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Indicative exercises for clustering algorithms 

Solved exercises 

Exercise 1 (proximity measures): Prove that the Euclidean distance between two 𝑙-dimensional vectors 

𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 and 𝒚 = [𝑦1, … , 𝑦𝑙]

𝑇, 𝑑(𝒙, 𝒚) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑙
𝑖=1  , is a metric dissimilarity measure. 

Hint: The Minkowski inequality states that for two 𝑙-dimensional vectors 𝒙 = [𝑥1, … , 𝑥𝑙]
𝑇 and 𝒚 =

[𝑦1, … , 𝑦𝑙]
𝑇 and a positive integer 𝑝, it holds (∑ |𝑥𝑖 + 𝑦𝑖|

𝑝𝑙
𝑖=1 )

1
𝑝⁄ ≤ (∑ |𝑥𝑖|

𝑝𝑙
𝑖=1 )

1
𝑝⁄ + (∑ |𝑦𝑖|

𝑝𝑙
𝑖=1 )

1
𝑝⁄
 

Solution: In order to prove that 𝑑(𝒙, 𝒚) is a metric dissimilarity measure, we need to prove that it possesses 

all the following properties: 

(a) ∃𝑑0 ∈ 𝑅, so that 𝑑0 ≤ 𝑑(𝒙, 𝒚) < +∞, for all 𝒙, 𝒚 ∈ 𝑅𝑙 

(b) 𝑑(𝒙, 𝒙) = 𝑑0, for all 𝒙 ∈ 𝑅𝑙 

(c) 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙), for all 𝒙, 𝒚 ∈ 𝑅𝑙 

(d) 𝑑(𝒙, 𝒚) = 𝑑0 ⟺ 𝒙 = 𝒚 

(e) 𝑑(𝒙, 𝒛) ≤ 𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛), for all 𝒙, 𝒚, 𝒛 ∈ 𝑅𝑙 

For (a): It is straightforward to see that for any two vectors 𝒙 and 𝒚, it is 0 ≤ 𝑑(𝒙, 𝒚). Therefore, in this 

case, it is 𝑑0 = 0. 

For (b): It is 𝑑(𝒙, 𝒙) = √∑ (𝑥𝑖 − 𝑥𝑖)2𝑙
𝑖=1 = 0 ≡ 𝑑0 

For (c): It is 𝑑(𝒙, 𝒚) = √∑ (𝑥𝑖 − 𝑦𝑖)2𝑙
𝑖=1 = √∑ (𝑦𝑖 − 𝑥𝑖)2𝑙

𝑖=1 = 𝑑(𝒚, 𝒙) 

For (d): It is 𝑑(𝒙, 𝒚) = 𝑑0 ⟺ √∑ (𝑥𝑖 − 𝑦𝑖)2𝑙
𝑖=1 = 0 ⟺ 𝑥𝑖 = 𝑦𝑖 , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑙 ⟺ 𝒙 = 𝒚 

For (e): Here, the Minkowski inequality will be utilized. It is  

𝑑(𝒙, 𝒛) = (∑ |𝑥𝑖 − 𝑧𝑖|
2

𝑙

𝑖=1
)

1
2⁄

= (∑ |(𝑥𝑖 − 𝑦𝑖) + (𝑦𝑖 − 𝑧𝑖)|
2

𝑙

𝑖=1
)

1
2⁄

 

≤ (∑ |𝑥𝑖 − 𝑦𝑖|
2

𝑙

𝑖=1
)

1
2⁄

+ (∑ |𝑦𝑖 − 𝑧𝑖|
2

𝑙

𝑖=1
)

1
2⁄

= 𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛) 

Therefore, since the Euclidean distance possesses all the properties from (a) to (e), it follows that it is a 

metric dissimilarity measure.   Q.E.D. 
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Exercise 2 (proximity measures): Prove that the distance between for two 𝑙-dimensional vectors 𝒙 =

[𝑥1, … , 𝑥𝑙]
𝑇 and 𝒚 = [𝑦1, … , 𝑦𝑙]

𝑇, defined as 𝑑(𝒙, 𝒚) = √∑ (𝑥𝑖
2 − 𝑦𝑖

2)2𝑙
𝑖=1  is a dissimilarity measure but 

not a metric. 

Solution: In order to prove that 𝑑(𝒙, 𝒚) is a dissimilarity measure, we need to prove that it possesses all the 

following three properties: 

(a) ∃𝑑0 ∈ 𝑅, so that 𝑑0 ≤ 𝑑(𝒙, 𝒚) < +∞, for all 𝒙, 𝒚 ∈ 𝑅𝑙 

(b) 𝑑(𝒙, 𝒙) = 𝑑0, for all 𝒙 ∈ 𝑅𝑙 

(c) 𝑑(𝒙, 𝒚) = 𝑑(𝒚, 𝒙), for all 𝒙, 𝒚 ∈ 𝑅𝑙 

For (a): It is straightforward to see that for any two vectors 𝒙 and 𝒚, it is 0 ≤ 𝑑(𝒙, 𝒚). Therefore, in this 

case, it is 𝑑0 = 0. 

