Clustering algorithms Konstantinos Koutroumbas

Unit 12

- Clust. algorithms for high dim. data sets
- Clustering combination

- What is a high-dimensionality space? Dimensionality l of the input space with $20 \le l \le few \ thousands$ indicate high-dimensional data sets.
- Problems of *considering simultaneously* all dimensions in high-dimensional data sets:
	- \triangleright "Curse of dimensionality". As a fixed number of points spread out in highdimensional spaces, they become almost equidistant (that is, the terms similarity and dissimilarity tend to become meaningless – alternatively, no clear structures are defined).
	- \triangleright Several dimensions may be irrelevant to the identification of the clusters (that is, the clusters usually are identified in subspaces of the original feature space).
- A way out: *Work on subspaces of dimension lower than .*
- \triangleright Main approaches:
	- \Box Dimensionality reduction clustering approach.
	- \Box Subspace clustering approach.

An example:

Dimensionality Reduction Clustering Approach

Main idea

- **Identify** an appropriate l' -dimensional space $H_{l'}$ ($l' < l$).
- Project the data points of X into $H_{l'}$.

The projection of an l -dimensional space to an l'-dimensional space (l' < l) is **uniquely** defined via an $l' \times l$ projection matrix A.

• Apply a clustering algorithm on the projections of the points of X into $H_{\mathcal{U}}$.

Identification of $H_{l'}$ may be carried out using either by:

- \triangleright Feature generation methods,
- \triangleright Feature selection methods,
- Random projections.

- Dimensionality Reduction Clustering Approach (cont.) Feature generation methods
- They produce **new features** via suitable **transformations** applied on the **original ones**.
- \triangleright Typical Methods in this category are: Principal component analysis (PCA). Singular value decomposition (SVD). Nonlinear PCA Robust PCA Independent comp. analysis (ICA).
- \triangleright In general, PCA and SVD methods
	- preserve the distances between the points in the high-dimensional space, when these are mapped to the lower-dimensional space.
	- produce compact representations (with reduced number of features) of the original high-dimensional feature space.
- In some cases feature generation is **applied** iteratively in cooperation with a clustering algorithm (k -means, EM).
- **Example 7 Filter** They are useful in cases where a significant number of features contributes to the identification of all physical clusters.
- They are useful when all clusters are **formed** in the same subspace of the feature space.

Principal Component Analysis (PCA)

Principal component analysis (**PCA**):

It **transforms** the original space to a new orthogonal space (of the **same dimensionality**) where the **features** are **uncorrelated**. Specifically**:** along the, so called, $1st$ principal axis the maximum possible variance of the data set is retained, along the 2nd one the maximum possible remained variance is retained etc.

Projecting on the first few principal axes space we achieve **dimensionality reduction**.

Principal Component Analysis - PCA

Principal Component Analysis (PCA)

Projection along the a_1 (1st) principal direction retains cluster separability.

Projection along the a_1 principal direction **DOES NOT** retain cluster separability.

- **Solution:** Principal component analysis (PCA)
- **Let** $X_{l \times N} = \begin{bmatrix} x_1 & x_2 & \cdots & x_N \end{bmatrix}$ and $Y_{l' \times N} = \begin{bmatrix} y_1 & y_2 & \cdots & y_N \end{bmatrix}$
- $-$ **Compute** $\boldsymbol{\mu}_{l\times 1} =$ 1 $\frac{1}{N}\sum_{i=1}^N \boldsymbol{x}_i$ $i=1$
- **Consider** $X'_{l \times N} = \begin{bmatrix} x_1 \mu & x_2 \mu & \cdots & x_N \mu \end{bmatrix}$
- **Perform** singular value decomposition (SVD) on X' taking

$$
X'_{l \times N} = U'_{l \times l} \cdot \Sigma'_{l \times N} \cdot V'^{T}_{N \times N}
$$

 $S = \{x \in R^l \colon x = \mu + B \cdot y\}$

- **Keep** the first *l'* singular values (as a consequence take also (a) the first *l'* columns of U' and (b) the first l' columns of $V' (\Leftrightarrow$ the first l' **rows** of $V'^T)$ and approximate X' as

$$
X^{\prime appr}_{l \times N} = U_{l \times l'} \cdot \Sigma_{l' \times l'} \cdot V^{T}_{l' \times N}
$$

- $B = U_{l \times l'}$ is the subspace basis and
- $Y_{l' \times N} = \Sigma_{l' \times l'} \cdot V^T$ $_{l' \times N}$ contains (in columns) the representations/ projections of the (shifted by μ) original data in the lower l' -dim. space.

