
Clustering algorithms
Konstantinos Koutroumbas

Unit 8
– Hierarchical clustering algorithms
 * Matrix theory-based
 * Graph theory-based

1 koutroum@noa.gr

mailto:koutroum@noa.gr

Agglomerative Clustering Algorithms
According to the mathematical tools used for their expression, agglomerative
algorithms are divided into:

• Algorithms based on matrix theory.
• Algorithms based on graph theory.

NOTE: In the sequel we consider only dissimilarity measures.

 Algorithms based on matrix theory.

• They take as input the 𝑁 × 𝑁 dissimilarity matrix 𝑃0 = 𝑃(𝑋).

• At each level 𝑡 where two clusters 𝐶𝑖 and 𝐶𝑗 are merged to 𝐶𝑞, the
dissimilarity matrix 𝑃𝑡 is extracted from 𝑃𝑡−1 by:

Deleting the two rows and columns of 𝑃𝑡 that correspond to 𝐶𝑖 and 𝐶𝑗.

Adding a new row and a new column that contain the distances of

newly formed 𝐶𝑞 = 𝐶𝑖𝐶𝑗 from each of the remaining clusters 𝐶𝑠, via a

relation of the form
 𝑑(𝐶𝑞, 𝐶𝑠) = 𝑓(𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠), 𝑑(𝐶𝑖, 𝐶𝑗))

Agglomerative matrix theory based Clustering Algorithms
•A number of distance functions comply with the following update equation

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)|

Algorithms that follow the above equation are:

 Single link (SL) algorithm (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 = 0, 𝑐 = −1/2). In this case

 𝑑(𝐶𝑞, 𝐶𝑠) = min⁡{𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠)} (2)

 Complete link (CL) algorithm (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 = 0, 𝑐 = 1/2). In this
case

 𝑑(𝐶𝑞, 𝐶𝑠) = max⁡{𝑑(𝐶𝑖, 𝐶𝑠), 𝑑(𝐶𝑗, 𝐶𝑠)}
Remarks:
• Single link forms clusters at low dissimilarities while complete link forms

clusters at high dissimilarities.
• Single link tends to form elongated clusters (chaining effect) while complete

link tends to form compact clusters.
• The rest algorithms are compromises between these two extremes.

(1)

𝐶𝑞 = 𝐶𝑖𝐶𝑗

Agglomerative matrix theory based Clustering Algorithms
Example:

(a) The data set 𝑋.

(b) The single link
algorithm dissimilarity
dendrogram.

(c) The complete link
algorithm dissimilarity
dendrogram.

Agglomerative matrix theory based Clustering Algorithms
 Weighted Pair Group Method Average (WPGMA) (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 =
0, 𝑐 = 0). In this case:

 𝑑(𝐶𝑞, 𝐶𝑠) =
1

2
(𝑑(𝐶𝑖, 𝐶𝑠) ⁡+ ⁡𝑑(𝐶𝑗, 𝐶𝑠))

 Unweighted Pair Group Method Average (UPGMA) (𝑎𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗), 𝑎𝑗 =
𝑛𝑗/(𝑛𝑖 + 𝑛𝑗), 𝑏 = 0, 𝑐 = 0, where 𝑛𝑖 is the cardinality of 𝐶𝑖). In this case:

 𝑑(𝐶𝑞, 𝐶𝑠) =
𝑛𝑖

𝑛
𝑖
+𝑛

𝑗
⁡
𝑑(𝐶𝑖, 𝐶𝑠) ⁡+

𝑛𝑗

𝑛
𝑖
+𝑛

𝑗

⁡𝑑(𝐶𝑗, 𝐶𝑠)

 Unweighted Pair Group Method Centroid (UPGMC) (𝑎𝑖 = 𝑛𝑖/(𝑛𝑖 + 𝑛𝑗),
𝑎𝑗 = 𝑛𝑗/(𝑛𝑖 + 𝑛𝑗), 𝑏 = −𝑛𝑖⁡

𝑛𝑗/(𝑛𝑖 + 𝑛𝑗)
2, 𝑐 = 0). In this case:

𝑑𝑞𝑠 =
𝑛𝑖

𝑛𝑖 + 𝑛𝑗
𝑑𝑖𝑠 +

𝑛𝑗

𝑛𝑖 + 𝑛𝑗
𝑑𝑗𝑠 −

𝑛𝑖𝑛𝑗

(𝑛𝑖+𝑛𝑗)
2 𝑑𝑖𝑗

For the UPGMC, if 𝑑𝑖𝑗 is defined as the squared Euclidean distance between
the means of 𝐶𝑖 and 𝐶𝑗,
then it holds that 𝑑𝑞𝑠 = ||𝒎𝑞 −𝒎𝑠||

2, where 𝒎𝑞, 𝒎𝑠 are the means of 𝐶𝑞,
𝐶𝑠, respectively.

