
Clustering algorithms
Konstantinos Koutroumbas

Unit 9
 – Divisive clustering algorithms
– Hierarchical alg. For large data sets
 (CURE, ROCK, Chameleon)

1 koutroum@noa.gr

mailto:koutroum@noa.gr

Agglomerative graph theory based Clustering Algorithms
 Ties in the proximity matrix
• SL produces the same hierarchy

of clusterings, independently of
the order of consideration of
edges with equal weights.

• CL may produce different
hierarchies, depending on the
order of consideration of edges
with equal weights.

• The other graph theory-based
algorithms behave as the CL.

• The same trend appears in the
matrix-based algorithms. In this
case, ties may appear at a later
stage of the algorithm.
Example 6: Let

Note that 𝑃(2,3) = 𝑃(3,4).

























01275

10386

23039

78304

56940

P

(CL(a)) (CL(b))

Agglomerative Clustering Algorithms: Cophenetic matrix
This is an alternative way to represent a hierarchical clustering.

Cophenetic distance between 𝒙𝑖 and 𝒙𝑗, 𝑑𝐶 𝒙𝑖 , 𝒙𝑗 : The proximity

level, where 𝒙𝑖 and 𝒙𝑗 are found in the same cluster for the first time

(distance metric).
Cophenetic matrix: An 𝑁 × 𝑁 matrix containing the cophenetic
distances associated with all pairs of data vectors.
Example: Consider the following dissimilarity matrix (Euclidean
distance)

 The associated cophenetic matrix is

𝐷𝐶 =

0 1 2
1 0 2
2 2 0

16 16
16 16
16 16

16 16 16
16 16 16

0 1.5
1.5 0

























05.1253637

5.10162526

2516032

3625301

3726210

0P

The results of the single link
algorithm are (in parenthesis the
proximity level where the
associated clustering has been
formed):

0={{x1}, {x2}, {x3}, {x4}, {x5}}, (𝟎)

1={{x1, x2}, {x3}, {x4}, {x5}}, (𝟏)

2={{x1, x2}, {x3}, {x4, x5}}, (𝟏. 𝟓)

3={{x1, x2, x3}, {x4, x5}}, (𝟐)

4={{x1, x2, x3, x4, x5}}, (𝟏𝟔)

Divisive Clustering Algorithms
 Let 𝑔(𝐶𝑖 , 𝐶𝑗) be a dissimilarity function between two clusters.

Let 𝐶𝑡𝑗 denote the 𝑗-th cluster of the 𝑡-th clustering 𝑡, 𝑡 = 0,… ,𝑁 − 1,

𝑗 = 1,… , 𝑡 + 1.
Generalized Divisive Scheme (GDS)
• Initialization
 Choose 0 = {𝑋} as the initial clustering.
 𝑡 = 0

• Repeat
 𝑡 = 𝑡 + 1
 For 𝑖 = 1 to 𝑡

o Among all possible pairs of clusters (𝐶𝑟 , 𝐶𝑠) that form a partition of
𝐶𝑡−1,𝑖, find the pair (𝐶1𝑡−1,𝑖 , 𝐶

2
𝑡−1,𝑖) that gives the max. value for 𝑔.

 End for
 From the 𝑡 pairs defined in the previous step, choose the one that

maximizes 𝑔. Suppose that this is (𝐶1𝑡−1,𝑗, 𝐶
2
𝑡−1,𝑗).

 The new clustering is:
 𝑡 = (𝑡−1 − {𝐶𝑡−1,𝑗}){𝐶

1
𝑡−1,𝑗, 𝐶

2
𝑡−1,𝑗}

 Relabel the clusters of 𝑡.
• Until each vector lies in a single cluster.

Divisive Clustering Algorithms
Remarks:
• Different choices of 𝑔 give rise to different algorithms.

• The GDS is computationally very demanding even for small 𝑁.

• Algorithms that rule out many partitions as not “reasonable”, under a pre-

specified criterion, have also been proposed.