For (b): It is 𝑑(𝒙, 𝒙) = √∑ (𝑥𝑖
2 − 𝑥𝑖

2)2𝑙
𝑖=1 = 0 ≡ 𝑑0 

For (c): It is 𝑑(𝒙, 𝒚) = √∑ (𝑥𝑖
2 − 𝑦𝑖

2)2𝑙
𝑖=1 = √∑ (𝑦𝑖

2 − 𝑥𝑖
2)2𝑙

𝑖=1 = 𝑑(𝒚, 𝒙) 

Therefore, since the distance 𝑑(∙,∙) possesses all the properties from (a) to (c), it follows that it is a 

dissimilarity measure. 

In order to prove that it is not a metric, we need to prove that at least one of the following two properties are 

not possessed by the distance under study: 

(d) 𝑑(𝒙, 𝒚) = 𝑑0 ⟺ 𝒙 = 𝒚 

(e) 𝑑(𝒙, 𝒛) ≤ 𝑑(𝒙, 𝒚) + 𝑑(𝒚, 𝒛), for all 𝒙, 𝒚, 𝒛 ∈ 𝑅𝑙 

For (d): It is 𝑑(𝒙, 𝒚) = 𝑑0 ⟺ √∑ (𝑥𝑖
2 − 𝑦𝑖

2)2𝑙
𝑖=1 = 0 ⟺ 𝑥𝑖

2 = 𝑦𝑖
2, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… , 𝑙 ⟺ 𝑥𝑖 =

±𝑦𝑖, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… , 𝑙 

This implies that there exist vectors that although they are different, they have the minimum possible 

distance value (for example, for 𝑙=3, the vectors 𝒙 = [2, 3, 4]𝑇, 𝒚 = [2,−3, −4]𝑇, although they are 

different, their distance is equal to 0). Therefore the distance under study, is not a metric.  Q.E.D. 

 

Exercise 3 (k-means cost function optimization algorithm): 

Consider the data set 𝑌 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5 }, where 𝒙1 = [0, 0]𝑇, 𝒙2 = [3, 0]𝑇, 𝒙3 = [0, 6]𝑇, 𝒙4 = [0, 7]𝑇, 

𝒙5 = [−3, 7]𝑇.  

(a) Run the k-means clustering algorithm, for two representatives, 𝜽1and 𝜽2, whose initial positions are 

𝜽1(0) = [1, 6]𝑇 and 𝜽2(0) = [0, 8]𝑇, respectively. Report the formed clusters, along with their 

respective representatives. 
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(b) What would be the clustering result for the case where 𝜽2(0) = [0, 20]𝑇? 

(c) How many clusters will be obtained if three representatives where employed? 

Solution: We remind that, at each iteration of the k-means algorithm, two processing steps are involved. At 

the first one the data vectors are assigned to the clusters (each data vector 𝒙 is assigned to the cluster whose 

representative is closest to 𝒙, in terms of the squared Euclidean distance)  and at the second one each cluster 

representative 𝜽𝑗  is re-estimated (as the mean of the data vectors that belong to the respective cluster). 

Based on this, we proceed as follows: 

1
st
 iteration 

1
st
 step: The squared Euclidean distances of each data point from the two representatives are given in the 

following table 

 𝜽1(0) = [1, 6]𝑇 𝜽2(0) = [0, 8]𝑇 

𝒙1 = [0, 0]𝑇 (0 − 1)2 + (0 − 6)2 = 𝟑𝟕 (0 − 0)2 + (0 − 8)2 = 𝟔𝟒 

𝒙2 = [3, 0]𝑇 (3 − 1)2 + (0 − 6)2 = 𝟒𝟎 
(3 − 0)2 + (0 − 8)2 = 𝟕𝟑 

𝒙3 = [0, 6]𝑇 (0 − 1)2 + (6 − 6)2 = 𝟏 
(0 − 0)2 + (6 − 8)2 = 𝟒 

𝒙4 = [0, 7]𝑇 (0 − 1)2 + (7 − 6)2 = 𝟐 
(0 − 0)2 + (7 − 8)2 = 𝟏 

𝒙5 = [−3, 7]𝑇 (−3 − 1)2 + (7 − 6)2 = 𝟏𝟕 
(−3 − 0)2 + (7 − 8)2 = 𝟏𝟎 

Since:  

||𝒙1 − 𝜽1(0)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙1 − 𝜽𝑗(0)||2, 𝒙1 is assigned to cluster 𝐶1. 1 

||𝒙2 − 𝜽1(0)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙2 − 𝜽𝑗(0)||2, 𝒙1 is assigned to cluster 𝐶1. 

||𝒙3 − 𝜽1(0)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙3 − 𝜽𝑗(0)||2, 𝒙1 is assigned to cluster 𝐶1. 

||𝒙4 − 𝜽2(0)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙4 − 𝜽𝑗(0)||2, 𝒙1 is assigned to cluster 𝐶2. 

||𝒙5 − 𝜽2(0)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙5 − 𝜽𝑗(0)||2, 𝒙1 is assigned to cluster 𝐶2. 