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗)

+ 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)|

Agglomerative matrix theory based Clustering Algorithms
 Weighted Pair Group Method Centroid (WPGMC) (𝑎𝑖 = 1/2, 𝑎𝑗 = 1/2, 𝑏 =
− 1/4, 𝑐 = 0). In this case

 𝑑𝑞𝑠 =
1

2
𝑑𝑖𝑠 +

1

2
⁡𝑑𝑗𝑠⁡–

1

4
𝑑𝑖𝑗

 For WPGMC there are cases where 𝑑𝑞𝑠⁡max⁡{𝑑𝑖𝑠, 𝑑𝑗𝑠} (crossover)

 Ward or minimum variance algorithm. Here the distance𝑑′
𝑖𝑗 between 𝐶𝑖

and 𝐶𝑗 is defined as

 𝑑′
𝑖𝑗 =

𝑛𝑖𝑛𝑗

𝑛𝑖+𝑛𝑗
⁡ ||𝒎𝑖 −𝒎𝑗||

2

𝑑′
𝑞𝑠 can be expressed in terms of 𝑑′

𝑖𝑠,⁡𝑑′
𝑗𝑠, 𝑑′

𝑖𝑗 as

𝑑′
𝑞𝑠 =

𝑛𝑖 + 𝑛𝑠 ⁡
𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠

𝑑′
𝑖𝑠 ⁡+

𝑛𝑗 + 𝑛𝑠

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠
𝑑′

𝑗𝑠⁡–
𝑛𝑠

𝑛𝑖 + 𝑛𝑗 + 𝑛𝑠
𝑑′

𝑖𝑗

Remark: Ward’s algorithm forms 𝑡+1 by merging the two clusters that
lead to the smallest possible increase of the total variance, i.e.,

𝐸𝑡 = | 𝒙 −𝒎𝑟 |2
𝒙∈𝐶𝑟

𝑁−𝑡

𝑟=1

(3)

𝑑(𝐶𝑞, 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗, 𝐶𝑠)
+ 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)|

Agglomerative matrix theory based Clustering Algorithms
Example 3: Consider the following dissimilarity matrix (Euclidean
distance)

 All the algorithms produce the same sequence of clusterings shown
above, yet at different proximity levels:

0={{x1}, {x2}, {x3}, {x4}, {x5}},

1={{x1, x2}, {x3}, {x4}, {x5}},

2={{x1, x2}, {x3}, {x4, x5}},

3={{x1, x2, x3}, {x4, x5}},

4={{x1, x2, x3, x4, x5}}
























05.1253637

5.10162526

2516032

3625301

3726210

0P

SL CL WPGMA UPGMA WPGMC UPGMC Ward

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 0.5

2 1.5 1.5 1.5 1.5 1.5 1.5 0.75

3 2 3 2.5 2.5 2.25 2.25 1.5

4 16 37 25.75 27.5 24.69 26.46 31.75

Agglomerative matrix theory based Clustering Algorithms
Example 3 (in detail): (a) The single-link case
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = min⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠))

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1} 0 1 2 26 37

{𝒙2} 1 0 3 25 36

{𝒙3} 2 3 0 16 25

{𝒙4} 26 25 16 0 1.5

{𝒙5} 37 36 25 1.5 0

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1, 𝒙2} 0 2 25 36

{𝒙3} 2 0 16 25

{𝒙4} 25 16 0 1.5

{𝒙5} 36 25 1.5 0

𝑃0:

𝑃1:

