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Agglomerative Clustering Algorithms 
According to the mathematical tools used for their expression, agglomerative 
algorithms are divided into: 

• Algorithms based on matrix theory. 
• Algorithms based on graph theory. 

NOTE: In the sequel we consider only dissimilarity measures. 
 
 Algorithms based on matrix theory. 

• They take as input the 𝑁 × 𝑁 dissimilarity matrix 𝑃0 = 𝑃(𝑋). 
 

• At each level 𝑡 where two clusters 𝐶𝑖 and 𝐶𝑗 are merged to 𝐶𝑞, the 
dissimilarity matrix 𝑃𝑡 is extracted from 𝑃𝑡−1 by: 
 
Deleting the two rows and columns of 𝑃𝑡 that correspond to 𝐶𝑖 and 𝐶𝑗. 

 
Adding a new row and a new column that contain the distances of 

newly formed 𝐶𝑞 = 𝐶𝑖𝐶𝑗 from each of the remaining clusters 𝐶𝑠, via a 

relation of the form 
 𝑑(𝐶𝑞, 𝐶𝑠) = 𝑓(𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠), 𝑑(𝐶𝑖, 𝐶𝑗)) 



Agglomerative matrix theory based Clustering Algorithms 
•A number of distance functions comply with the following update equation 

 
𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 
 
Algorithms that follow the above equation are: 
 
 Single link (SL) algorithm (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 = 0, 𝑐 = −1/2). In this case 

 
  𝑑(𝐶𝑞, 𝐶𝑠) = min⁡{𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠)}  (2) 
 
 Complete link (CL) algorithm (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 = 0, 𝑐 = 1/2). In this 
case 

 
  𝑑(𝐶𝑞, 𝐶𝑠) = max⁡{𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠)} 
Remarks: 
• Single link forms clusters at low dissimilarities while complete link forms 

clusters at high dissimilarities. 
• Single link tends to form elongated clusters (chaining effect ) while complete 

link tends to form compact clusters. 
• The rest algorithms are compromises between these two extremes. 

(1) 

𝐶𝑞 = 𝐶𝑖𝐶𝑗 



Agglomerative matrix theory based Clustering Algorithms 
Example: 

(a) The data set 𝑋.  

(b) The single link 
algorithm dissimilarity 
dendrogram.  

(c) The complete link 
algorithm dissimilarity 
dendrogram. 
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  Weighted Pair Group Method Average (WPGMA) (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 =
0, 𝑐 = 0). In this case: 
 

         𝑑(𝐶𝑞, 𝐶𝑠) =
1

2
(𝑑(𝐶𝑖, 𝐶𝑠) ⁡+ ⁡𝑑(𝐶𝑗, 𝐶𝑠)) 

 
  Unweighted Pair Group Method Average (UPGMA) (𝑎𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗), 𝑎𝑗 =
𝑛𝑗/(𝑛𝑖 + 𝑛𝑗), 𝑏 = 0, 𝑐 = 0, where 𝑛𝑖 is the cardinality of 𝐶𝑖). In this case: 
 

          𝑑(𝐶𝑞, 𝐶𝑠) =
𝑛𝑖

𝑛
𝑖
+𝑛

𝑗
⁡
𝑑(𝐶𝑖, 𝐶𝑠) ⁡+

𝑛𝑗

𝑛
𝑖
+𝑛

𝑗

⁡𝑑(𝐶𝑗, 𝐶𝑠) 

 
  Unweighted Pair Group Method Centroid (UPGMC) (𝑎𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗),
𝑎𝑗 = 𝑛𝑗/(𝑛𝑖 + 𝑛𝑗), 𝑏 = −𝑛𝑖⁡

𝑛𝑗/(𝑛𝑖 + 𝑛𝑗)
2, 𝑐 = 0). In this case: 

 

𝑑𝑞𝑠 =
𝑛𝑖

𝑛𝑖 + 𝑛𝑗
𝑑𝑖𝑠 +

𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑑𝑗𝑠 −

𝑛𝑖𝑛𝑗

(𝑛𝑖+𝑛𝑗)
2 𝑑𝑖𝑗 

  
For the UPGMC, if 𝑑𝑖𝑗 is defined as the squared Euclidean distance between 
the means of 𝐶𝑖  and 𝐶𝑗,  
then it holds that  𝑑𝑞𝑠 = ||𝒎𝑞 −𝒎𝑠||

2, where 𝒎𝑞, 𝒎𝑠 are the means of 𝐶𝑞, 
𝐶𝑠, respectively. 