• Algorithms where the splitting of the clusters is based on all features of the
feature vectors are called polythetic algorithms. Otherwise, if the splitting
is based on a single feature at each step, the algorithms are called
monothetic algorithms.

Choice of the best number of clusters
A major issue associated with hierarchical algorithms is:
“How the clustering that best fits the data is extracted from a hierarchy of
clusterings?”
Some approaches:
 Search in the proximity dendrogram for clusters that have a large lifetime

(the difference between the proximity level at which a cluster is created
and the proximity level at which it is absorbed into a larger cluster
(however, this method involves human subjectivity)).

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7
1.4

1.8

1.5

3.1

2.2

9.1

x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7 x1 x2 x3 x4 x5 x6 x7
1.4

1.8

1.5

3.1

2.2

9.1

Choice of the best number of clusters
A major issue associated with hierarchical algorithms is:
“How the clustering that best fits the data is extracted from a hierarchy of
clusterings?”
Some approaches:
 Define a function ℎ(𝐶) that measures the dissimilarity between the

vectors of the same cluster 𝐶 (“self-dissimilarity”). Then, we have two
alternatives:
• Let 𝜃 be an appropriate threshold for ℎ(𝐶). Then 𝑡 is the final

clustering if there exists a cluster 𝐶 in 𝑡+1 with ℎ 𝐶 > 𝜃 (extrinsic
method).

ℎ1 𝐶 = 𝑚𝑎𝑥 𝑑 𝒙, 𝒚 , 𝒙, 𝒚 ∈ 𝐶

ℎ2 𝐶 = 𝑚𝑖𝑛 𝑑 𝒙, 𝒚 , 𝒙, 𝒚 ∈ 𝐶

• If 𝜃 = 𝜇 + 𝜆𝜎, where 𝜇 is the average distance of any two vectors of 𝑋
and 𝜎 is the associated standard deviation, then the need for specifying
an appropriate value of 𝜃 is transferred to the choice of an appropriate
value for 𝜆.

Choice of the best number of clusters
A major issue associated with hierarchical algorithms is:
“How the clustering that best fits the data is extracted from a hierarchy of
clusterings?”
Some approaches:
 Define a function ℎ(𝐶) that measures the dissimilarity between the

vectors of the same cluster 𝐶 (“self-dissimilarity”). Then, we have two
alternatives:
• The final clustering 𝑡 must satisfy the following condition:

𝑑𝑠𝑠𝑚𝑖𝑛 𝐶𝑖 , 𝐶𝑗 > 𝑚𝑎𝑥 ℎ 𝐶𝑖 , ℎ 𝐶𝑗 , ∀𝐶𝑖 , 𝐶𝑗 ∈ 𝑡

In words, in the final clustering, the dissimilarity between every pair of
clusters is larger than the “self-dissimilarity” of each one of them
(intrinsic method).

Hierarchical Algorithms for large data sets
Remark:
Since the number of operations required by GAS is greater than 𝑂 𝑁2 ,
algorithms resulting by GAS are prohibitive for very large data sets
encountered, for example, in web mining and bioinformatics. To overcome
this drawback, various hierarchical algorithms of special type have been
developed that are tailored to handle large data sets.

Typical examples are:
• The CURE algorithm.
• The ROCK algorithm.
• The Chameleon algorithm.

The CURE (Clustering Using Representatives) algorithm
 In CURE:
 Each cluster 𝐶 is represented by a set, 𝑅𝐶, of 𝑘 > 1 representatives.
 These representatives try to “capture” the “shape “ of the cluster.
 They are chosen at the “border” of the cluster and then, they are pushed

toward its mean, in order to discard the irregularities of the border.

 Determination of 𝑅𝐶:

• Select 𝒙𝐶, with the maximum distance from the mean 𝒎𝐶 of 𝐶 and set
𝑅𝐶 = {𝒙}

• For 𝑖 = 2 to min {𝑘, 𝑛𝐶} (𝑛𝐶 is the number of points in 𝐶)
 Determine 𝒚𝐶 − 𝑅𝐶 that lies farthest from the points of 𝑅𝐶 and set

 𝑅𝐶 = 𝑅𝐶{𝒚}.
• Shrink the points 𝒙𝑅𝐶 toward the mean 𝒎𝐶 in 𝐶 by a factor 𝑎 ∈ (0,1).