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1} 0 1 2 26 37

{𝒙2} 1 0 3 25 36

{𝒙3} 2 3 0 16 25

{𝒙4} 26 25 16 0 1.5

{𝒙5} 37 36 25 1.5 0

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1, 𝒙2} 0 2 25 36

{𝒙3} 2 0 16 25

{𝒙4} 25 16 0 1.5

{𝒙5} 36 25 1.5 0

𝑑 𝒙1, 𝒙2 , 𝒙3 =
min⁡(𝑑 𝒙1 , 𝒙3 , 𝑑 𝒙2 , 𝒙3

= min 2,3 = 2

𝑑 𝒙1, 𝒙2 , 𝒙4 =
min 26,25 = 25

𝑑 𝒙1, 𝒙2 , 𝒙5 =
min 37,36 = 36

𝑑 𝒙1, 𝒙2 , 𝒙4, 𝒙5 =
min 25,36 = 25

𝑑 𝒙3 , 𝒙4, 𝒙5 =
min 16,25 = 16

Agglomerative matrix theory based Clustering Algorithms
Example 3 (in detail): (a) The single-link case
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = min⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠))

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2} 0 2 25

{𝒙3} 2 0 16

{𝒙4, 𝒙5} 25 16 0

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2, 𝒙𝟑} 0 16

{𝒙4, 𝒙5} 16 0

{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4, 𝒙5} 0

𝑃2:

𝑃3:

𝑃4:

𝑑 𝒙1, 𝒙2, 𝒙3 , 𝒙4, 𝒙5 =
= min 25,16 = 16

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2} 0 2 25

{𝒙3} 2 0 16

{𝒙4, 𝒙5} 25 16 0

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2, 𝒙𝟑} 0 16

{𝒙4, 𝒙5} 16 0

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎)

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏)

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓)

3={{x1, x2, x3}, {x4, x5}}, (𝟐)

4={{x1, x2, x3, x4, x5}}, (𝟏𝟔)

Agglomerative matrix theory based Clustering Algorithms
Example 3 (in detail): (b) The complete-link case
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = max⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠))

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1} 0 1 2 26 37

{𝒙2} 1 0 3 25 36

{𝒙3} 2 3 0 16 25

{𝒙4} 26 25 16 0 1.5

{𝒙5} 37 36 25 1.5 0

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1, 𝒙2} 0 3 26 37

{𝒙3} 3 0 16 25

{𝒙4} 26 16 0 1.5

{𝒙5} 37 25 1.5 0

𝑃0:

𝑃1:

{𝒙1} {𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1} 0 1 2 26 37

{𝒙2} 1 0 3 25 36

{𝒙3} 2 3 0 16 25

{𝒙4} 26 25 16 0 1.5

{𝒙5} 37 36 25 1.5 0

{𝒙1, 𝒙2} {𝒙3} {𝒙4} {𝒙5}

{𝒙1, 𝒙2} 0 3 26 37

{𝒙3} 3 0 16 25

{𝒙4} 26 16 0 1.5

{𝒙5} 37 25 1.5 0

𝑑 𝒙1, 𝒙2 , 𝒙3 =
max⁡(𝑑 𝒙1 , 𝒙3 , 𝑑 𝒙2 , 𝒙3

= max 2,3 = 3

𝑑 𝒙1, 𝒙2 , 𝒙4 =
max 26,25 = 26

𝑑 𝒙1, 𝒙2 , 𝒙5 =
max 37,36 = 37

𝑑 𝒙1, 𝒙2 , 𝒙4, 𝒙5 =
max 26,37 = 37

𝑑 𝒙3 , 𝒙4, 𝒙5 =
max 16,25 = 25

Agglomerative matrix theory based Clustering Algorithms
Example 3 (in detail): (b) The complete-link case
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑(𝐶𝑞, 𝐶𝑠) = max⁡(𝑑 𝐶𝑖, 𝐶𝑠 , 𝑑(𝐶𝑗, 𝐶𝑠))

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2} 0 3 37

{𝒙3} 3 0 25

{𝒙4, 𝒙5} 37 25 0

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2, 𝒙𝟑} 0 37

{𝒙4, 𝒙5} 37 0

{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4, 𝒙5} 0

𝑃2:

𝑃3:

𝑃4:

𝑑 𝒙1, 𝒙2, 𝒙3 , 𝒙4, 𝒙5 =
= max 37,25 = 37

{𝒙1, 𝒙2} {𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2} 0 3 37

{𝒙3} 3 0 25

{𝒙4, 𝒙5} 37 25 0

{𝒙1, 𝒙2, 𝒙3} {𝒙4, 𝒙5}

{𝒙1, 𝒙2, 𝒙𝟑} 0 37

{𝒙4, 𝒙5} 37 0

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎)