Thus, 𝐶1 = {𝒙1, 𝒙2, 𝒙3} and 𝐶2 = {𝒙4, 𝒙5}. 

2
nd

 step: Letting 𝑛1 = 3 and  𝑛2 = 2 be the cardinalities of 𝐶1 and 𝐶2, respectively,  the cluster 

representatives are re-estimated as 

𝜽1 ≡ 𝜽1(1) =
1

𝑛1
∙ (𝒙1 + 𝒙2 + 𝒙3) =

1

3
∙ ([

0
0
] + [

3
0
] + [

0
6
]) =

1

3
∙ [

3
6
] = [

1
2
]  

and 

                                                           
1
 Note that cluster 𝐶1 (𝐶2) is associated with the representative 𝜽1 (𝜽2). 



 

Indicative exercises for clustering - Koutroumbas Page 4 
 

𝜽2 ≡ 𝜽2(1) =
1

𝑛2
∙ (𝒙4 + 𝒙5) =

1

2
∙ ([

0
7
] + [

−3
7

]) =
1

2
∙ [

−3
14

] = [
−1.5

7
]  

2
nd

 iteration 

1
st
 step: The squared Euclidean distances of each data point from the two representatives are given in the 

following table 

 𝜽1(1) = [1, 2]𝑇 𝜽2(1) = [−1.5, 7]𝑇  

𝒙1 = [0, 0]𝑇 (0 − 1)2 + (0 − 2)2 = 𝟓 (0 − (−1.5))2 + (0 − 7)2 = 𝟓𝟏. 𝟐𝟓 

𝒙2 = [3, 0]𝑇 (3 − 1)2 + (0 − 2)2 = 𝟖 
(3 − (−1.5))2 + (0 − 7)2 = 𝟔𝟗. 𝟐𝟓 

𝒙3 = [0, 6]𝑇 (0 − 1)2 + (6 − 2)2 = 𝟏𝟕 
(0 − (−1.5))2 + (6 − 7)2 = 𝟑. 𝟐𝟓 

𝒙4 = [0, 7]𝑇 (0 − 1)2 + (7 − 2)2 = 𝟐𝟔 
(0 − (−1.5))2 + (7 − 7)2 = 𝟐. 𝟐𝟓 

𝒙5 = [−3, 7]𝑇 (−3 − 1)2 + (7 − 2)2 = 𝟒𝟏 
(−3 − (−1.5))2 + (7 − 7)2 = 𝟐. 𝟐𝟓 

Since:  

||𝒙1 − 𝜽1(1)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙1 − 𝜽𝑗(1)||2, 𝒙1 is assigned to cluster 𝐶1. 

||𝒙2 − 𝜽1(1)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙2 − 𝜽𝑗(1)||2, 𝒙1 is assigned to cluster 𝐶1. 

||𝒙3 − 𝜽2(1)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙3 − 𝜽𝑗(1)||2, 𝒙1 is assigned to cluster 𝐶2. 

||𝒙4 − 𝜽2(1)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙4 − 𝜽𝑗(1)||2, 𝒙1 is assigned to cluster 𝐶2. 

||𝒙5 − 𝜽2(1)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙5 − 𝜽𝑗(1)||2, 𝒙1 is assigned to cluster 𝐶2. 

Thus, 𝐶1 = {𝒙1, 𝒙2 } and 𝐶2 = {𝒙3, 𝒙4, 𝒙5}. 

2
nd

 step: Noting that the cardinalities of 𝐶1 and 𝐶2 are 𝑛1 = 2 and  𝑛2 = 3, respectively, the cluster 

representatives are re-estimated as 

𝜽1 ≡ 𝜽1(2) =
1

𝑛1
∙ (𝒙1 + 𝒙2) =

1

2
∙ ([

0
0
] + [

3
0
]) =

1

2
∙ [

3
0
] = [

1.5
0

]  

and 

𝜽2 ≡ 𝜽2(2) =
1

𝑛2
∙ (𝒙3 + 𝒙4 + 𝒙5) =

1

3
∙ ([

0
6
] + [

0
7
] + [

−3
7

]) =
1

3
∙ [

−3
20

] = [
−1
6.7

]  

3
rd

 iteration 

1
st
 step: The squared Euclidean distances of each data point from the two representatives are given in the 

following table 
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 𝜽1(2) = [1.5, 0]𝑇 𝜽2(2) = [−1, 6.7]𝑇 