That is 𝒙 = (1 − 𝑎) 𝒙 + 𝑎 𝒎𝐶 ,𝒙𝑅𝐶 .

 CURE is a special case of GAS (single link) where the distance between two
clusters is

 defined as: 𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑖𝑛𝒙∈𝑅𝐶𝑖 ,𝒚∈𝑅𝐶𝑗
𝑑(𝒙, 𝒚)

The CURE (Clustering Using Representatives) algorithm
Clustering Using REpresentatives (CURE(X))

 Initialization
• Choose 0 = {{𝒙1}, … , {𝒙𝑁}}
• 𝑡 = 0

 Repeat
• 𝑡 = 𝑡 + 1
• Choose (𝐶𝑖, 𝐶𝑗) in 𝑡−1 such that

𝑑 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑖𝑛𝑟,𝑠𝑑 𝐶𝑟 , 𝐶𝑠

• Define 𝐶𝑞 = 𝐶𝑖𝐶𝑗 and produce 𝑡 = 𝑡−1 − {𝐶𝑖 , 𝐶𝑗} ∪ {𝐶𝑞}

• Determine 𝑅𝐶𝑞(*)

 Until all vectors lie in a single cluster.

(*) The determination of 𝑅𝐶𝑞 may be conducted:

(i) Either by performing the procedure of the previous slide taking into
account all the data points of 𝐶𝑞 (more accurate but slower approach).

(ii) Or by performing the procedure of the previous slide taking into account
the data points in 𝑅𝐶𝑖𝑅𝐶𝑗 (the union of the representatives of the

clusters that constitute 𝐶𝑞) (less accurate but faster approach).

𝑑 𝐶𝑟 , 𝐶𝑠 = 𝑚𝑖𝑛𝒙∈𝑅𝐶𝑟 ,𝒚∈𝑅𝐶𝑠 𝑑(𝒙, 𝒚)

The CURE (Clustering Using Representatives) algorithm
 Worst case time complexity for CURE: 𝑂 𝑁2 𝑙𝑜𝑔2𝑁 .
 This is prohibitive for very large data sets.
 Solution: Adoption of the random sampling technique.
 The size 𝑁´ of a sample data set 𝑋´, created from 𝑋, via random sampling,
 should be sufficiently large in order to ensure that the probability of
 missing a cluster due to sampling is low.

The CURE (Clustering Using Representatives) algorithm
Clustering Using Representatives- Random Sampling (CURE-RS(X))

Identification of clusters
Partition randomly X into 𝑝 = 𝑁/𝑁´ sample data sets, 𝑋1, 𝑋2, … , 𝑋𝑝.
For 𝑖 = 1 to 𝑝
• Run CURE-RS(Xi) and return the 𝑘

𝑖 clustering with 𝑁´/𝑞 clusters (at
the most) (𝑞 is user-defined).

End – For
Set 𝑋’ = 𝑘

1 ∪𝑘
2 ∪⋯∪𝑘

𝑝
Run CURE(X’) and determine the most appropriate clustering 𝑚′.

Assignment of points to clusters
For each of the 𝑚 clusters of 𝑚′ select a random sample of 𝑘

representative points.
Assign each point 𝒙 that is not cluster representative to the cluster that

contains the representative closest to it.

The algorithm starts from the ′
𝑝∗
𝑁′

𝑞

(≡ ′𝑁
𝑞

)

and ends with the 𝑚′ clustering

Only the 𝑘 representatives from each cluster
are considered.