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏)

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓)

3={{x1, x2, x3}, {x4, x5}}, (𝟑)

4={{x1, x2, x3, x4, x5}}, (𝟑𝟕)

Agglomerative matrix theory based Clustering Algorithms
Monotonicity and crossover:
 For the following dissimilarity matrix

the dissimilarity dendrograms produced by single link,
complete link and UPGMC (the same result is
produced if WPGMC is employed) are:





















02.17.23.2

2.105.24.2

7.25.208.1

3.24.28.10

P

{𝒙1, 𝒙2, 𝒙3, 𝒙4} is
formed at lower
dissimilarity level
than {𝒙1, 𝒙2}
(crossover)

Agglomerative matrix theory based Clustering Algorithms
Example (in detail): The WPGMC case
(𝐶𝑞 = 𝐶𝑖 ∪ 𝐶𝑗, 𝑑𝑞𝑠 =

1

2
𝑑𝑖𝑠 +

1

2
𝑑𝑗𝑠 −

1

4
𝑑𝑖𝑗)

{𝒙1} {𝒙2} {𝒙3} {𝒙4}

{𝒙1} 0 1.8 2.4 2.3

{𝒙2} 1.8 0 2.5 2.7

{𝒙3} 2.4 2.5 0 1.2

{𝒙4} 2.3 2.7 1.2 0

𝑃0:

𝑃1:

𝑑 3,4 ,1 = 1
2𝑑3,1 +

1
2𝑑4,1 −

1
4𝑑3,4

= 1
22.4 + 1

22.3 − 1
41.2 = 2.05

{𝒙1} {𝒙2} {𝒙3} {𝒙4}

{𝒙1} 0 1.8 2.4 2.3

{𝒙2} 1.8 0 2.5 2.7

{𝒙3} 2.4 2.5 0 1.2

{𝒙4} 2.3 2.7 1.2 0

𝑑 3,4 ,2 = 1
2𝑑3,2 +

1
2𝑑4,2 −

1
4𝑑3,4

= 1
22.5 + 1

22.7 − 1
41.2 = 2.3

{𝒙1} {𝒙2} {𝒙3, 𝒙4}

{𝒙1} 0 1.8 2.05

{𝒙2} 1.8 0 2.3

{𝒙3, 𝑥𝟒} 2.05 2.3 0

{𝒙1} {𝒙2} {𝒙3, 𝒙4}

{𝒙1} 0 1.8 2.05

{𝒙2} 1.8 0 2.3

{𝒙3, 𝑥𝟒} 2.05 2.3 0
𝑑 1,2 , 3,4 = 1

2𝑑1,(3,4)⁡ +
1
2𝑑2,(3,4)⁡ −

1
4𝑑1,2

= 1
22.05 + 1

22.3 − 1
41.8 = 1.275

𝑃2:
{𝒙1, 𝒙𝟐} {𝒙3, 𝒙4}

{𝒙1, 𝒙𝟐} 0 1.275

{𝒙3, 𝑥𝟒} 1.275 0 {𝒙1, 𝒙2, 𝒙3, 𝒙4}

{𝒙1, 𝒙2, 𝒙𝟑, 𝒙4} 0
𝑃3:

0={{x1},{x2},{x3},{x4}}, (𝟎)

1={{x1},{x2},{x3,x4}}, (𝟏. 𝟐)

2={{x1,x2},{x3,x4}}, (𝟏. 𝟖)

3={{x1,x2,x3,x4}}, (𝟏. 𝟐𝟕𝟓⁡‼)

Agglomerative matrix theory based Clustering Algorithms
 Monotonicity condition:
 If clusters 𝐶𝑖 and 𝐶𝑗 are selected to be merged in cluster 𝐶𝑞, at the tth

 level of the hierarchy, the condition
 𝑑(𝐶𝑞, 𝐶𝑘)⁡⁡𝑑(𝐶𝑖, 𝐶𝑗)

 must hold for all 𝐶𝑘, 𝑘⁡ ≠ ⁡𝑖, 𝑗⁡, 𝑞.

 In other words, the monotonicity condition implies that a clustering is

formed at higher dissimilarity level than any of its components.