𝒙1 = [0, 0]𝑇 (0 − 1.5)2 + (0 − 0)2 = 𝟐. 𝟐𝟓 (0 − (−1))2 + (0 − 6.7)2 = 𝟒𝟓. 𝟖𝟗 

𝒙2 = [3, 0]𝑇 (3 − 1.5)2 + (0 − 0)2 = 𝟐. 𝟐𝟓 
(3 − (−1))2 + (0 − 6.7)2 = 𝟔𝟎. 𝟖𝟗 

𝒙3 = [0, 6]𝑇 (0 − 1.5)2 + (6 − 0)2 = 𝟑𝟖. 𝟐𝟓 
(0 − (−1))2 + (6 − 6.7)2 = 𝟏. 𝟒𝟗 

𝒙4 = [0, 7]𝑇 (0 − 1.5)2 + (7 − 0)2 = 𝟓𝟏. 𝟐𝟓 
(0 − (−1))2 + (7 − 6.7)2 = 𝟏. 𝟎𝟗 

𝒙5 = [−3, 7]𝑇 (−3 − 1.5)2 + (7 − 0)2 = 𝟔𝟗. 𝟐𝟓 
(−3 − (−1))2 + (7 − 6.7)2 = 𝟒. 𝟎𝟗 

Since:  

||𝒙1 − 𝜽1(2)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙1 − 𝜽𝑗(2)||2, 𝒙1 is assigned to cluster 𝐶1. 

||𝒙2 − 𝜽1(2)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙2 − 𝜽𝑗(2)||2, 𝒙1 is assigned to cluster 𝐶1. 

||𝒙3 − 𝜽2(2)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙3 − 𝜽𝑗(2)||2, 𝒙1 is assigned to cluster 𝐶2. 

||𝒙4 − 𝜽2(2)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙4 − 𝜽𝑗(2)||2, 𝒙1 is assigned to cluster 𝐶2. 

||𝒙5 − 𝜽2(2)||2 = 𝑚𝑖𝑛𝑗=1,2||𝒙5 − 𝜽𝑗(2)||2, 𝒙1 is assigned to cluster 𝐶2. 

Thus, 𝐶1 = {𝒙1, 𝒙2 } and 𝐶2 = {𝒙3, 𝒙4, 𝒙5}. 

2
nd

 step: Noting that the cardinalities of 𝐶1 and 𝐶2 are 𝑛1 = 2 and  𝑛2 = 3, respectively, the cluster 

representatives are re-estimated as 

𝜽1 ≡ 𝜽1(3) =
1

𝑛1
∙ (𝒙1 + 𝒙2) =

1

2
∙ ([

0
0
] + [

3
0
]) =

1

2
∙ [

3
0
] = [

1.5
0

]  

and 

𝜽2 ≡ 𝜽2(3) =
1

𝑛2
∙ (𝒙3 + 𝒙4 + 𝒙5) =

1

3
∙ ([

0
6
] + [

0
7
] + [

−3
7

]) =
1

3
∙ [

−3
20

] = [
−1

20
3⁄
] . 

Since the values of 𝜽𝑗’s, 𝑗 = 1,2, remain unaltered for two successive iterations (2
nd

 and 3
rd

), the algorithm 

terminates (equivalently, we can say that since the clustering of the data points remain unaltered for two 

successive iterations, the algorithm terminates). The resulting clusters are 𝐶1 = {𝒙1, 𝒙2 } and 𝐶2 =

{𝒙3, 𝒙4, 𝒙5} and the respective cluster representatives are 𝜽1 = [
1.5
0

] and 𝜽2 = [
−1

20
3⁄
]. 

The evolution of the algorithm is shown in the following figure. 
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(b) Applying the k-means algorithm for this initialization scenario, we will see that all data points lie closer 

to 𝜽1(0) than 𝜽2(0) (alternatively, we can say that 𝜽2(0) does not “win” on any data point). Thus, the k-

means will return a single cluster containing all the data points, or, strictly speaking, 

𝐶1 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5 } and 𝐶2 = ∅. Cluster 𝐶1 is represented by  

𝜽1 ≡ 𝜽1(1) =
1

𝑛1
∙ (𝒙1, +𝒙2 + 𝒙3 + 𝒙4 + 𝒙5) =

1

5
∙ ([

0
0
] + [

3
0
] + [

0
6
] + [

0
7
] + [

−3
7

]) = 
1

5
∙ [

0
20

] = [
0
4
]. 

(d) In general, the data set will be split into three clusters, provided that each representative “wins” on at 

least one data point. 

 

Exercise 4 (Matrix theory-based hierarchical clustering): Consider the following dissimilarity matrix: 

 

 

 

where the corresponding squared Euclidean distance is adopted. Run the seven agglomerative matrix-based 

clustering algorithms and determine the resulting clustering hierarchy, as well as the dissimilarity levels 

where the clusterings are produced.  