Theorem: X'^{appr} , as computed before, is the **best approximation** of X' wrt the Frobenius norm, subject to the **constraint** that the rank of X'^{appr} is l' .

$$
||x - x'|| = \sum_{i=1}^{l} \sum_{j=1}^{N} (x_{ij} - x'_{ij})^2
$$

More on SVD

Let $X'_{l \times N} = \begin{bmatrix} x_1 - \mu & x_2 - \mu & \cdots & x_N - \mu \end{bmatrix}$, with $\mu_{l \times 1} = \frac{1}{N}$ $\frac{1}{N}\sum_{i=1}^N \boldsymbol{\mathcal{X}}_i$ $i=1$

In the expression ${X'}_{l \times N} = {U'}_{l \times l} \cdot {\Sigma'}_{l \times N} \cdot {V'}^{T}{}_{N \times N}$ $\Sigma{'}_{l\times N}$ (diagonal matrix) contains the **singular values** of $X{'}_{l\times N}$ in decreasing order in its main diagonal $(l < N)$

 $U'_{l \times l}$ contains in its columns the **eigenvectors** of $X'X'^{T}{}_{l \times l}$

 $V'_{N\times N}$ contains in its columns the eigenvectors of $X'^T X'_{N\times N}$

Let
\n
$$
-U' = [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_l] (\mathbf{u}_i\text{'s are } l\text{-dimensional column vectors})
$$
\n
$$
-V' = [\mathbf{v}_1 \quad \mathbf{v}_2 \quad \cdots \quad \mathbf{v}_N] \Rightarrow V'^T = \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_N^T \end{bmatrix} (\mathbf{v}_i\text{'s are } N\text{-dimensional column vectors})
$$
\nvectors and \mathbf{v}_i^T 's are $N\text{-dimensional row vectors}$)\n
$$
- \Sigma'_{lxN} = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_l & \vdots & 0 \end{bmatrix}
$$

More on SVD

Then

$$
X'_{l \times N} = U'_{l \times l} \cdot \Sigma'_{l \times N} \cdot {V'}^T_{N \times N}
$$

\n
$$
= [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_l] \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_l & \vdots & 0 \end{bmatrix} \begin{bmatrix} \mathbf{v}_1^T \\ \mathbf{v}_2^T \\ \vdots \\ \mathbf{v}_N^T \end{bmatrix}
$$

\n
$$
= [\mathbf{u}_1 \quad \mathbf{u}_2 \quad \cdots \quad \mathbf{u}_l] \begin{bmatrix} \sigma_1 \mathbf{v}_1^T \\ \sigma_2 \mathbf{v}_2^T \\ \vdots \\ \sigma_l \mathbf{v}_l^T \end{bmatrix} =
$$

\n
$$
\sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \cdots + \sigma_l \mathbf{u}_l \mathbf{v}_l^T = \sum_{i=1}^l \sigma_i \mathbf{u}_i \mathbf{v}_i^T
$$

Thus, X' is expressed as a sum of rank one matrices $\boldsymbol{u}_i \boldsymbol{v}_i{^T}$ each one weighted by its corresponding σ_i .

By **neglecting** the **terms** with "small" σ_i 's, we actually perform **dimensionality reduction**, or, in other words, we **determine** the **subspace** where the **data "actually live"**.

Dimensionality Reduction Clustering Approach (cont.)

Feature selection methods

- They identify the **original features** that are the main contributors to the formation of the clusters.
- The criteria used to **evaluate** the "goodness" of a specific subset of features follow either the (*)
	- Wrapper model (The clustering algorithm is first chosen and a set of features F_i is evaluated through the results obtained from the application of the algorithm to X, where for each point only the features in F_i are taken into account).
	- Filter model (The evaluation of a subset of features is carried out using intrinsic properties of the data, prior to the application of the clustering algorithm).
- They are useful when all clusters are **formed** in the same subspace of the feature space.