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗)

+ 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 
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  Weighted Pair Group Method Centroid (WPGMC) (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 =
− 1/4, 𝑐 = 0). In this case 

  𝑑𝑞𝑠 =
1

2
𝑑𝑖𝑠 +

1

2
⁡𝑑𝑗𝑠⁡–

1

4
𝑑𝑖𝑗 

    For WPGMC there are cases where 𝑑𝑞𝑠⁡max⁡{𝑑𝑖𝑠, 𝑑𝑗𝑠} (crossover) 
 

  Ward or minimum variance algorithm. Here the distance𝑑′
𝑖𝑗 between 𝐶𝑖 

and 𝐶𝑗 is defined as 

  𝑑′
𝑖𝑗 =

𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
⁡ ||𝒎𝑖 −𝒎𝑗||

2 

 

𝑑′
𝑞𝑠 can be expressed in terms of 𝑑′

𝑖𝑠,⁡𝑑′
𝑗𝑠, 𝑑′

𝑖𝑗 as 

𝑑′
𝑞𝑠 =

𝑛𝑖 + 𝑛𝑠 ⁡
𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠

𝑑′
𝑖𝑠 ⁡+

𝑛𝑗 + 𝑛𝑠

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠
𝑑′

𝑗𝑠⁡–
𝑛𝑠

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠
𝑑′

𝑖𝑗 

 
Remark: Ward’s algorithm forms 𝑡+1 by merging the two clusters that 
lead to the smallest possible increase of the total variance, i.e., 

𝐸𝑡 =   | 𝒙 −𝒎𝑟 |2
𝒙∈𝐶𝑟

𝑁−𝑡

𝑟=1
 

(3) 

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠)
+ 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 
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Example 3: Consider the following dissimilarity matrix (Euclidean 
distance) 
 
 
 
 
 
 All the algorithms produce the same sequence of clusterings shown 
above, yet at different proximity levels:  

 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, 

1={{x1, x2}, {x3}, {x4}, {x5}},  

2={{x1, x2}, {x3}, {x4, x5}}, 

3={{x1, x2, x3}, {x4, x5}},  

4={{x1, x2, x3, x4, x5}} 
























05.1253637

5.10162526

2516032

3625301

3726210

0P

SL CL WPGMA UPGMA WPGMC UPGMC Ward 

0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 0.5 

2 1.5 1.5 1.5 1.5 1.5 1.5 0.75 

3 2 3 2.5 2.5 2.25 2.25 1.5 

4 16 37 25.75 27.5 24.69 26.46 31.75 
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Example 3 (in detail): (a) The single-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = min⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 2 25 36 

{𝒙3} 2 0 16 25 

{𝒙4} 25 16 0 1.5 

{𝒙5} 36 25 1.5 0 

𝑃0: 

𝑃1: 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 2 25 36 

{𝒙3} 2 0 16 25 

{𝒙4} 25 16 0 1.5 

{𝒙5} 36 25 1.5 0 

𝑑 𝒙1, 𝒙2 , 𝒙3 = 
min⁡(𝑑 𝒙1 , 𝒙3 , 𝑑 𝒙2 , 𝒙3  

= min 2,3 = 2 

𝑑 𝒙1, 𝒙2 , 𝒙4 = 
min 26,25 = 25 

𝑑 𝒙1, 𝒙2 , 𝒙5 = 
min 37,36 = 36 

𝑑 𝒙1, 𝒙2 , 𝒙4, 𝒙5 = 
min 25,36 = 25 

𝑑 𝒙3 , 𝒙4, 𝒙5 = 
min 16,25 = 16 
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Example 3 (in detail): (a) The single-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = min⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 2 25 

{𝒙3} 2 0 16 

{𝒙4, 𝒙5} 25 16 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 16 

{𝒙4, 𝒙5} 16 0 

{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4, 𝒙5} 0 

𝑃2: 

𝑃3: 

𝑃4: 

𝑑 𝒙1, 𝒙2, 𝒙3 , 𝒙4, 𝒙5 = 
= min 25,16 = 16 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 2 25 

{𝒙3} 2 0 16 

{𝒙4, 𝒙5} 25 16 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 16 

{𝒙4, 𝒙5} 16 0 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎) 

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏) 

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓) 

