 = 1,… ,𝑚, of 𝑓𝛸 𝒙

(b) Create a cluster 𝐶𝑗 for each 𝒙𝑗
∗ and assign to 𝐶𝑗 all points 𝒙 of 𝑋 that lie

within the “region of attraction” of 𝒙𝑗
∗.

Density-based algorithms for large data sets
The DENCLUE Algorithm (cont.)
Two clarifications
• The region of attraction of 𝒙𝑗

∗ is defined as the set of points 𝒙 ∈ 𝑅𝑙 such that

if a “hill-climbing” (such as the steepest ascent) method is applied on
𝑓𝛸 𝒙 , initialized by 𝒙, it will terminate arbitrarily close to 𝒙𝑗

∗.

• A local maximum is considered as significant if 𝑓𝛸 𝒙𝑗
∗ ≥ 𝜉 (𝜉 is a user-

defined parameter).

Approximation of 𝑓𝛸 𝒙

𝑓𝛸 𝒙 = 𝑓𝒙𝑖 𝒙
𝑁

𝑖=1
≈ 𝑓𝒙𝑖 𝒙

𝒙𝑖∈𝑌(𝒙)

where 𝑌(𝒙) is the set of points in 𝑋 that lie “close” to 𝒙.

The above framework is used by the DENCLUE algorithm.

Density-based algorithms for large data sets
The DENCLUE Algorithm (cont.)
DENCLUE algorithm
• Preclustering stage (identification of regions dense in points of 𝑋)
 Apply an 𝑙-dimensional grid of edge-length 2𝜎 in the 𝑅𝑙 space.
 Determine the set 𝐷𝑝 of the hypercubes that contain at least one point

of 𝑋.
 Determine the set 𝐷𝑠𝑝(⊂ 𝐷𝑝) that contains the “highly populated” cubes

of 𝐷𝑝 (that is, cubes that contain at least 𝜉𝑐(> 1) points of 𝑋).
 For each 𝑐 ∈ 𝐷𝑠𝑝 define a connection with all neighboring cubes 𝑐𝑗 in 𝐷𝑝

for which 𝑑(𝒎𝑐 ,𝒎𝑐𝑗) ≤ 4𝜎, where 𝒎𝑐 ,𝒎𝑐𝑗 are the means of 𝑐 and 𝑐𝑗,

respectively.

• Main stage
 Determine the set 𝐷𝑟 that contains:
the highly populated cubes and
the cubes that have at least one connection with a highly populated
cube.

2σ

Density-based algorithms for large data sets
DENCLUE algorithm (cont.)
• Main stage (cont.)

 For each point 𝒙 in a cube 𝑐𝐷𝑟
Determine 𝑌(𝒙) as the set of points of 𝑋 that belong to cubes 𝑐𝑗 in 𝐷𝑟

such that the mean values of 𝑐𝑗’s lie at distance less than 𝜆 ∙ 𝜎 from 𝒙

(typically 𝜆 = 4).
Apply a hill climbing method on 𝑓𝛸 𝒙 = 𝑓𝒙𝑖 𝒙𝒙𝑖∈𝑌(𝒙)

 starting from 𝒙

and let 𝒙∗ be the local maximum to which the method converges.
 If 𝒙∗ is a significant local maximum (𝑓 𝑋(𝒙∗) 𝜉) then
If a cluster 𝐶 associated with 𝒙∗ has already been created then

o 𝒙 is assigned to 𝐶
Else

o Create a cluster 𝐶 associated with 𝒙∗
o Assign 𝒙 to 𝐶

End if
 End if

 End for

2σ

Density-based algorithms for large data sets
The DENCLUE Algorithm (cont.)

Remarks:
• Shortcuts allow the assignment of points to clusters, without having to

apply the hill-climbing procedure.

• DENCLUE is able to detect arbitrarily shaped clusters.

• The algorithm deals with noise very satisfactory.

• The worst-case time complexity of DENCLUE is 𝑂(𝑁 log 𝑁2).

• Experimental results indicate that the average time complexity is 𝑂(log2𝑁).