Remarks:
• Monotonicity is a property that is exclusively related to the clustering

algorithm and not to the (initial) proximity matrix.

• An algorithm that does not satisfy the monotonicity condition, does not
necessarily produce dendrograms with crossovers.

• Single link, complete link, UPGMA, WPGMA and the Ward’s algorithm satisfy
the monotonicity condition, while UPGMC and WPGMC do not satisfy it.

Agglomerative matrix theory based Clustering Algorithms
Complexity issues:
• GAS requires, in general, 𝑂(𝑁3) operations.

• More efficient implementations require 𝑂(𝑁2 log𝑁) computational time.

• For a class of widely used algorithms, implementations that require 𝑂(𝑁2)

computational time and 𝑂(𝑁2) or 𝑂(𝑁) storage have also been proposed.

• Parallel implementations on SIMD machines have also been considered.

Agglomerative graph theory based Clustering Algorithms
Some basic definitions from graph theory:

• A graph, 𝐺, is defined as an ordered pair 𝐺 = (𝑉, 𝐸), where 𝑉 = {𝑣𝑖 , 𝑖 =
1,… ,𝑁} is a set of vertices and 𝐸 is a set of edges connecting some pairs of
vertices. An edge connecting 𝑣𝑖 and 𝑣𝑗 is denoted by 𝑒𝑖𝑗 or (𝑣𝑖, 𝑣𝑗).

• A graph is called undirected if there is no direction assigned to any of its
edges. Otherwise, we deal with directed graphs.

• A graph is called unweighted if there is no cost associated with any of its
edges. Otherwise, we deal with weighted graphs.

• A path in 𝐺 between vertices 𝑣𝑖1
 and 𝑣𝑖𝑛

 is a sequence of vertices and
edges of the form 𝑣𝑖1

⁡

𝑒𝑖1𝑖2𝑣𝑖2
…𝑣𝑖𝑛−1

𝑒𝑖𝑛−1𝑖𝑛𝑣𝑖𝑛
.

• A loop in 𝐺 is a path where 𝑣𝑖1

 and 𝑣𝑖𝑛
 coincide.

• A subgraph 𝐺´ = (𝑉´, 𝐸´) of 𝐺 = 𝑉, 𝐸 is a graph with 𝑉´ ⊆ 𝑉 and 𝐸´ ⊆ 𝐸1,

where 𝐸1 is a subset of 𝐸 containing edges that connect vertices of 𝑉´. Every
graph is a subgraph to itself.

Agglomerative graph theory based Clustering Algorithms
Some basic definitions from graph theory (cont.):

• A connected subgraph 𝐺´ = (𝑉´, 𝐸´) is a subgraph where there exists at least

one path connecting any pair of vertices in 𝑉´.

• A complete subgraph 𝐺´ = (𝑉´, 𝐸’) is a subgraph where for any pair of
vertices in 𝑉’ there exists an edge in 𝐸´ connecting them.

• A maximally connected subgraph of 𝐺 is a connected subgraph 𝐺´ of 𝐺 that
contains as many vertices of 𝐺 as possible.

• A maximally complete subgraph of 𝐺 is a complete subgraph 𝐺´ of 𝐺 that
contains as many vertices of 𝐺 as possible.

Examples for the above, are shown in the following figure.

Agglomerative graph theory based Clustering Algorithms
Some basic definitions from graph theory (cont.):

Agglomerative graph theory based Clustering Algorithms
NOTE: In the framework of clustering, each vertex of a graph corresponds to a
feature vector.

Useful tools for the algorithms based on graph theory are the threshold graph
and the proximity graph.

•A threshold graph 𝐺(𝑎) (𝑎 is the threshold parameter)
is an undirected, unweighted graph with 𝑁 nodes, each one corresponding

to a vector of 𝑋.
No self-loops or multiple edges between any two vertices are encountered.
The set of edges of 𝐺(𝑎) contains those edges (𝑣𝑖 , 𝑣𝑗) for which the

distance 𝑑(𝒙𝑖, 𝒙𝑗) between the vectors corresponding to 𝑣𝑖 and 𝑣𝑗 is less
than or equal to 𝑎.

