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Hans Rosling -  Let my dataset change your mindset - TED@State 2009 

Let my dataset change your mindset - TED@State 2009

A person on a stage with a projector screen in front of a crowd

Description automatically generated with medium confidence

https://www.ted.com/talks/hans_rosling_let_my_dataset_change_your_mindset
https://www.ted.com/talks/hans_rosling_let_my_dataset_change_your_mindset


William Allen: The politics of big data, migration, and mobility

▪ W. Allen, “The politics of big data, migration, and mobility,” 
presented at the Ανοικτές Διαλέξεις/Συζητήσεις: Μεγάλα 
Δεδομένα, Νέα Μέσα, Ζητήματα Τεκμηρίωσης: Μαθαίνοντας 
από πρωτοπόρα εγχειρήματα, Εθνικό Κέντρο Τεκμηρίωσης 
(ΕΚΤ), 08-May-2019.

https://helios-eie.ekt.gr/EIE/handle/10442/16208


How charts lie

▪ More about how charts can be misleading

2020 19832019
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What makes charts “lie”?

▪ Charts that “lie” by being poorly designed

▪ Charts that “lie” by displaying dubious data

▪ Charts that “lie” by displaying insufficient data

▪ Charts that “lie” by concealing or confusing uncertainty

▪ Charts that “lie” by suggesting misleading patterns

Cairo, 2020 
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What makes bad figures “bad”?

▪ “Bad” aesthetics

▪ needless frills (3D, poor/unnecessary colors, chartjunk)

▪ “Bad” use of data

▪ basically cooking the data to make it look how you want

▪ “Bad” perception

▪ encoding between data and visual properties mislead us
Healy, 2019 
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Bad aesthetics

▪ Chartjunk: “ornamental and often saccharine design flourishes 
that impede understanding”

Tufte, 1983 The dot-headed figures to convey quantities 

clutter the chart without adding information
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Bad aesthetics

▪ Is this a good figure?

▪ What’s good? What’s bad?
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Bad aesthetics

▪ Is this a good figure?

▪ What’s good? What’s bad?
`Monstrous Costs’ by Nigel Holmes



Bad aesthetics

▪ Is this a good figure?

▪ What’s good? What’s bad?



Bad aesthetics

▪ Is this a good figure?

▪ What’s good? What’s bad?



Bad aesthetics

▪ Is this a good figure?

▪ What’s good? What’s bad?
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Bad aesthetics

“Above all else, show the data”

                                Edward Tufte
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Data Visualization Aesthetics

▪ no chart junk, a clear message

Wall Street Journal, 2015

https://soundcloud.com/jschwabish/jon-andy-talk-dataviz-aesthetics
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Data Visualization Aesthetics

▪ no chart junk, a clear message

Wall Street Journal, 2015

https://soundcloud.com/jschwabish/jon-andy-talk-dataviz-aesthetics
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Data Visualization Aesthetics

▪ Simple, clear message

https://public.tableau.com/app/profile/whitney6892/viz/bostonrunners/Dashboard1

A screen shot of a computer screen

Description automatically generated

https://public.tableau.com/app/profile/whitney6892/viz/bostonrunners/Dashboard1
https://public.tableau.com/app/profile/whitney6892/viz/bostonrunners/Dashboard1


“Bad” use of data

▪ Charts that “lie” by displaying dubious data

▪ Charts that “lie” by displaying insufficient data

▪ Charts that “lie” by concealing or confusing uncertainty

▪ Charts that “lie” by suggesting misleading patterns
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Bad use of data

▪ Chart junk
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Bad use of data

▪ No chart junk

https://www.forbes.com/sites/tomiogeron/2012/02/02/does-ios-crash-more-than-android-a-data-dive/

https://www.forbes.com/sites/tomiogeron/2012/02/02/does-ios-crash-more-than-android-a-data-dive/
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Bad use of data

The “Best Pie Chart Ever”!

https://flowingdata.com/2009/11/26/fox-news-makes-the-best-pie-chart-ever/
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Bad use of data

▪ horrific use of 3D

▪ undesirable optical 
effect of the gridlines

▪ incorrect display of 
the data as a series 
of connected boxes

▪ item labels 
misaligned with the 
tick marks, and 
taking up far too 
much of the graphic 
display area

http://www.kastenmarine.com/_pdf/mbqMetRef.pdf
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Bad use of data

▪ 3D distorts the data, adds unnecessary details
A picture containing fence

Description automatically generated

UoA School of Science, 2020

http://deansos.uoa.gr/an8ropino-dynamiko.html
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Bad use of data

▪ 3D distorts the data, adds unnecessary details
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(Bad) use of data

▪ “boring” but readable
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Bad use of data

▪ 3D distorts the data, adds unnecessary details



M126 Data Viz | Roussou

(Bad) use of data

▪ “boring” but readable



▪ The bar chart makes it easy to see how they compare to each other. 