• It works efficiently with high-dimensional data.

Spectral clustering
Spectral clustering is based on graph theory concepts.

Rationale: It actually maps the data from their original space, where they may
form arbitrarily-shaped clusters, to a new space, where (their images) form
compact clusters.

Main stages:
 Definition of a similarity graph 𝐺 based on the given data set 𝑋.
 Utilization of the Laplacian matrix 𝐿 associated with 𝐺.
 Mapping of the data set to a space spanned by some eigenvectors of 𝐿.
 Performing clustering on the images of the data in the transformed space.

In principle, spectral clustering is able to recover arbitrarily shaped clusters
(see discussion later).

Spectral clustering
Similarity graph
- Data set 𝑋 = 𝒙1, 𝒙2, … , 𝒙𝑁
- Similarity graph 𝐺 = 𝑉, 𝐸

Definition of a similarity graph
About 𝑉
• The set 𝑉 consists of 𝑁 vertices/nodes, 𝑣1, 𝑣2, … , 𝑣𝑁
• Each vertex 𝑣𝑖 ∈ 𝑉 corresponds to a 𝒙𝑖 ∈ 𝑋, 𝑖 = 1, … ,𝑁.

About 𝐸
Various scenarios lead to various graphs:
(a) The 𝜀-neighborhood graph:

 An edge 𝑒𝑖𝑗 is added between vertices 𝑣𝑖 and 𝑣𝑗, if 𝑑 𝒙𝑖 , 𝒙𝑗 < 𝜀.

 Usually it is considered as an unweighted graph (it is 𝑤𝑖𝑗 = 1, for all 𝑒𝑖𝑗‘s).

𝑋 = 𝒙1, 𝒙2, … , 𝒙𝑁
𝑉 = 𝑣1, 𝑣2, … , 𝑣𝑁

By convention,
𝑤𝑖𝑗 = 0, implies

absence of 𝑒𝑖𝑗.

We consider only
undirected graphs.

Spectral clustering
Similarity graph
Definition of a similarity graph
About 𝐸
(b) The 𝑘-nearest neighbor graph:
 An edge 𝑒𝑖𝑗 is added between vertices 𝑣𝑖 and 𝑣𝑗, if 𝑣𝑖 is among the 𝑘-

nearest neighbors of 𝑣𝑗 OR vice versa.

 Each 𝑒𝑖𝑗 is weighted by the similarity between 𝒙𝑖 and 𝒙𝑗.

(c) The mutual 𝑘-nearest neighbor graph:
 An edge 𝑒𝑖𝑗 is added between vertices 𝑣𝑖 and 𝑣𝑗, if 𝑣𝑖 is among the 𝑘-

nearest neighbors of 𝑣𝑗 AND vice versa.

 Each 𝑒𝑖𝑗 is weighted by the similarity between 𝒙𝑖 and 𝒙𝑗.

(d) The fully connected graph:
 All possible edges 𝑒𝑖𝑗 are added in the graph.

 Each 𝑒𝑖𝑗 is weighted by the similarity between 𝒙𝑖 and 𝒙𝑗, e.g.,

 𝑠 𝒙𝑖 , 𝒙𝑗 = exp (−
𝒙𝑖−𝒙𝑗

2

2𝜎2)

Spectral clustering
Similarity graph
Example:
The data set consists of
(i) two “half moon”
clusters and
(ii) a compact cluster of
different density from
the previous ones.

The resulting graphs are
shown in the figure.

Spectral clustering
Graph Laplacians
• There are various definitions for graph Laplacian matrix.
• All such matrices share some properties that allow their exploitation in the

frame of clustering.

Some definitions:
- Weighted adjacency matrix:

𝑊 = [𝑤𝑖𝑗]𝑁×𝑁

- Degree of a vertex 𝑣𝑖:

𝑑𝑖 = 𝑤𝑖𝑗 ,
𝑁

𝑗=1
𝑖 = 1,… ,𝑁

- Degree matrix:

𝐷𝑁×𝑁 = 𝑑𝑖𝑎𝑔 𝑑1, 𝑑2, … , 𝑑𝑁 =
𝑑1 ⋯ 0
0 ⋱ 0
0 ⋯ 𝑑𝑁 𝑁×𝑁

- (Unnormalized) graph Laplacian matrix:
𝐿𝑁×𝑁 = 𝐷 −𝑊

𝑤𝑖𝑗 is the weight of the

edge connecting 𝑣𝑖 and 𝑣𝑗.