^(*) R. Kohani, G. John, Wrappers for feature subset selection, Artificial Intelligence, Vol. 97 (1-2), 1997

- Dimensionality Reduction Clustering Approach (cont.) Clustering using Random Projections:
- Here $H_{l'}$ is identified in a random manner.
- **Note:** The projection of an *l*-dimensional space to an *l'*-dimensional space $(l' < l)$ is uniquely defined via an $l' \times l$ projection matrix A.

Issues to be **addressed**:

(a) Proper estimate of ′. Estimates of ′ **guarantee** (in probability) that the distances between the points of X , in the original data space will be **preserved** (with some distortion) after the projection to a randomly chosen *l'*-dim. space, whose projection matrix is **constructed** via certain probabilistic rules

 Note: Preservation of distances **does not** necessarily **preserves** clusters.

- (b) **Definition** of the projection matrix A. Possible rules for constructing A are:
	- **1. Set** each entry of A equal to a value stemming from an *i.i.d.* zero mean, unit variance Gaussian distribution and then **normalize** each row to the unit length.
	- **2. Set** each entry of A equal to -1 or $+1$, with probability 0.5.

3. Set each entry of A equal to $+\sqrt{3}$, $-\sqrt{3}$ or 0, with probs $\frac{1}{6}$ 6 , 1 6 and $\frac{2}{3}$ 3 , resp.

Dimensionality Reduction Clustering Approach (cont.)

Having defined A :

- Project the points of X into $H_{l'}$
- Perform a clustering algorithm on the projections of the points of X into $H_{l'}$.

Problem: Different random projections **may lead** to totally different results.

Solution:

- \triangleright Perform several random projections $H_{l'}$.
- \triangleright Apply a clustering algorithm on the projections of X to each $H_{l'}$. **Combine** the clustering results and **produce** the final clustering.

A method in the above spirit is described next $(O(N^2))$.

Clustering using Random Projections

- **Select** ′ .
- Generate $A_1, ..., A_r$ different projection matrices using the (b.1) rule given above.
- **For** $s = 1$ to r
	- \triangleright **Run** GPrAS with normal pdfs for the s-th random projection of X.
	- **Compute** the probability that x_i belongs to the *j*-th cluster in the *s*-th projection, $P(C_j{}^s|\boldsymbol{x}_i)$, $i=1,...,N$, $j=1,...,m_s$.
	- **Create** the $N \times N$ similarity matrix $P^s = [P^s_{ij}]$, where P^s_{ij} is the probability that x_i and x_j belong to the same cluster, m_{S}

$$
P_{ij}^s = \sum_{q=1}^{m_s} P(C_q^s | \mathbf{x}_i) P(C_q^s | \mathbf{x}_j)
$$

 $m_{\rm s}$: number of clusters in the s-th projection.

• **End for**

- **Compute** the $N \times N$ average proximity matrix $P = [P_{ij}]$, so that P_{ij} is the **average** of P_{ij}^s 's, $s = 1, ..., r$.
- **Apply GAS** (actually its complete link version) on P.
- **Plot** the similarity between the closest pair of clusters at each iteration **versus** the number of iterations.
- **Select** the clustering that **corresponds** to the most abrupt change in the plot.

Subspace Clustering Approach

- This approach deals with the problem where clusters are **formed** in different subspaces of the feature space.
- The subspace clustering algorithms (SCA) **reveal** clusters as well as the subspaces where they reside.

An example:

Preliminaries:

- The data set $X=\{\boldsymbol{x}_i\in R^l, i=1,...,N\}$
- (Affine linear) Subspace S of R^l : It is defined via
	- a vector μ in S and
	- an $l \times l'$ (basis) matrix B $(l' < l)$
- as $S = \{ \pmb{x} \in R^l \colon \pmb{x} = \pmb{\mu} + B \mid \pmb{y} \}$, where $\pmb{y} \in R^{l'}$
- **Assuming** that all the data points of X lie in an l'-dimensional (affine) subspace S, in order to determine it, we need to find:
	- A vector $\mu \in S$
	- The dimensionality l' of S
	- The $l \times l'$ matrix B .

Vidal R., "Subspace Clustering", IEEE Transactions on Signal Processing, 28(2), 2011.