The CURE (Clustering Using Representatives) algorithm
Remarks:
• CURE is sensitive to the parameters 𝑘, 𝑁´, 𝑎. Specifically:
 k must be large enough to capture the geometry of each cluster.
𝑁´ must be higher than a certain percentage of N (typically 𝑁´ ≥ 2.5% 𝑁)
For small 𝑎 CURE behaves like the single-link algorithm, while for large 𝑎 it

resembles the algorithms that use a single point representative for each
cluster.

• Worst case time complexity for CURE using random sampling: 𝑂(𝑁´2 log 𝑁´2)

• The algorithm exhibits low sensitivity to outliers within the clusters.
• A few stages before its termination, CURE checks for clusters containing very

few data points and removes them (since they are likely to be outliers).
• If 𝑁´/𝑞 is sufficiently large, compared to 𝑚, it is expected that the partition

of X will not affect significantly the final clustering obtained by CURE.
• CURE can, in principle, reveal clusters of non-spherical or elongated shapes,

as well as clusters of wide variance in size.
• CURE can be implemented efficiently using the heap and the k-d tree data

structures.

The ROCK (RObust Clustering using linKs) algorithm
 It is best suited for nominal (categorical) features.

 Some preliminaries

• Two points 𝒙, 𝒚𝑋 are considered neighbors if 𝑠(𝒙, 𝒚)  𝜃, where 𝑠(.) is
a similarity function and 𝜃 a user-defined similarity threshold between
two vectors (0 ≤ 𝑠(𝒙, 𝒚) ≤ 1 and, consequently, 0 ≤ 𝜃 ≤ 1).

• 𝑙𝑖𝑛𝑘(𝒙, 𝒚) is the number of common neighbors between x and y.

 Assumption: There exists a function 𝑓(𝜃) (< 1) such that:

“Each point assigned to a cluster 𝐶𝑖 has approximately 𝑛𝑖
𝑓(𝜃) neighbors in

𝐶𝑖 (𝑛𝑖 is the number of points in 𝐶𝑖) ”

It can be proved that the expected total number of links among all pairs

in 𝐶𝑖 is 𝑛𝑖
1+2𝑓(𝜃).

In the graph whose vertices correspond to data points and
edges connect neighboring points, 𝑙𝑖𝑛𝑘(𝒙, 𝒚) is the number

of distinct paths of length 2 that connect 𝒙, 𝒚.

𝑙𝑖𝑛𝑘 𝐶𝑖 = 𝑙𝑖𝑛𝑘(𝒙, 𝒚)

𝒚∈𝐶𝑖𝒙∈𝐶𝑖

The ROCK (RObust Clustering using linKs) algorithm
 ROCK is a special case of GAS where

•The closeness between two clusters is defined as

𝑔 𝐶𝑖 , 𝐶𝑗 =
𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗

𝑛𝑖 + 𝑛𝑗
1+2𝑓 𝜃

− 𝑛𝑖
1+2𝑓 𝜃 − 𝑛𝑗

1+2𝑓 𝜃

 The denominator is the expected total number of links between the two
 clusters.
 The larger the 𝑔(∙), the more similar the clusters 𝐶𝑖 and 𝐶𝑗 are .

The stopping criterion is:

•the number of clusters becomes equal to a predefined number 𝑚 or

• 𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗 = 0 for every pair in a clustering 𝑡.

Time complexity for ROCK: Similar to CURE for large 𝑁.
Prohibitive for very large data sets.
Solution: Adoption of random sampling techniques.

𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗 = 𝑙𝑖𝑛𝑘(𝒙, 𝒚)

𝒚∈𝐶𝑗𝒙∈𝐶𝑖

The ROCK (RObust Clustering using linKs) algorithm
 ROCK utilizing Random Sampling

•Identification of clusters
Select a subset 𝑋´ of 𝑋 via random sampling
Run the original ROCK algorithm on 𝑋´

•Assignment of points to clusters
For each cluster 𝐶𝑖 select a set 𝐿𝑖 of 𝑛𝐿𝑖 points

For each 𝒛𝑋 − 𝑋´
oCompute 𝑡𝑖 = 𝑁𝑖/(𝑛𝐿𝑖 + 1)

𝑓(𝜃), where 𝑁𝑖 is the no of neighbors of 𝒛 in 𝐿𝑖.

oAssign 𝒛 to the cluster with the maximum 𝑡𝑖 .