 

-4 -3 -2 -1 0 1 2 3 4
-1

0

1

2

3

4

5

6

7

8

9

𝒙1 𝒙2 

𝒙3 

𝒙4 
𝒙5 

𝜽1(0) 

𝜽2(0) 

𝜽1(1) 

𝜽1(2) 

𝜽2(1) 

𝜽2(2) 
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Solution: As one can easily observe, the first three vectors, 𝒙1, 𝒙2, and 𝒙2, are very close to each other and 

far away from the others. Likewise, 𝒙4 and 𝒙5 lie very close to each other and far away from the first three 

vectors. 

 

For this problem all seven algorithms discussed before result in the same dendrogram. The only difference is 

that each clustering is formed at a different dissimilarity level. Of cource, the initial clustering is ℜ0 =
{{𝒙1}, {𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}}. Let us first consider the single link algorithm. Since 𝑃0 is symmetric, we 

consider only the upper diagonal elements. The smallest of these elements equals 1 and occurs at position 

(1,2) of 𝑃0. Thus, 𝒙1 and 𝒙2 come into the same cluster and ℜ1 = {{𝒙1, 𝒙2}, {𝒙3}, {𝒙4}, {𝒙5}} is produced. In 

the sequel, the dissimilarities among the newly formed cluster and the remaining ones have to be computed. 

This can be achieved via Eq. (2)
2
. The resulting proximity  matrix, 𝑃1, is 

 

𝑃1 = [

0 2
2 0

25 36
16 25

25 16
36 25

0 1.5
1.5 0

] 

 

Its first row and column correspond to the cluster {𝒙1, 𝒙2}. The smallest of the upper diagonal elements of 

𝑃1 equals 1.5. This means that at the next stage, the clusters {𝒙4} and {𝒙5} will stick together into a single 

cluster, producing ℜ2 = {{𝒙1, 𝒙2}, {𝒙3}, {𝒙4, 𝒙5}}. Employing Eq. (13.4), we obtain 

 

𝑃2 = [
0 2 25
2 0 16
25 16 0

] 

 

where the first row (column) corresponds to {𝒙1, 𝒙2}, and the second and third rows (columns) correspond to 

{𝒙3} and {𝒙4, 𝒙5}, respectively. Proceeding as before, at the next stage {𝒙1, 𝒙2} and {𝒙3} will get together in 

a single cluster and ℜ3 = {{𝒙1, 𝒙2, 𝒙3}, {𝒙4, 𝒙5}}  is produced. The new proximity matrix, 𝑃3, becomes 

 

𝑃3 = [
0 16
16 0

] 

 

where the first and the second row (column) correspond to {𝒙1, 𝒙2, 𝒙3} and {𝒙4, 𝒙5} clusters, respectively. 

Finally, ℜ4 = {{𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}} will be formed at dissimilarity level equal to 16. 

 

Working in a similar fashion, we can apply the remaining six algorithms to 𝑃0.
3
  

However, care must be taken when we apply UPGMA, UPGMC, and Ward’s method. In these cases, when a 

merging takes place the parameters 𝑎𝑖 , 𝑎𝑗 , 𝑏, and c in  

𝑑(𝐶𝑞 , 𝐶𝑠) = 𝑎𝑖𝑑(𝐶𝑖, 𝐶𝑠) + 𝑎𝑗(𝑑(𝐶𝑗 , 𝐶𝑠) + 𝑏𝑑(𝐶𝑖, 𝐶𝑗) + 𝑐|𝑑(𝐶𝑖, 𝐶𝑠) − 𝑑(𝐶𝑗, 𝐶𝑠)| 
must be properly adjusted. The proximity levels at which each clustering is formed for each algorithm are 

shown in Table 1. 

 

                                                           
2
 All references are referred to the slides of the 9

th
 lecture. 

3 Note that in the case of Ward’s algorithm, the initial dissimilarity matrix should be 12 ∙ 𝑃0, due to the definition of the distance 

𝑑´𝑖𝑗 between 𝐶𝑖 and 𝐶𝑗 is defined as 

  𝑑´𝑖𝑗 =
𝑛𝑖 𝑛𝑗

𝑛𝑖+𝑛𝑗
 ||𝒎𝑖 − 𝒎𝑗||2 

where 𝒎𝑖 and 𝒎𝑗 are the mean vectors associated with 𝐶𝑖 and 𝐶𝑗, respectively. 
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The considered task is a nice problem with two well-defined compact clusters lying away from each other. 

The preceding example demonstrates that in such “easy” cases all algorithms work satisfactorily (as happens 

with most of the clustering algorithms proposed in the literature). The particular characteristics of each 

algorithm are revealed when more demanding situations are faced. 

 

 SL CL WPGMA UPGMA WPGMC UPGMC Ward 

0 0 0 0 0 0 0 0 

1 1 1 1 1 1 1 0.5 

2 1.5 1.5 1.5 1.5 1.5 1.5 0.75 

3 2 3 2.5 2.5 2.25 2.25 1.5 

4 16 37 25.75 27.5 24.69 26.46 31.75 

 

Table 4.1: The Results Obtained with the Seven Algorithms Discussed when they are applied to the 

proximity matrix of Example 1. 