Basic assumption: In subspace clustering, the clusters formed by the data points "live" in subspaces of the original *l*-dimensional data space.

- the number of subspaces m
- The dimensionalities $l_1, l_2, ..., l_m$, of the subspaces $S_1, S_2, ..., S_m$

Usually, it is the case

 $S_j = \{x \in R^l : x = \mu_j + B_j \mid y\}$

O

O

that each subspace

contains a single cluster

- The basis matrices $B_1, B_2, ..., B_m$
- The points $\mu_1, \mu_2, ..., \mu_m$, of the subspaces $S_1, S_2, ..., S_m$
- The clusters $C_1, C_2, ..., C_m$.

Ways to tackle the problem

- Algebraic methods
- Spectral clustering methods
- Iterative cost function optimization methods (hard, probabilistic framework)

Iterative cost function optimization methods (hard framework)

The k -subspace algorithm

Assumption: The number of clusters m and the subspaces dimensionalities $l_1, l_2, ..., l_m$, are **known**. Let:

-
$$
U_{N \times m} = [u_{ij}]
$$
, where $u_{ij} = \begin{cases} 1, & x_i \in C_j \\ 0, & otherwise' \end{cases}$
\n- $B = \{B_1, B_2, ..., B_m\}$
\n- $\mu = \{\mu_1, \mu_2, ..., \mu_m\}$
\n- $Y = \{Y_1, ..., Y_m\}$, with $Y_j = \{y_i^j, i = 1, ..., N\}$ be the set of **projections** of the data points to the *j*-th subspace.

Iterative CFO methods (hard framework) - The k-subspace algorithm

Consider the cost function

$$
J(B, \mu, Y, U) = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} \|x_i - x'_i\|^2 = \sum_{i=1}^{N} \sum_{j=1}^{m} u_{ij} \|x_i - \mu_j - B_j y'_i\|^2
$$

 ${x'_i}^j = \boldsymbol{\mu}_j + B_j \boldsymbol{y}_i^j$: Projection

of x_i to the *j*-th subspace

This is **minimized** in a two-stage iterative fashion (recall k -means)

For fixed
$$
\mu'_j
$$
s, B'_j s, \mathbf{y}_i^j 's:
\n**Define** $u_{ij} =\begin{cases} 1, & if \ \|x_i - \mu_j - B_j \mathbf{y}_i^j\|^2 = min_{q=1,\dots,m} \|x_i - \mu_q - B_q \mathbf{y}_i^q\|^2 \\ 0, & otherwise \end{cases}$

For **fixed** u_{ij} 's: Solve the following \underline{m} independent problems min $\mu_{j,\left(B_{j}, \boldsymbol{y}_{i}^{j}\right) \rangle} \sum\nolimits_{\boldsymbol{\chi}_{i}: \boldsymbol{\chi}_{i j = 1}} \lVert \boldsymbol{\chi}_{i} - \boldsymbol{\mu}_{j} - B_{j} \boldsymbol{y}_{i}^{j} \rVert^{2}$ $x_i:u_{ij}=1$ $\equiv min$ μ_j , $\left(B_j, y_i^J\right)$ u_{ij} $\bigg\}$ u_{ij} \boldsymbol{N} $i=1$ $x_i - \mu_j - B_j y_i^j \rVert^2$ For **each** such problem

- (a) Fix $\mu'_j s$ and apply PCA, to estimate $B'_j s$, $y_i^{j} s$.
- (b) Fix $B'_j s$, $y_i^j s$ and apply the k-means rationale, to estimate $\boldsymbol{\mu}'_j s$.

Remark:

There are also subspace clustering methods (e.g., CLIQUE, ENCLUS) that "quantize" the region where the data belongs through the use of a grid. Then, clusters (at different subspaces) are defined through boxes that contain a significant number of data points.