Remarks:
•A choice for 𝑓(𝜃) is 𝑓(𝜃) = (1 − 𝜃)/(1 + 𝜃), with (𝜃 < 1).

• 𝑓(𝜃) depends on the data set and the type of clusters we are interested in.

•The hypothesis about the existence of 𝑓(𝜃) is very strong. It may lead to poor

results if the data do not satisfy it.

• It can be used for discrete-valued data sets.

The ROCK (RObust Clustering using linKs) algorithm
An application:
•Grouping the customers of supermarket according to their purchases.
•Each customer (entity) is represented by the set of goods he/she buys
(categorical data representation).
•The similarity between two customers may be quantified via the Jaccard
coefficient

•For example, assuming that 𝑇1 = 𝐴, 𝐵, 𝐶 , 𝑇2 = 𝐴, 𝐵, 𝐷 , 𝑇3 = 𝐴, 𝐵, 𝐷, 𝐸
are the sets corresponding to three customers, it is

𝐽 𝑇1, 𝑇1 =
3
3 = 1, 𝐽 𝑇1, 𝑇2 =

2
4 = 0.5, 𝐽 𝑇1, 𝑇3 =

2
5 = 0.4,

 𝐽 𝑇2, 𝑇3 =
3
4 = 0.75

Choosing 𝜃 = 0.45, 𝑇1 and 𝑇2 are neighbors, 𝑇2 and 𝑇3 are neighbors but

𝑇1 and 𝑇3 are not neighbors. However, 𝑇1 and 𝑇3 share a common neighbor.

•For this application, a good choice for 𝑓(𝜃) is 𝑓(𝜃) = (1 − 𝜃)/(1 + 𝜃), with
(𝜃 < 1).

For two finite sets 𝑇𝑖and 𝑇𝑗, the

Jaccard coefficient is defined as

𝐽 𝑇𝑖 , 𝑇𝑗 =
𝑇𝑖∩𝑇𝑗

𝑇𝑖∪𝑇𝑗

The ROCK (RObust Clustering using linKs) algorithm

𝑔 𝐶𝑖 , 𝐶𝑗 =
𝑙𝑖𝑛𝑘 𝐶𝑖 , 𝐶𝑗

𝑛𝑖 + 𝑛𝑗
1+2𝑓 𝜃

− 𝑛𝑖
1+2𝑓 𝜃 − 𝑛𝑗

1+2𝑓 𝜃

Example: Consider a three-cluster clustering 𝐶1, 𝐶2, 𝐶3 , where the number
of points in each one of them is 𝑛1 = 500, 𝑛2 = 500 and 𝑛3 = 100,
respectively.

Define 𝑓(𝜃) as 𝑓 𝜃 =
1−𝜃

1+𝜃
, with 𝜃 =

1

3
.

Let 𝑙𝑖𝑛𝑘 𝐶1, 𝐶2 = 100 and 𝑙𝑖𝑛𝑘 𝐶1, 𝐶3 = 100.
Compute 𝑔(𝐶1, 𝐶2) and 𝑔(𝐶1, 𝐶3) and draw your conclusions

Answer: It is 1 + 2𝑓 𝜃 = 1 + 2
1−𝜃

1+𝜃
= 1 + 2

1−
1

3

1+
1

3

= 2,

(𝑛1 + 𝑛2)
1+2𝑓(𝜃)−𝑛1

1+2𝑓 𝜃 −𝑛2
1+2𝑓 𝜃 = 500 + 500 2 − 5002 − 5002

= 500000

(𝑛1 + 𝑛3)
1+2𝑓(𝜃)−𝑛1

1+2𝑓 𝜃 −𝑛3
1+2𝑓 𝜃 = 500 + 100 2 − 5002 − 1002

= 100000

Then 𝑔 𝐶1, 𝐶2 =
100

500000
= 0.0002 and 𝑔 𝐶1, 𝐶3 =

100

100000
= 0.001

Thus, among the clusters that have the same degree of similarity with 𝐶1 wrt
the 𝑙𝑖𝑛𝑘(.) criterion, according to the normalized link criterion (𝑔(∙)) 𝐶1 is
more similar with the smallest cluster (𝐶3), and not with the equally sized 𝐶3.