3={{x1, x2, x3}, {x4, x5}}, (𝟐) 

4={{x1, x2, x3, x4, x5}}, (𝟏𝟔) 
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Example 3 (in detail): (b) The complete-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = max⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 3 26 37 

{𝒙3} 3 0 16 25 

{𝒙4} 26 16 0 1.5 

{𝒙5} 37 25 1.5 0 

𝑃0: 

𝑃1: 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1} 0 1 2 26 37 

{𝒙2} 1 0 3 25 36 

{𝒙3} 2 3 0 16 25 

{𝒙4} 26 25 16 0 1.5 

{𝒙5} 37 36 25 1.5 0 

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5} 

{𝒙1, 𝒙2} 0 3 26 37 

{𝒙3} 3 0 16 25 

{𝒙4} 26 16 0 1.5 

{𝒙5} 37 25 1.5 0 

𝑑 𝒙1, 𝒙2 , 𝒙3 = 
max⁡(𝑑 𝒙1 , 𝒙3 , 𝑑 𝒙2 , 𝒙3  

= max 2,3 = 3 

𝑑 𝒙1, 𝒙2 , 𝒙4 = 
max 26,25 = 26 

𝑑 𝒙1, 𝒙2 , 𝒙5 = 
max 37,36 = 37 

𝑑 𝒙1, 𝒙2 , 𝒙4, 𝒙5 = 
max 26,37 = 37 

𝑑 𝒙3 , 𝒙4, 𝒙5 = 
max 16,25 = 25 
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Example 3 (in detail): (b) The complete-link case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = max⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠)) 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 3 37 

{𝒙3} 3 0 25 

{𝒙4, 𝒙5} 37 25 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 37 

{𝒙4, 𝒙5} 37 0 

{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4, 𝒙5} 0 

𝑃2: 

𝑃3: 

𝑃4: 

𝑑 𝒙1, 𝒙2, 𝒙3 , 𝒙4, 𝒙5 = 
= max 37,25 = 37 

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2} 0 3 37 

{𝒙3} 3 0 25 

{𝒙4, 𝒙5} 37 25 0 

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5} 

{𝒙1, 𝒙2, 𝒙𝟑} 0 37 

{𝒙4, 𝒙5} 37 0 

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎) 

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏) 

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓) 

3={{x1, x2, x3}, {x4, x5}}, (𝟑) 

4={{x1, x2, x3, x4, x5}}, (𝟑𝟕) 
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Monotonicity and crossover: 
 For the following dissimilarity matrix 
 
 
 
 
  

 

the dissimilarity dendrograms produced by single link, 
complete link and UPGMC (the same result is 
produced if WPGMC is employed) are:  





















02.17.23.2

2.105.24.2

7.25.208.1

3.24.28.10

P

{𝒙1, 𝒙2, 𝒙3, 𝒙4} is 
formed at lower 
dissimilarity level 
than {𝒙1, 𝒙2} 
(crossover) 
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Example (in detail): The WPGMC case  
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑𝑞𝑠 =

1

2
𝑑𝑖𝑠 +

1

2
𝑑𝑗𝑠 −

1

4
𝑑𝑖𝑗) 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} 

{𝒙1} 0 1.8 2.4 2.3 

{𝒙2} 1.8 0 2.5 2.7 

{𝒙3} 2.4 2.5 0 1.2 

{𝒙4} 2.3 2.7 1.2 0 

𝑃0: 

𝑃1: 