•A proximity graph 𝐺𝑝(𝑎) is a threshold graph 𝐺(𝑎), all of whose edges
(𝑣𝑖 , 𝑣𝑗) are weighted with the proximity measure 𝑑(𝒙𝑖, 𝒙𝑗).

Agglomerative graph theory based Clustering Algorithms

(a) The threshold graph 𝐺(3), (b) the proximity (dissimilarity) graph 𝐺𝑝(3), (c)

the threshold graph 𝐺(5), (d) the dissimilarity graph 𝐺𝑝(5), for the

dissimilarity matrix 𝑃(𝑋) shown above.

























01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510

)(XP

Agglomerative graph theory based Clustering Algorithms
More definitions:
• In this framework, we consider graphs 𝐺, of 𝑁 nodes, where each node

corresponds to a vector of 𝑋.
• Valid clusters are connected components of G that satisfy an additional

graph property ℎ(𝑘).

 Typical graph properties for a connected component (subgraph) 𝐺´ of 𝐺 are:

•Node connectivity: The largest integer 𝑘 such that all pairs of nodes of 𝐺´
are joined by at least 𝑘 paths having no nodes in common.

•Edge connectivity: The largest integer 𝑘 such that all pairs of nodes are
joined by at least 𝑘 paths having no edges in common.

•Node degree: The largest integer 𝑘 such that each node has at least 𝑘
incident edges.

Agglomerative graph theory based Clustering Algorithms

Node connectivity :

Edge connectivity :

Node degree : 3

3

3

Agglomerative graph theory based Clustering Algorithms
 Proximity function in the graph theory framework

• The proximity function 𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 between two clusters is defined in

terms of
a proximity measure between vectors (nodes)
certain constraints imposed by property ℎ(𝑘) on the subgraphs that are

formed.

 In mathematical language:

𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 =

𝑚𝑖𝑛
𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒⁡G(a)⁡𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝐶𝑟 ∪ 𝐶𝑠⁡is

(a) connected and either (b1) has the property h(k) or (b2) is complete
𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

or

𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠 equals to the smallest possible value a such that in the G(a)

subgraph defined by 𝐶𝑟 ∪ 𝐶𝑠 is (a) connected and either (b1) has the

property ℎ(𝑘) or (b2) is complete.

(4)

Agglomerative graph theory based Clustering Algorithms
Example: For the dissimilarity
matrix,

all possible 𝐺(𝑎) graphs are shown
next.
Assuming that ℎ(2) is the node
connectivity property, it is

𝑔ℎ 𝑥1}, {𝑥2 = 1.2 (complete)
𝑔ℎ 𝑥1}, {𝑥5 = 4.2 (complete)
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3 = 3 (compl.-ℎ(2))
𝑔ℎ 𝑥1, 𝑥2}, {𝑥3, 𝑥5 = 3.9 (ℎ(2))

























05.10.29.32.4

5.108.12.37.3

0.28.105.23

9.32.35.202.1

2.47.332.10

P

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.5)

G(2.5)

G(3.7)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(0)

G(1.8)

G(3.0)

G(3.9)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.2)

G(2.0)

G(3.2)

G(4.2)

Generalized Agglomerative Scheme (GAS)

 Initialization
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}}
• ⁡𝑡 = 0

 Repeat
• 𝑡 = 𝑡 + 1

• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that

⁡⁡⁡⁡⁡⁡𝑔ℎ(𝑘) 𝐶𝑖 , 𝐶𝑗 =
𝑚𝑖𝑛 ⁡𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟⁡𝑑𝑖𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

𝑚𝑎𝑥 ⁡𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠𝑟,𝑠 , 𝑓𝑜𝑟⁡𝑠𝑖𝑚. 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞}

 Until all vectors lie in a single cluster.

Agglomerative graph theory based Clustering Algorithms
Graph theory-based algorithmic scheme (GTAS): It is the GAS in the context
of graph theory. In the context of GTAS, the definition of the proximity
between the clusters is based on graph theory concepts. Thus

Agglomerative graph theory based Clustering Algorithms
• Single link (SL) algorithm. Here
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒⁡G(a)⁡𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝐶𝑟 ∪ 𝐶𝑠⁡is 𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒆𝒅𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

≡ 𝑚𝑖𝑛 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?)

• Remarks:
No property ℎ(𝑘) or completeness is required.
The SL stemming from the graph theory is exactly the same with the SL

stemming from the matrix theory.