The Chameleon algorithm
 This algorithm is not based on a “static” modeling of clusters like CURE

(where each cluster is represented by the same number of
representatives) and ROCK (where constraints are posed through the
function 𝑓(𝜃)).

 It enjoys both divisive and agglomerative features.

 Some preliminaries:

Let 𝐺 = (𝑉, 𝐸) be a graph where:
• each vertex of 𝑉 corresponds to a data point in 𝑋.
• 𝐸 is a set of edges connecting pairs of vertices in 𝑉. Each edge is

weighted by the similarity of the corresponding points.

• Edge cut set: Let 𝐶 be a set of points corresponding to a subset of 𝑉.
 Assume that 𝐶 is partitioned into two nonempty sets 𝐶𝑖 and 𝐶𝑗.
 The subset 𝐸′𝑖𝑗 of the edges of E that connect points of 𝐶𝑖 with points

 of 𝐶𝑗 is called edge cut set.

The Chameleon algorithm
• Minimum cut set: Let 𝐶 be a set of points corresponding to a subset of 𝑉.

If 𝐸´𝑖𝑗 = 𝑚𝑖𝑛 𝐶𝑢,𝐶𝑣 : 𝐶𝑢∪𝐶𝑣=𝐶 𝐸′𝑢𝑣 , then (𝐶𝑖 , 𝐶𝑗) is the minimum cut set of 𝐶,

where |𝐸´𝑢𝑣| be the sum of weights of the edges in 𝐸´𝑢𝑣.

• Minimum cut bisector: If 𝐶𝑖, 𝐶𝑗 are constrained to be of approximate

 equal size, the minimum cut set (over all possible partitions of
 approximately equal size) is known as the minimum cut bisector.

Example: The graph in the following figure consists of the 5 vertices and the
edges shown, each one weighted by the similarity of the points that
correspond to the vertices it connects. The minimum cut set and the
minimum cut bisector are shown.

The Chameleon algorithm
Measuring the similarity between clusters

Relative interconnectivity:
Let 𝐸𝑖𝑗 be the set of edges connecting points in 𝐶𝑖 with points in 𝐶𝑗.

Let 𝐸𝑖 be the set of edges corresponding to the minimum cut bisector of 𝐶𝑖.
Let |𝐸𝑖|, |𝐸𝑖𝑗| be the sum of the weights of the edges of 𝐸𝑖, 𝐸𝑖𝑗, respectively.

Absolute interconnectivity between 𝐶𝑖, 𝐶𝑗 = |𝐸𝑖𝑗|

Internal interconnectivity of 𝐶𝑖 = |𝐸𝑖|
Relative interconnectivity between 𝐶𝑖, 𝐶𝑗:

𝑅𝐼𝑖𝑗 =
|𝐸𝑖𝑗|

𝐸𝑖 + |𝐸𝑗|
2

Relative closeness:
Let 𝑆𝑖𝑗 be the average weight of the edges in 𝐸𝑖𝑗 .

Let 𝑆𝑖 be the average weight of the edges in 𝐸𝑖 .
Relative closeness between 𝐶𝑖 and 𝐶𝑗:

𝑅𝐶𝑖𝑗 =
𝑆𝑖𝑗

𝑛𝑖
𝑛𝑖 + 𝑛𝑗

𝑆𝑖 +
𝑛𝑗
𝑛𝑖 + 𝑛𝑗

𝑆𝑗

𝑛𝑖, 𝑛𝑗: Number of

points in 𝐶𝑖, 𝐶𝑗, resp.