𝑑 3,4 ,1 = 1
2𝑑3,1 +

1
2𝑑4,1 −

1
4𝑑3,4 

= 1
22.4 + 1

22.3 − 1
41.2 = 2.05 

{𝒙1} {𝒙2} {𝒙3} {𝒙4} 

{𝒙1} 0 1.8 2.4 2.3 

{𝒙2} 1.8 0 2.5 2.7 

{𝒙3} 2.4 2.5 0 1.2 

{𝒙4} 2.3 2.7 1.2 0 

𝑑 3,4 ,2 = 1
2𝑑3,2 +

1
2𝑑4,2 −

1
4𝑑3,4 

= 1
22.5 + 1

22.7 − 1
41.2 = 2.3 

{𝒙1} {𝒙2} {𝒙3, 𝒙4} 

{𝒙1} 0 1.8 2.05 

{𝒙2} 1.8 0 2.3 

{𝒙3, 𝑥𝟒} 2.05 2.3 0 

{𝒙1} {𝒙2} {𝒙3, 𝒙4} 

{𝒙1} 0 1.8 2.05 

{𝒙2} 1.8 0 2.3 

{𝒙3, 𝑥𝟒} 2.05 2.3 0 
𝑑 1,2 , 3,4 = 1

2𝑑1,(3,4)⁡ +
1
2𝑑2,(3,4)⁡ −

1
4𝑑1,2 

= 1
22.05 + 1

22.3 − 1
41.8 = 1.275 

𝑃2: 
{𝒙1, 𝒙𝟐} {𝒙3, 𝒙4} 

{𝒙1, 𝒙𝟐} 0 1.275 

{𝒙3, 𝑥𝟒} 1.275 0 {𝒙1, 𝒙2, 𝒙3, 𝒙4} 

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4} 0 
𝑃3: 

0={{x1},{x2},{x3},{x4}}, (𝟎) 

1={{x1},{x2},{x3,x4}}, (𝟏. 𝟐) 

2={{x1,x2},{x3,x4}}, (𝟏. 𝟖) 

3={{x1,x2,x3,x4}}, (𝟏. 𝟐𝟕𝟓⁡‼) 
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  Monotonicity condition: 
   If clusters 𝐶𝑖 and 𝐶𝑗 are selected to be merged in cluster 𝐶𝑞, at the tth   

 level of the hierarchy, the condition 
    𝑑(𝐶𝑞, 𝐶𝑘)⁡⁡𝑑(𝐶𝑖, 𝐶𝑗) 

  must hold for all 𝐶𝑘, 𝑘⁡ ≠ ⁡𝑖, 𝑗⁡, 𝑞. 
 
   In other words, the monotonicity condition implies that a clustering is 

formed at higher dissimilarity level than any of its components. 
 
Remarks: 
• Monotonicity is a property that is exclusively related to the clustering 

algorithm and not to the (initial) proximity matrix. 
 

• An algorithm that does not satisfy the monotonicity condition, does not 
necessarily produce dendrograms with crossovers. 
 

• Single link, complete link, UPGMA, WPGMA and the Ward’s algorithm satisfy 
the monotonicity condition, while UPGMC and WPGMC do not satisfy it. 
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Complexity issues: 
• GAS requires, in general, 𝑂(𝑁3) operations. 

 
• More efficient implementations require 𝑂(𝑁2 log𝑁) computational time. 

 
• For a class of widely used algorithms, implementations that require 𝑂(𝑁2) 

computational time and 𝑂(𝑁2) or 𝑂(𝑁) storage have also been proposed. 
 

• Parallel implementations on SIMD machines have also been considered. 
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Some basic definitions from graph theory:  
 
• A graph, 𝐺, is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣𝑖 , 𝑖 =
1,… ,𝑁} is a set of vertices and 𝐸 is a set of edges connecting some pairs of 
vertices. An edge connecting 𝑣𝑖 and 𝑣𝑗 is denoted by 𝑒𝑖𝑗 or (𝑣𝑖, 𝑣𝑗). 
 

• A graph is called undirected if there is no direction assigned to any of its 
edges. Otherwise, we deal with directed graphs. 
 

• A graph is called unweighted if there is  no cost associated with any of its 
edges. Otherwise, we deal with weighted graphs. 
 

• A path in  𝐺 between vertices 𝑣𝑖1
 and 𝑣𝑖𝑛 

 is a sequence of vertices and 
edges of the form 𝑣𝑖1

⁡

𝑒𝑖1𝑖2𝑣𝑖2
…𝑣𝑖𝑛−1

𝑒𝑖𝑛−1𝑖𝑛𝑣𝑖𝑛
. 

 
• A loop in 𝐺 is a path where 𝑣𝑖1

 and 𝑣𝑖𝑛 
 coincide. 

 
• A subgraph 𝐺´ = (𝑉´, 𝐸´) of 𝐺 = 𝑉, 𝐸  is a graph with 𝑉´ ⊆ 𝑉 and 𝐸´ ⊆ 𝐸1, 

where 𝐸1 is a subset of 𝐸 containing edges that connect vertices of 𝑉´. Every 
graph is a subgraph to itself. 
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Some basic definitions from graph theory (cont.):  

 
• A connected subgraph 𝐺´ = (𝑉´, 𝐸´) is a subgraph where there exists at least 

one path connecting any pair of vertices in 𝑉´. 
 