 

 

 

Exercise 5 (graph theory-based hierarchical clustering): Consider the following dissimilarity matrix: 

 

 

Let ℎ(𝑘) be the node degree property with 𝑘 =  2; that is, it is required that each node has at least two 

incident edges. Derive the associated dissimilarity dendrogram. 

Figure 1 shows the 𝐺(13) proximity graph produced by this dissimilarity matrix. Then the obtained 

threshold dendrogram is shown in Figure 2a. At dissimilarity level 1, 𝒙1 and 𝒙2 form a single cluster. This 

happens because {𝒙1}  ∪  {𝒙2} is complete at 𝐺(1), despite the fact that property ℎ(2) is not satisfied 

(remember the disjunction between conditions (b1) and (b2) in Eq. (4)). Similarly, {𝒙6}  ∪  {𝒙7} forms a 

cluster at dissimilarity level 2. The next clustering is formed at level 4, since {𝒙5}  ∪  {𝒙6, 𝒙7} becomes 

complete in 𝐺(4).  

At level 6, 𝒙4, 𝒙5, 𝒙6, and 𝒙7 lie for the first time in the same cluster. Although this subgraph is not 

complete, it does satisfy ℎ(2). Finally, at level 9, 𝒙1, 𝒙2, and 𝒙3 come into the same cluster. Note that, 

although all nodes in the graph have node degree equal to 2, the final clustering will be formed at level 10 

because at level 9 the graph is not connected. Assume now that ℎ(𝑘) is the node connectivity property, with 
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𝑘 = 2; that is, all pairs of nodes in a connected subgraph are joined by at least two paths having no nodes in 

common. The dissimilarity dendrogram produced in this case is shown in Figure 2b. Finally, the 

dissimilarity dendrogram produced when the edge connectivity property with 𝑘 =  2 is employed is shown 

in Figure 2c. 

 

 
Figure 5.1: The proximity graph G(13) derived by the dissimilarity matrix P given in Exercise 5. 

 

 
Figure 5.2: Dissimilarity dendrograms related to Exercise 5. (a) Dissimilarity dendrogram produced when 

ℎ(𝑘) is the node degree property, with 𝑘 =  2. (b) Dissimilarity dendrogram produced when ℎ(𝑘) is the 

node connectivity property, with 𝑘 =  2. (c) Dissimilarity dendrogram produced when ℎ(𝑘) is the edge 

connectivity property, with 𝑘 =  2. 

 

Exercise 6 (Spectral clustering): Consider the data set 𝑋 = {𝒙1, 𝒙2, 𝒙3, 𝒙4, 𝒙5}, where 𝒙1 = [0, 0]𝑇, 𝒙2 =

[0, 1]𝑇, 𝒙3 = [5, 0]𝑇, 𝒙4 = [5, 1]𝑇, 𝒙5 = [4, 1]𝑇. Perform spectral clustering using the 1-NN for the 

construction of the similarity graph (initial phase). The weight of the edges in the graph will be computed 

via the equation 𝑠(𝒙𝑖, 𝒙𝑗) = exp (− ||𝒙𝑖 − 𝒙𝑗||
2
). 
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Solution: Construction of the similarity matrix: It is 𝑠(𝒙1, 𝒙2) = exp(− ||[
0
0
] − [

0
1
]||

2

) = exp(−1) =

0.3679 ≈ 0.4. In the same spirit, we compute the similarities between any pair of points and we end up with the 

following similarity matrix
4
 

𝑆 =

[
 
 
 
 
1.0 0.4 0.0
0.4 1.0 0.0
0.0 0.0 1.0

0.0 0.0
0.0 0.0
0.4 0.1

0.0 0.0 0.4
0.0 0.0 0.1

1.0 0.4
0.4 1.0]

 
 
 
 

 

Construction of the similarity graph: From the first row of matrix 𝑆, it follows that the nearest neighbor of 

𝒙1 is 𝒙2,  

the nearest neighbor of 𝒙2 is 𝒙1, 

the nearest neighbor of 𝒙3 is 𝒙4, 

the nearest neighbor of 𝒙4 is 𝒙3 (we could take 𝒙5 instead), 

the nearest neighbor of 𝒙5 is 𝒙4. 