The Chameleon algorithm
The Chameleon algorithm
Preliminary phase
Create a 𝑘-nearest neighbor graph 𝐺 = (𝑉, 𝐸) such that:
• Each vertex of 𝑉 corresponds to a data point.
• The edge between two vertices 𝑣𝑖 and 𝑣𝑗 is added to 𝐸 if 𝑣𝑖 is one of the

𝑘-nearest neighbors of 𝑣𝑗 or vise versa.

• Each connected component of the resulting graph is associated with a
cluster. Let  be the clustering consisting of these clusters.

Divisive phase
Set 0 = 

𝑡 = 0
Repeat
• 𝑡 = 𝑡 + 1
• Select the largest cluster 𝐶 in 𝑡−1.
• Referring to 𝐸, partition 𝐶 into two sets so that:

the sum of the weights of the edge cut set between the resulting
 clusters is minimized.
each cluster contains at least 25% of the vertices of 𝐶.

Until each cluster in 𝑡 contains fewer than 𝑞 points.

The Chameleon algorithm
The Chameleon algorithm (cont)
Agglomerative phase
Set ′0 = 𝑡
𝑡 = 0
Repeat

• 𝑡 = 𝑡 + 1
•Merge 𝐶𝑖, 𝐶𝑗 in ′𝑡−1 to a single cluster if
 𝑅𝐼𝑖𝑗𝑇𝑅𝐼 and 𝑅𝐶𝑖𝑗𝑇𝑅𝐶 (A)
 (if more than one 𝐶𝑗 satisfy the conditions for a given 𝐶𝑖, the 𝐶𝑗 with the
 highest |𝐸𝑖𝑗| is selected).

Until (A) does not hold for any pair of clusters in ′𝑡−1.
Return ′𝑡−1

ΝΟΤΕ: The internal structure of two clusters to be merged is of significant
importance. The more similar the elements within each cluster the higher
“their resistance” in merging with another cluster.

The Chameleon algorithm
Remarks:

• Condition (A) can be replaced by 𝐶𝑖 , 𝐶𝑗 = 𝑚𝑎𝑥 𝐶𝑢,𝐶𝑣 𝑅𝐼𝑢𝑣 ∙ 𝑅𝐶𝑢𝑣
𝑎

• Chameleon is not very sensitive to the choice of the user-defined

parameters 𝑘 (typically it is selected between 5 and 20), 𝑞 (typically
chosen in the range 1% to 5% of the total number of data points), 𝑇𝑅𝐼,
𝑇𝑅𝐶 and/or 𝑎.

• Chameleon is well suited for large data sets (more accurate estimation of

𝐸𝑖𝑗 , 𝐸𝑖 , 𝑆𝑖𝑗, 𝑆𝑖)

• For large 𝑁, the worst-case time complexity of the algorithm is
𝑂(𝑁(log 𝑁2 +𝑚)), where 𝑚 is the number of clusters formed by the
divisive phase.

The Chameleon algorithm
Example: For the clusters shown in
the figure we have:

|𝐸1| = 0.48, |𝐸2| = 0.48,

|𝐸3| = 1.45, |𝐸4| = 1.45,

|𝑆1| = 0.48, |𝑆2| = 0.48,

|𝑆3| = 0.725, |𝑆4| = 0.725,

|𝐸12| = 0.4, |𝐸34| = 0.6,

|𝑆12| = 0.4, |𝑆34| = 0.6.

Thus,

𝑅𝐼12 = 0.833, 𝑅𝐼34 = 0.414

𝑅𝐶12 = 0.833, 𝑅𝐶34 = 0.828

In conclusion: Both 𝑅𝐼 and 𝑅𝐶 favor
the merging 𝐶1 and 𝐶2 against the
merging of 𝐶3 and 𝐶4.

Note that the single-link algorithm
would merge 𝐶3 and 𝐶4 instead of
𝐶1 and 𝐶2.

The values in the figure
stand for similarities.

All edge weights which
are not denoted explicitly

are equal to 0.9.