• A complete subgraph 𝐺´ = (𝑉´, 𝐸’) is a subgraph where for any pair of 
vertices in 𝑉’ there exists an edge in 𝐸´ connecting them. 
 

• A maximally connected subgraph of 𝐺 is a connected subgraph 𝐺´ of 𝐺 that 
contains as many vertices of 𝐺 as possible. 
 

• A maximally complete subgraph of 𝐺 is a complete subgraph 𝐺´ of 𝐺 that 
contains as many vertices of 𝐺 as possible. 

 
Examples for the above, are shown in the following figure. 
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Some basic definitions from graph theory (cont.):  
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NOTE: In the framework of clustering, each vertex of a graph corresponds to a 
feature vector. 
 
Useful tools for the algorithms based on graph theory are the threshold graph 
and the proximity graph. 
 
•A threshold graph 𝐺(𝑎) (𝑎 is the threshold parameter) 
is an undirected, unweighted graph with 𝑁 nodes, each one corresponding 

to a vector of 𝑋.  
No self-loops or multiple edges  between any two vertices are encountered.  
The set of edges of 𝐺(𝑎) contains those edges (𝑣𝑖 , 𝑣𝑗) for which the 

distance 𝑑(𝒙𝑖, 𝒙𝑗) between the vectors corresponding to 𝑣𝑖 and 𝑣𝑗 is less 
than or equal to 𝑎. 
 

•A proximity graph 𝐺𝑝(𝑎) is a threshold graph 𝐺(𝑎), all of whose edges 
(𝑣𝑖 , 𝑣𝑗) are weighted with the proximity measure 𝑑(𝒙𝑖, 𝒙𝑗). 
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(a) The threshold graph 𝐺(3), (b) the proximity (dissimilarity) graph 𝐺𝑝(3), (c ) 

the threshold graph 𝐺(5), (d) the dissimilarity graph 𝐺𝑝(5), for the 

dissimilarity matrix 𝑃(𝑋) shown above. 



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




















01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510
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More definitions: 
• In this framework, we consider graphs 𝐺, of 𝑁 nodes, where each node 

corresponds to a vector of 𝑋. 
• Valid clusters are connected components of G that satisfy an additional 

graph property ℎ(𝑘). 
 
  Typical graph properties for a connected component (subgraph) 𝐺´ of 𝐺 are: 
 

•Node connectivity: The largest integer 𝑘 such that all pairs of nodes of 𝐺´ 
are joined by at least 𝑘 paths having no nodes in common. 

 
•Edge connectivity: The largest integer 𝑘 such that all pairs of nodes are 
joined by at least 𝑘 paths having no edges in common. 

 
•Node degree: The largest integer 𝑘 such that each node has at least 𝑘 
incident edges. 
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Node connectivity :  

Edge connectivity :  

Node degree          :  3

3

3
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 Proximity function in the graph theory framework 

• The proximity function 𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠  between two clusters is defined in 

terms of 
a proximity measure between vectors (nodes)  
certain constraints imposed by property ℎ(𝑘)  on the subgraphs that are 

formed. 
 
   In mathematical language: 
  
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 =

𝑚𝑖𝑛
𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒⁡G(a)⁡𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝐶𝑟 ∪ 𝐶𝑠⁡is 

(a) connected and either (b1) has the property h(k) or (b2) is complete
𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

 

 
or 
 

𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠  equals to the smallest possible value a such that in the G(a) 

subgraph defined by 𝐶𝑟 ∪ 𝐶𝑠 is (a) connected and either (b1) has the 

property ℎ(𝑘) or (b2) is complete. 

(4) 
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Example: For the dissimilarity 
matrix,  
 
 
 
 
 
 
all possible 𝐺(𝑎) graphs are shown 
next. 
Assuming that ℎ(2) is the node 
connectivity property, it is 
 
𝑔ℎ 𝑥1}, {𝑥2 = 1.2 (complete) 
𝑔ℎ 𝑥1}, {𝑥5 = 4.2 (complete) 
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3 = 3 (compl.-ℎ(2) ) 
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3, 𝑥5 = 3.9 (ℎ(2)) 


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Generalized Agglomerative Scheme (GAS) 

 Initialization 
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}} 
• ⁡𝑡 = 0 

 Repeat 
•  𝑡 = 𝑡 + 1 

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that 

⁡⁡⁡⁡⁡⁡𝑔ℎ(𝑘) 𝐶𝑖 , 𝐶𝑗 =  
𝑚𝑖𝑛 ⁡𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟⁡𝑑𝑖𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑚𝑎𝑥 ⁡𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟⁡𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
 

 

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞} 

 

 Until all vectors lie in a single cluster. 