Spectral clustering
Graph Laplacians
Some results for the unnormalized graph Laplacian 𝐿:
1. ∀𝒙 = [𝑥1, … , 𝑥𝑁]

𝑇∈ 𝑅𝑁 it is

𝒙𝑇𝐿𝒙 =
1

2
 𝑤𝑖𝑗(𝑥𝑖 − 𝑥𝑗)

2
𝑁

𝑗=1

𝑁

𝑖=1

2. 𝐿 is symmetric and positive semidefinite.
3. The smallest eigenvalue of 𝐿 is 0.
4. 𝐿 has 𝑁 non-negative real-valued eigenvalues 0 = 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤ 𝜆𝛮 .

5. Let 𝐺 be an undirected graph with nonnegative weights. Then the
multiplicity 𝑘 of the zero eigenvalue equals to the number of the connected
components 𝐴1, … , 𝐴𝑘 , of the graph. In addition, the eigenspace of the zero
eigenvalues is spanned by the (𝑁-dimensional) indicator vectors of those
components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
.

The indicator vector 𝟏𝐴𝑖
 has all of its components

equal 0 except those corresponding to the points
that belong to the 𝑘-th connected component.,

which are equal to 1.

Spectral clustering
Graph Laplacians: Some results for the unnormalized graph Laplacian 𝐿:
5. Let 𝐺 be an undirected graph with nonnegative weights (𝑤𝑖𝑗 ≥ 0). Then the multiplicity 𝑘 of

the zero eigenvalue equals to the number of the connected components 𝐴1, … , 𝐴𝑘 , of the
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (𝑁-dimensional)
indicator vectors of those components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
.

- The 𝑘 = 1 case (connected graph): It is

0 = 𝐿 − 𝜆Ι =

𝑑1 − 𝜆 −𝑤12

−𝑤12 𝑑2 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
−𝑤1𝑁 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁 − 𝜆

=

−𝜆 −𝑤12

−𝜆 𝑑2 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
−𝜆 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁 − 𝜆

=

−𝜆

1 −𝑤12

1 𝑑2 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
1 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁 − 𝜆

= −𝜆

1 −𝑤12

0 𝑑2 + 𝑤12 − 𝜆

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁 + 𝑤1𝑁

⋮ ⋮
0 −𝑤2𝑁 + 𝑤12

⋱ ⋮
⋯ 𝑑𝑁 + 𝑤1𝑁 − 𝜆

= −𝜆
𝑑2 + 𝑤12 − 𝜆 ⋯ −𝑤2𝑁 + 𝑤1𝑁

⋮ ⋱ ⋮
−𝑤2𝑁 + 𝑤12 ⋯ 𝑑𝑁 + 𝑤1𝑁 − 𝜆

⟺ 𝜆1 = 0, 𝜆2, … 𝜆𝛮 > 0

Thus, multiplicity of the zero eigenvalue is 1.

The associated eigenvector is the 𝟏,since 𝟎 = 0 ∙ 𝟏 = 𝐿 ∙ 𝟏

𝑑𝑖 = 𝑤𝑖𝑗
𝑁
𝑗=1 , 𝑤𝑖𝑖 = 0

 𝑑𝑖 = 𝑤𝑖𝑗
𝑁
𝑖=1

Spectral clustering
Graph Laplacians: Some results for the unnormalized graph Laplacian 𝐿:
5. Let 𝐺 be an undirected graph with nonnegative weights (𝑤𝑖𝑗 ≥ 0). Then the multiplicity 𝑘 of

the zero eigenvalue equals to the number of the connected components 𝐴1, … , 𝐴𝑘 , of the
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (𝑁-dimensional)
indicator vectors of those components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
.