- The data set $X=\{\boldsymbol{ x}_i\in R^l, i=1,...,N\}$

\n- Ensemble of clusterings of
$$
X: \mathcal{E} = \{R_1, R_2, \ldots, R_n\}
$$
 where $\mathcal{R}_i = \{C_i^1, C_i^2, \ldots, C_i^m\}$ C_i^j : the *j*-th cluster of the *i*-th clustering m_i : the number of clusters in the *i*-th clustering.
\n- ①
\n- ①
\n- ②
\n- ③
\n- ②
\n- ③
\n- ②
\n- ②
\n- ②
\n- ③
\n- ②
\n- ③
\n- ④
\n- ③
\n- ④
\n- ③
\n- ④
\n- ④
\n- ④
\n- ③
\n- ④
\n- ③
\n- ④
\n- ③
\n- ③
\n- ④
\n- ③
\n- ④

Example: Let $\mathcal{R}_i = \{ \mathcal{C}_i^1, \mathcal{C}_i^2, \mathcal{C}_i^3 \} = \{ \{x_1, x_2, x_6, x_{10} \}, \{x_3, x_4, x_7\}, \{x_5, x_8, x_9 \} \}$ Then $y_i = [1, 1, 2, 2, 3, 1, 2, 3, 3, 1].$

The two main issues in this framework are: **(A)** The **generation** of the **ensemble** of **clusterings (B)** The **combination** of the **clusterings**.

- *A. Generation of ensemble of clusterings*
- It involves two steps:
- (a) The choice of the subspace to project the data points of X .
- (b) The application of a clustering algorithm on the resulting projections.

General directions:

- All data, all features:
	- All *l* features and *all N* data points are used.
	- *Either* different algorithms are **applied**
	- *or* the same algorithm with different parameter values (e.g., in k-means, different number of cluster, or different initial conditions).
- All data, some features:
	- All N data points are used.
	- n data sets X_i are **formed** from X
		- *Either* by **selecting** a number of features (feature distributed clustering)
		- **Drepty by projecting onto a randomly chosen lower dimensional space.**
	- \bullet The same or different algorithms can be applied on the X_i 's.

A. Generation of ensemble of clusterings General directions:

- Some data, all features:
	- *All* features are **used**.
	- \cdot \boldsymbol{n} data sets X_i are **formed** from X using techniques like bootstrapping and sampling.
	- (Usually) the same algorithm is applied on the X_i 's.
	- The points that have not been selected to participate in X_i are **assigned** to their nearest cluster in $\mathcal{R}_i.$

B. Combination of clusterings **Problem:** Given $\mathcal{E} = \{R_1, R_2, ..., R_n\}$, determine the consensus clustering $\mathcal{F} = \{F_1, F_2, \dots, F_m\}.$

A useful tool in this direction is the co-association matrix \mathcal{C} . It is an $N \times N$ matrix $C = [c_{ij}]$ with $c_{ij} =$ n_{ij} \overline{n} where n_{ij} is the number of times where the *i*-th and the *j*-th points of *X* are **assigned** to the same cluster, among the *n* clusterings of \mathcal{E} .

- *B. Combination of clusterings*
- Three *main directions* are used:
- Co-association matrix based methods
- Graph-based methods
- Function optimization methods.

Co-association matrix based methods

- **Compute** the co-association matrix.
- **Use** it as a similarity matrix and **run** a hierarchical algorithm (single-link, complete-link etc)
- From the produced dendrogram **determine** the final clustering as the one having the largest lifetime.

Note: A large number of clusterings is **required**, in order to estimate more accurately the elements of C .

- *B. Combination of clusterings*
- Graph-based methods
- *Instance-based graph formulation* (IBGF)
- *Cluster-based graph formulation* (CBGF)
- *Hybric bipartite graph formulation* (HBGF)

- *B. Combination of clusterings*
- Graph-based methods
- *Instance-based graph formulation* (IBGF)
- *Cluster-based graph formulation* (CBGF)
- *Hybric bipartite graph formulation* (HBGF)
	- **Construct** a fully connected graph $G = (V, E)$ where
	- \triangleright Each vertex of V corresponds to a data point and
	- Each edge e_{ij} of E is **weighted** by c_{ij} (the (i, j) element of C).
	- **Partition** the graph into *m* disjoint subsets of vertices $V_1, V_2, ..., V_m$ such that
		- The sum of weights of the edges that connect vertices between any pair of two different subsets is **minimized** and
		- All V_j 's have approximately the same size.

Note: The normalized-cut and the Ratio-cut criteria can be used for partitioning the graph.