Agglomerative graph theory based Clustering Algorithms 
Graph theory-based algorithmic scheme (GTAS): It is the GAS in the context 
of graph theory. In the context of GTAS,  the definition of the proximity 
between the clusters is based on graph theory concepts. Thus 
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• Single link (SL) algorithm. Here 
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒⁡G(a)⁡𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝐶𝑟 ∪ 𝐶𝑠⁡is 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

 
≡ 𝑚𝑖𝑛 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?) 

  
• Remarks: 
No property ℎ(𝑘) or completeness is required. 
The SL stemming from the graph theory is exactly the same with the SL 

stemming from the matrix theory. 
 
• Complete link (CL) algorithm. Here 
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒⁡G(a)⁡𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝐶𝑟 ∪ 𝐶𝑠⁡is 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

 
≡ 𝑚𝑎𝑥 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?) 

 
• Remarks: 
No property ℎ(𝑘) is required. 
The CL stemming from graph theory is exactly the same with the CL 

stemming from matrix theory. 
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Example: For the 
dissimilarity matrix,  
 
 
 
 
 
 
SL and CL produce the same 
hierarchy of clusterings at 
the levels given in the table. 
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Clustering SL CL 

0 = {{𝒙1}, {𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}}⁡ 0 0 

 1 = {{𝒙1, 𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}} 1.2 1.2 

 2 = 𝒙1, 𝒙2 , 𝒙3 , 𝒙4, 𝒙5  1.5 1.5 

 3 = 𝒙1, 𝒙2 , 𝒙3, 𝒙4, 𝒙5  1.8 2.0 

 4 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5  2.5 4.2 
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 Remarks: 
• SL poses the weakest possible graph condition (connectivity) for the 

formation of a cluster, while CL poses the strongest possible graph condition 
(completeness) for the formation of a cluster.  

• A variety of graph theory-based algorithms, that lie between these two 
extremes result for various choices of ℎ(𝑘). 
For 𝑘 = 1 all these algorithms collapse to the single link algorithm. 
As 𝑘 increases, the resulting subgraphs approach completeness. 

 
Clustering algorithms based on the Minimum Spanning Tree (MST) 
Definitions: 
Spanning Tree: It is a connected graph (containing all the vertices of the 
graph), with no loops (only one path connects any two vertices). 
Weight of a Spanning Tree: The sum of the weights of its edges (provided a 
weight has been assigned to each one of them). 
Minimum Spanning Tree (MST): A spanning tree with the smallest weight 
among the spanning trees connecting all the vertices of the graph. 
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 Remarks: 
• The MST has 𝑁 − 1 edges. 
• When all the weights are different from each other, the MST is unique. 

Otherwise, it may not be unique. 
 
 Employing the GTAS and substituting 𝑔ℎ(𝑘) ⁡

(𝐶𝑟, 𝐶𝑠) with  

 
𝑔(𝐶𝑟, 𝐶𝑠) = 𝑚𝑖𝑛𝑖𝑗{𝑤𝑖𝑗: ⁡𝒙𝑖𝐶𝑟, 𝒙𝑗𝐶𝑠} 

      where 𝑤𝑖𝑗 = 𝑑(𝒙𝑖 , 𝒙𝑗), we can determine the MST. 

 
 On the other hand, a hierarchy of clusterings may be obtained by the MST 

as follows:  
    The clustering 𝑡 at the 𝑡 −th level is the set of connected components of 

the MST, when only its 𝑡 smallest weights are considered. 
 
Remark: 
The hierarchy produced by MST is the same with that produced by the single 
link algorithm, at least when all 𝑤𝑖𝑗’s are different from each other. 



•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 

Minimum Spanning Tree  (MST) 

Agglomerative graph theory based Clustering Algorithms 

Example: 
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Example: 
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•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
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•Define a complete graph with vertices the data points and edges the segments 
connecting every pair of vertices.  
•Weight each edge by the distance between its two end-points. 
•Define the MST of the graph. 
•Retaining the edges with the t smallest weights, the resulting connected components 
define the clusters of the t clustering. 

Minimum Spanning Tree  (MST) 
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