- The 𝑘 = 1 case (connected graph):

- The associated eigenvector is the 𝟏,since 𝟎 = 0 ∙ 𝟏 = 𝐿 ∙ 𝟏

𝟎 = 0 ∙ 𝟏 = 0 ∙

1
1
⋮
1

=

𝑑1 −𝑤12

−𝑤12 𝑑2

⋯ −𝑤1𝑁

⋯ −𝑤2𝑁

⋮ ⋮
−𝑤1𝑁 −𝑤2𝑁

⋱ ⋮
⋯ 𝑑𝑁

1
1
⋮
1

𝑑𝑖 = 𝑤𝑖𝑗
𝑁
𝑗=1 , 𝑤𝑖𝑖 = 0

Spectral clustering
Graph Laplacians: Some results for the unnormalized graph Laplacian 𝐿:
5. Let 𝐺 be an undirected graph with nonnegative weights (𝑤𝑖𝑗 ≥ 0). Then the multiplicity 𝑘 of

the zero eigenvalue equals to the number of the connected components 𝐴1, … , 𝐴𝑘 , of the
graph. In addition, the eigenspace of the zero eigenvalue is spanned by the (𝑁-dimensional)
indicator vectors of those components, 𝟏𝐴1

, … , 𝟏𝐴𝑘
.

- The 𝑘 > 1 case (𝑘 connected components):
• Considering each connected component individually, the 𝑖-th component

has its own associated Laplacian 𝐿𝑖
• Then the Laplacian for the whole graph can be written as

𝐿 =
𝐿1

⋱
𝐿𝑘

• Since, the multiplicity of the zero eigenvalue is 1 for each 𝐿𝑖 ⟹

 the multiplicity of the zero eigenvalue is 𝑘 for 𝐿.
• Denoting 𝐴1 = 𝑛1, 𝟏𝐴1

 has its first 𝑛1 (resp. remaining) components

equal to 1(resp. 0), 𝟏𝐴1
= [1,1,… , 1,0,0, … , 0]𝑇. Then,

𝟎𝑛1×1 = 0 ∙ 𝟏𝑛1×1 = 𝐿1 ∙ 𝟏𝑛1×1 ⇒ 𝟎𝑁×1 = 0 ∙ 𝟏𝑨𝟏,𝑁×1 = 𝐿 ∙ 𝟏𝑁×1

The spectrum of 𝐿 is
given by the union of

the spectra of 𝐿𝑖‘s.

Spectral clustering
Unnormalized spectral clustering algorithm
Input: (a) Similarity matrix 𝑆 ∈ 𝑅𝑁×𝑁, (b) the number of clusters 𝑚

• Construct a similarity graph with weighed adjacency matrix 𝑊.
• Compute the unnormalized Laplacian 𝐿.
• Compute the first 𝑚 (column) eigenvectors of 𝐿, 𝒖1, … , 𝒖𝑚.
• Stack 𝒖1, … , 𝒖𝑚 on an 𝑁 ×𝑚 matrix 𝑈.
• Represent each data vector 𝒙𝑖 by the 𝑖-th row 𝒚𝑖 of 𝑈.
• Cluster the points 𝒚𝑖 ∈ 𝑅𝑚, 𝑖 = 1, … ,𝑁, using e.g., the 𝑘-means algorithm,

into clusters 𝐶1′, 𝐶2′, … , 𝐶𝑚′.

Output: Clusters 𝐶1, 𝐶2, … , 𝐶𝑚, with 𝐶𝑖 = {𝒙𝑗: 𝒚𝑗 ∈ 𝐶𝑖′}

Spectral clustering
Unnormalized spectral clustering algorithm
Example:
Data set 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5
Similarity graph:
 𝐺 = 𝑉, 𝐸 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 , 𝑒13, 𝑒24, 𝑒25, 𝑒45)
Nodes degree: 𝑑1 = 𝑤13, 𝑑2 = 𝑤24 + 𝑤25, 𝑑3 = 𝑤13
 𝑑4 = 𝑤24 +𝑤45, 𝑑5 = 𝑤25 +𝑤45
Laplacian of the whole graph:
𝐿 = 𝐷 −𝑊