• Complete link (CL) algorithm. Here
𝑔ℎ(𝑘) 𝐶𝑟 , 𝐶𝑠
= 𝑚𝑖𝑛 𝑑 𝒙𝑢, 𝒙𝑣 ≡ 𝑎: 𝑡ℎ𝑒⁡G(a)⁡𝑠𝑢𝑏𝑔𝑟𝑎𝑝ℎ⁡𝑑𝑒𝑓𝑖𝑛𝑒𝑑⁡𝑏𝑦⁡𝐶𝑟 ∪ 𝐶𝑠⁡is 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒙𝑢∈𝐶𝑟,𝒙𝑣∈𝐶𝑠

≡ 𝑚𝑎𝑥 𝑑 𝒙, 𝒚𝒙∈𝐶𝑟,𝒚∈𝐶𝑠

 (why?)

• Remarks:
No property ℎ(𝑘) is required.
The CL stemming from graph theory is exactly the same with the CL

stemming from matrix theory.

Agglomerative graph theory based Clustering Algorithms
Example: For the
dissimilarity matrix,

SL and CL produce the same
hierarchy of clusterings at
the levels given in the table.

























05.10.29.32.4

5.108.12.37.3

0.28.105.23

9.32.35.202.1

2.47.332.10

P

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.5)

G(2.5)

G(3.7)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(0)

G(1.8)

G(3.0)

G(3.9)

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

1

2

3

5

4

G(1.2)

G(2.0)

G(3.2)

G(4.2)

Clustering SL CL

0 = {{𝒙1}, {𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}}⁡ 0 0

 1 = {{𝒙1, 𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}} 1.2 1.2

 2 = 𝒙1, 𝒙2 , 𝒙3 , 𝒙4, 𝒙5 1.5 1.5

 3 = 𝒙1, 𝒙2 , 𝒙3, 𝒙4, 𝒙5 1.8 2.0

 4 = 𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5 2.5 4.2

Agglomerative graph theory based Clustering Algorithms
 Remarks:
• SL poses the weakest possible graph condition (connectivity) for the

formation of a cluster, while CL poses the strongest possible graph condition
(completeness) for the formation of a cluster.

• A variety of graph theory-based algorithms, that lie between these two
extremes result for various choices of ℎ(𝑘).
For 𝑘 = 1 all these algorithms collapse to the single link algorithm.
As 𝑘 increases, the resulting subgraphs approach completeness.

Clustering algorithms based on the Minimum Spanning Tree (MST)
Definitions:
Spanning Tree: It is a connected graph (containing all the vertices of the
graph), with no loops (only one path connects any two vertices).
Weight of a Spanning Tree: The sum of the weights of its edges (provided a
weight has been assigned to each one of them).
Minimum Spanning Tree (MST): A spanning tree with the smallest weight
among the spanning trees connecting all the vertices of the graph.

Agglomerative graph theory based Clustering Algorithms
 Remarks:
• The MST has 𝑁 − 1 edges.
• When all the weights are different from each other, the MST is unique.

Otherwise, it may not be unique.

 Employing the GTAS and substituting 𝑔ℎ(𝑘) ⁡

(𝐶𝑟, 𝐶𝑠) with

𝑔(𝐶𝑟, 𝐶𝑠) = 𝑚𝑖𝑛𝑖𝑗{𝑤𝑖𝑗: ⁡𝒙𝑖𝐶𝑟, 𝒙𝑗𝐶𝑠}

 where 𝑤𝑖𝑗 = 𝑑(𝒙𝑖 , 𝒙𝑗), we can determine the MST.

 On the other hand, a hierarchy of clusterings may be obtained by the MST

as follows:
 The clustering 𝑡 at the 𝑡 −th level is the set of connected components of

the MST, when only its 𝑡 smallest weights are considered.

Remark:
The hierarchy produced by MST is the same with that produced by the single
link algorithm, at least when all 𝑤𝑖𝑗’s are different from each other.

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Example:

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Example:

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

Example:

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

•Define a complete graph with vertices the data points and edges the segments
connecting every pair of vertices.
•Weight each edge by the distance between its two end-points.
•Define the MST of the graph.
•Retaining the edges with the t smallest weights, the resulting connected components
define the clusters of the t clustering.

Minimum Spanning Tree (MST)

Agglomerative graph theory based Clustering Algorithms