B. Combination of clusterings

Graph-based methods

• *Instance-based graph formulation* (IBGF)

Example: Consider a data set $X = \{x_1, x_2, x_3, x_4\}$ and assume that the co-

\n association matrix is \n
$$
C = \begin{bmatrix}\n c_{ij}\n \end{bmatrix}\n =\n \begin{bmatrix}\n 1 & 0.9 & 0.07 & 0.05 \\
0.9 & 1 & 0.03 & 0.02 \\
0.07 & 0.03 & 1 & 0.9 \\
0.05 & 0.02 & 0.9 & 1\n \end{bmatrix}\n \begin{bmatrix}\n C \text{ indicates that the physical clusters are}\n C_1 = \{x_1, x_2\},\n C_2 = \{x_3, x_4\}.\n \end{bmatrix}
$$
\n

Consider the **fully connected graph** with four vertices $v_1(x_1)$, $v_2(x_2)$,

 $\mathbf{v}_3(x_3)$, $\mathbf{v}_4(x_4)$, with the weight of each edge w_{ij} being equal to c_{ij} .

For the possible (equally-sized clusters) two-clusters graph partitions it is:

The partition with the smallest total weight of connecting edges corresponds to the physical clustering of the data set.

- *B. Combination of clusterings* Function optimization methods
- *Utility function optimization*
- *Normalized mutual information*
- *Mixture model formulation*

Here, the final clustering (also called median clustering) $\mathcal{F} = \{F_1, F_2, ..., F_m\}$, results from the optimization of an appropriate cost function.

- *B. Combination of clusterings* Function optimization methods
- *Utility function optimization (probabilistic arguments)*
- *Normalized mutual information function optimization (information theory ingredients)*
- *Mixture model formulation*

A function $U(\mathcal{F}',\mathcal{R}_i)$ is adopted, **measuring** the quality of a candidate median \mathcal{F}' against some other clustering $\mathcal{R}_i.$

The overall utility of
$$
\mathcal{F}'
$$
 on $\mathcal{E} = \{\mathcal{R}_1, \mathcal{R}_2, ..., \mathcal{R}_n\}$ is defined as
\n
$$
U(\mathcal{F}', \mathcal{E}) = \sum_{i=1}^n U(\mathcal{F}', \mathcal{R}_i)
$$

The final (median) clustering $\mathcal F$ results as

$$
\mathcal{F} = argmax_{\mathcal{F}'} U(\mathcal{F}', \mathcal{E})
$$

- *B. Combination of clusterings*
- Function optimization methods
- *Mixture model formulation*
- **Represent** the data points as follows

Note: The representations x'_i are discrete-valued.

- Define the probability function $P(x'; \Theta)$ as the (weighted) summation of m (*n*-dimensional) probability functions, *each one corresponding to a cluster*.
- Assuming independence among the components of x' , each n -dimensional probability function is **written** as the product of n one-dimensional prob. functions, each one **modeled** by a multinomial distribution.
- The **estimation** of the respective parameters is carried out via the utilization of the EM algorithm.

Multinomial distribution

 \cdot <u>Multinomial distribution $Mult(x|n, P))$ </u>

Discrete RV distribution

$$
\mathbf{x} = [x_1, x_2, ..., x_K]^T \mathbf{P} = [p_1, ..., p_K]^T: \sum_{i=1}^K p_i = 1
$$

 $\blacksquare 0 < p_i < 1, i = 1, ..., K,$ ■Sample space: $X = \{0, 1, ..., K\}$

-Outcome of the experiment: non-binary. No. of repetitions: n \mathbf{x}_i : number of times the *i*-th outcome occurs in the *n* repetitions \blacksquare It is

$$
\triangleright P(x) = {n \choose x_1, x_2, ..., x_K} \prod_{i=1}^{K} p_i^{x_i}
$$

s.t.
$$
x_1 + x_2 + ... + x_k = n
$$

\n $\mathcal{F}[x] = nP$
\n $\mathcal{F}[x] = nP_i(1 - P_i), i = 1, ..., K$
\n $\mathcal{F}[x_1, x_2, ..., x_K] = \frac{n!}{x_1! x_2! x_K!}$
\n $\mathcal{F}[x_2, x_3] = -nP_i P_j, i \neq j$