=

 𝑤13 0
 0 𝑤24 +𝑤25

 −𝑤13 0 0
 0 −𝑤24 −𝑤25

−𝑤13 0
0 −𝑤24

0 −𝑤25

 𝑤13 0 0
 0 𝑤24 +𝑤45 −𝑤45

 0 −𝑤45 𝑤25 +𝑤45

𝐿 − 𝜆𝐼 = ⋯ = 𝜆2
2𝑤13 − 𝜆 0 0

0 2𝑤24 +𝑤45 − 𝜆 𝑤25 −𝑤45

0 𝑤24 −𝑤45 2𝑤25 + 𝑤45 − 𝜆
= 0 ⟺

𝜆 = 0 double root

𝑣1

𝑣3

𝑣2

𝑣4
𝑣5

𝑤13

𝑤24 𝑤25

𝑤45

𝐴1

𝐴2

Spectral clustering
Unnormalized spectral clustering algorithm
Example:
Data set 𝑋 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5
Corresponding eigenvectors 𝒆 (𝐿 ∙ 𝒆 = 0 ∙ 𝒆):

𝒖1 = [1,0,1,0,0]𝑇 and 𝒖2 = [0, 1,0,1,1]𝑇 since

 𝑤13 0
 0 𝑤24 +𝑤25

 −𝑤13 0 0
 0 −𝑤24 −𝑤25

−𝑤13 0
0 −𝑤24

0 −𝑤25

 𝑤13 0 0
 0 𝑤24 +𝑤45 −𝑤45

 0 −𝑤45 𝑤25 +𝑤45

∙

1
0
1
0
0

= 0 ∙

1
0
1
0
0

 𝑤13 0
 0 𝑤24 +𝑤25

 −𝑤13 0 0
 0 −𝑤24 −𝑤25

−𝑤13 0
0 −𝑤24

0 −𝑤25

 𝑤13 0 0
 0 𝑤24 +𝑤45 −𝑤45

 0 −𝑤45 𝑤25 +𝑤45

∙

0
1
0
1
1

= 0 ∙

0
1
0
1
1

𝑣1

𝑣3

𝑣2

𝑣4
𝑣5

𝑤13

𝑤24 𝑤25

𝑤45

𝐴1

𝐴2

Spectral clustering
Unnormalized spectral clustering algorithm
Example:

The eigenvectors corresponding to the zero eigenspace are
𝒖1 = [1,0,1,0,0]𝑇 and 𝒖2 = [0, 1,0,1,1]𝑇

The matrix 𝑈 =

1
0
1

0
1
0

0
0

1
1

≡
≡
≡

𝒚1
𝒚2

𝒚3

≡
≡

𝒚4

𝒚5

→
→
→

𝒙1
𝒙2
𝒙3

→
→

𝒙4
𝒙5

(1,0)

(0,1)

{𝒙1, 𝒙3}

{𝒙2, 𝒙4, 𝒙5}

𝑣1

𝑣3

𝑣2

𝑣4
𝑣5

𝑤13

𝑤24 𝑤25

𝑤45

𝐴1

𝐴2

Spectral clustering
Other Laplacian matrices

• Symmetric Laplacian matrix: 𝐿𝑠𝑦𝑚 = 𝐷−1/2 ∙ 𝐿 ∙ 𝐷−1/2

• Random walk Laplacian matrix: 𝐿𝑟𝑤 = 𝐷−1 ∙ 𝐿

All Laplacians share similar properties concerning the zero eigenvalue.
In (von Luxburg, 2007), it is suggested to use 𝐿𝑟𝑤.

Spectral clustering
Choice of the number of clusters

Example:
The ten smallest eigenvalues of 𝐿𝑟𝑤 for a 1-dim. four-clusters problem.

In the case where 𝑚 is not apriori known, it can be estimated by sorting the
Laplacian eigenvalues and determining the number of the first 𝑚 eigenvalues
that (a) are sufficiently close to 0 and (b) the 𝑚 + 1 differs significantly from
them.