Thus, the similarity graph 𝐺 = (𝑉, 𝐸), consists of five vertices, i.e., 𝑉 = {𝒗1, 𝒗2, 𝒗3, 𝒗4, 𝒗5}, each one 

corresponding to a data point, while the set of edges is 𝐸 = {𝑒12, 𝑒34, 𝑒45}. The associated weighted 

adjacency matrix is 

𝑊 =

[
 
 
 
 
1.0 0.4 0.0
0.4 1.0 0.0
0.0 0.0 1.0

0.0 0.0
0.0 0.0
0.4 0.0

0.0 0.0 0.4
0.0 0.0 0.0

1.0 0.0
0.4 1.0]

 
 
 
 

 

Construction of the Laplacian matrix: The degree matrix and the (unnormalized) Laplacian matrices are, 

respectively 

𝐷 =

[
 
 
 
 
1.4 0.0 0.0
0.0 1.4 0.0
0.0 0.0 1.4

0.0 0.0
0.0 0.0
0.0 0.0

0.0 0.0 0.0
0.0 0.0 0.0

1.4 0.0
0.0 1.4]

 
 
 
 

 and 𝐿 = 𝐷 − 𝑊 =

[
 
 
 
 
+0.4 −0.4 0.0
−0.4 +0.4 0.0
0.0 0.0 +0.4

0.0 0.0
0.0 0.0

−0.4 0.0
0.0 0.0 −0.4
0.0 0.0 0.0

+0.4 0.0
−0.4 +0.4]

 
 
 
 

 

Determination of the zero eigenvalues and the associated eigenvectors of 𝐿: It is 

𝑑𝑒𝑡(𝐿 − 𝜆𝛪) = |
|

0.4 − 𝜆 −0.4 0.0
−0.4 0.4 − 𝜆 0.0
0.0 0.0 0.4 − 𝜆

0.0 0.0
0.0 0.0

−0.4 0.0
0.0 0.0 −0.4
0.0 0.0 0.0

0.4 − 𝜆 0.0
−0.4 0.4 − 𝜆

|
| = −𝜆 |

|

1 −0.4 0.0
1 0.4 − 𝜆 0.0

0.0 0.0 0.4 − 𝜆

0.0 0.0
0.0 0.0

−0.4 0.0
0.0 0.0 −0.4
0.0 0.0 0.0

0.4 − 𝜆 0.0
−0.4 0.4 − 𝜆

|
| 

= (−𝜆)2
||

1 −0.4 0.0

1 0.4 − 𝜆 0.0

0.0 0.0 1

0.0 0.0

0.0 0.0

−0.4 0.0
0.0 0.0 1

0.0 0.0 1

0.4 − 𝜆 0.0

−0.4 0.4 − 𝜆

|| 

                                                           
4
 The precision is up to the first decimal. 
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The equation 𝑑𝑒𝑡(𝐿 − 𝜆𝛪) = 0 has two zero eigenvalues
5
. 

The eigenvectors 𝒙 corresponding to a zero eigenvalue of 𝐿 should satisfy 𝐿𝒙 = 0𝒙. It is clear the for the 

vectors 𝒖1 = [1,1,0,0,0]𝑇, 𝒖2 = [0,0,1,1,1]𝑇 it is  

𝐿 ∙ 𝒖1 =

[
 
 
 
 
+0.4 −0.4 0.0

−0.4 +0.4 0.0

0.0 0.0 +0.4

0.0 0.0

0.0 0.0

−0.4 0.0
0.0 0.0 −0.4

0.0 0.0 0.0

+0.4 0.0

−0.4 +0.4]
 
 
 
 

[
 
 
 
 
1
1
0
0
0]
 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

= 0 ∙ 𝒖1 

𝐿 ∙ 𝒖2 =

[
 
 
 
 
+0.4 −0.4 0.0

−0.4 +0.4 0.0

0.0 0.0 +0.4

0.0 0.0

0.0 0.0

−0.4 0.0
0.0 0.0 −0.4

0.0 0.0 0.0

+0.4 0.0

−0.4 +0.4]
 
 
 
 

[
 
 
 
 
0
0
1
1
1]
 
 
 
 

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

= 0 ∙ 𝒖2 

Thus, these are the eigenvectors associated with the zero eigenvalues. 

Construction of the 𝑈 matrix: It is 

𝑈 =

[
 
 
 
 
1
1
0

0
0
1

0
0

1
1]
 
 
 
 
≡
≡
≡

𝒚1

𝒚2

𝒚3

≡
≡

𝒚4

𝒚5

→
→
→

𝒙1

𝒙2

𝒙3

→
→

𝒙4

𝒙5

 

 

 
The 𝑖-th data vector is mapped to a vector in a new two-dim. space whose coordinates are the 𝑖-th associated 

coordinates of the two eigenvectors. Thus, the final clustering in the transformed space consists of the 

clusters 𝐶′1 = {𝒚1, 𝒚2} and 𝐶′2 = {𝒚3, 𝒚4, 𝒚5}. Thus the clustering of the original data consists of the clusters  

𝐶1 = {𝒙1, 𝒙2} and 𝐶2 = {𝒙3, 𝒙4, 𝒙5}. 

 

Indicative questions 

Question 1: Consider a clustering task where the involved 𝑁 entities are represented in a two-dimensional 

feature space associated with the real-valued features 𝑥1 and 𝑥2. The 𝑥1 values of the entities are ranged in 

[0,1], while the 𝑥2 values of the entities are ranged in [0,1000] (assume also that the 𝑁 𝑥1 values are 

uniformly arranged in [0,1] and the 𝑁 𝑥2 values are uniformly arranged in [0,1000]). Propose a 

transformation of the original feature space, so that the distance between any two vectors to be equally 

influenced by both feature values. 

Hint: If 𝑎 ≤ 𝑥 ≤ 𝑏, then 𝑐 ≤ 𝑐 +
𝑥−𝑎

𝑏−𝑎
(𝑑 − 𝑐) ≤ 𝑑 

 

Note 1: You should be able to compute the overlap distance between two discrete-valued data vectors. 
                                                           
5
 The determinant left has no additional zero eigenvalues, since if we set λ=0 to it, all the columns of the determinant are 

independent. 
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Question 2: What are the differences between the mean vector, the mean center and the median center of 

cluster? 

 

Question 3: In the case where elongated clusters are formed by the data vectors of a data set, what kind of 

representatives you would use in the establishment a relevant clustering algorithm? Is there any case where 

the adoption of point representatives would work satisfactory in this case? 

 

Question 4: In the data set the is depicted graphically below run the BSAS algorithm for 𝛩 = 2 and 𝑞 = 2 

starting from 𝒙1 and then from 𝒙15. What is the resulting clusterings for the two cases? Are they identical? 

 

 

Question 5: Consider the following data set. What will be the result of (a) the k-means, (b) the fuzzy c-

means and (c) the possibilistic algorithms for (a) three, (b) four and (c) five representatives, starting from 

different initial conditions? 
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Question 6: Derive a cost function optimization clustering algorithm based on a certain cost function 

𝐽(𝛩, 𝑈), where 𝛩 is the set of the parameter vectors associated with the clusters and 𝑈 is a matrix whose (i,j) 

quantifies the relationship between the 𝑖-th vector and the 𝑗-th cluster. 

Hint: An iterative two-step procedure will be followed: At the first step 𝑈 will be updated for fixed 𝛩 and at 

the second step 𝛩 will be updated for fixed 𝑈. The kind of representatives will be decided based on the 

shape of the clusters formed by the data. 

 

Question 7: Propose a way for estimating the true number of clsuters, using an algorithm that (a) does not 

take as input the number of clusters and (b) it does require knowledge of the number of clusters. 

Hint: Remember the plots with (a) the large “plateau” and (b) the significant “knee”. 

 

Question 8: Is it possible for the k-medoids algorithm to be derived using tools from mathematical analysis 

(e.g., gradients etc)? 

 

Question 9: Determine the threshold graph 𝐺(3) and the dissimilarity graph 𝐺𝑝(3) for the data set whose 

associated proximity matrix is  

 

 

 

Answer:  

 

Question 10: Determine the node connectivity, the edge connectivity and the node degree of the graph. 

 

Hint: See the slides. 

























01.15.27.64.7

1.104.17.54.6

5.24.102.45

7.67.52.401

4.74.6510

)(XP
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Question 11: Propose ways for determining the natural clustering from a hierarchy of clusterings that best 

describes the data. 

Hint: See slides (e.g., intrinsic and extrinsic methods) 

 

Question 12: What is the main approach in dealing with large data sets, in the hierarchical clustering 

algorithms case? 

Hint: Sampling. 

 

Question 13: If the neighboring edges of a given edge (of weight 30) in the MST associated with a data set 

have weights 2, 3, 5, 1 and 𝑞 = 2, is the above edge “unusually large”? 

Hint: See slides (graph-algorithm based on the MST). 

 

Question 14: How many data points are in the region of influence defined by two data points (in the 

algorithm based on regions of influence). 

 

Question 15: Consider the two-cluster task shown below. Consider the basic competitive and the leaky 

learning scheme and assume that two representatives are considered. The first one lies in the middle of the 

two clsuters and the other one far away from both. What will be the result of each one of the clusters? 

 

Question 16: Is the point 𝒙 (a) directly density reachable, (b) density reachable and (c) density connected 

with 𝒚 (DBSCAN 𝑞 = 5)? 

-4 -2 0 2 4 6 8 10
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Question 17: We apply different clustering algorithms on a certain data set and we end up with 𝐾 different 

clusterings. We would like to combine all of them in order to take a single representative clustering. Define 

the corresponding co-association matrix and run a hierarchical algorithm. 

 

Question 18: Subspace clustering algorithms have been designed for identifying clusters that live in the 

same subspace of the original feature space (yes/no). 

Answer: No 

 

Question 19: Cosnider the Rand measure that measures the agreement between two clustering structures. 

When it takes its minimum and maximum values and what are they? 

Answer: Maximum value (1) – perfect match, Minimum value (0) – perfect mismatch 