▪ The pie chart makes it easier to see how each console compares to 
the whole

▪ A bar chart makes it easier to estimate the actual amount compared 
to a pie chart if you don't have the actual values displayed. 

▪ Bar charts are better the more categories you have as the slices of 
the pie get smaller and harder to discern with more and more 
categories. 

▪ In an analysis tool you may need both views simultaneously, and 
then additional visualizations to see the values over time.
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Bad use of data

▪ What’s wrong with this graph?

Foa, Roberto Stefan, and Yascha Mounk. “The Signs of 
Deconsolidation.” Journal of Democracy 28, no. 1 (2017): 5–16.

https://www.journalofdemocracy.org/articles/the-signs-of-deconsolidation/
https://www.journalofdemocracy.org/articles/the-signs-of-deconsolidation/
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Bad use of data

▪ redrawing based using the average response

Erik Voeten
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Bad use of data

▪ How Trump uses a deceptive chart to lie about the border 

The data in the chart itself are accurate, but the Trump campaign editorial notes are not. The red arrow at the bottom purports to correspond to the point 

that “Trump leaves office” and to be the “lowest illegal immigration in recorded history!” But the arrow actually points to April 2020, when there were 
16182 apprehensions at the southwest border.

A graph of immigration

Description automatically generated with medium confidence

https://www.factcheck.org/2024/04/trumps-misleading-chart-on-illegal-immigration

A stage with a large screen with a person standing on a stage

Description automatically generated

https://www.factcheck.org/2024/04/trumps-misleading-chart-on-illegal-immigration
https://www.factcheck.org/2024/04/trumps-misleading-chart-on-illegal-immigration
https://edition.cnn.com/2024/08/26/politics/fact-check-trump-immigration-chart/index.html
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Bad use of data: truncated Y-Axis

▪ messing with the y-axis of a bar graph, line graph, or scatter plot (e.g., 
starting the range from a number other than 0)
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Bad use of data: truncated Y-Axis

▪ Exact same data, but different scales for the y-axis

y-axis range 3.140% to 3.154% y-axis with a zero baseline
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Bad use of data: truncated Y-Axis

▪ Exact same data, but different scales for the y-axis
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Bad use of data: truncated Y-Axis

▪ Exact same data, but different scales for the y-axis
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(Bad) use of data: choice of Y-Axis

▪ Exact same data, but different scales for the y-axis
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Bad use of data

▪ Hard to read numbers (plus the unnecessary use of 3D)
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(Bad) use of data

▪ Same data but population values have commas, in 2D
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Use of data: choice of design, text

▪ exact same data, changes in orientation, title, color

Simon Scarr (2011), 
in the South China Morning Post

Andy Cotgreave (2016), 
on InfoWorld

http://www.simonscarr.com/iraqs-bloody-toll
https://gravyanecdote.com/uncategorized/should-you-trust-a-data-visualisation/
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Use of data: choice of design, text

▪ exact same data, changes in orientation, title, color

https://gravyanecdote.com/blog/makeovermonday/makeovermonday-the-next-to-die-capital-punishment-in-the-us/
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Bad use of data

▪ Scaling issues…
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Bad use of data: Y-Axis height

▪ Messing with height to make it seem much larger than it is
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Bad use of data: Y-Axis height

▪ Messing with height to make it seem much larger than it is
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Bad use of data: dual axes

▪ y-axes on the left and the right

Spurious correlations 
http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations
http://www.tylervigen.com/spurious-correlations


Bad perception

▪ Visualizations encode numbers in lines, shapes, and colors. That 
means that our interpretation of these encodings is partly 
conditional on how we perceive geometric shapes and 
relationships generally.

▪ Poorly-encoded data can be misleading
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Bad perception

▪ The 3D columns in combination with the default angle of view for the chart make the values as 
displayed differ substantially from the ones actually in the cell. 

▪ Each column appears to be somewhat below its actual value.
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Bad perception: mapping data to visual encodings

▪ even without junk, it can be a challenge

The overall trend is readily interpretable, and it is also possible to easily follow the 
over-time pattern of the category that is closest to the x-axis baseline (Type D, 
colored in purple). But the fortunes of the other categories are not so easily 
grasped. Comparisons of both the absolute and the relative share of Type B or C 
are much more difficult. Relative comparisons need a stable baseline.

total value

subdivisions by the 
relative contribution 
of different 
categories to each 
year’s observation
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Cherry picking

▪ Suppressing evidence, or the fallacy of incomplete evidence = pointing 
to individual cases or data that seem to confirm a particular position 
while ignoring a significant portion of related and similar cases or data 
that may contradict that position. 
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Bad perception: aspect ratios

▪ Aspect ratios affect our perception of rates of change



The Lie Factor

▪ Graphs rely on our understanding that a number is represented 
visually by the magnitude of some graphical element. 

The representation of numbers, as physically measured on the surface of 
the graphic itself, should be directly proportional to the quantities 

represented.

Tufte, 1983, p.57

▪ The violation of this principle is measured by the

   size of effect in graphic 

   size of effect in data
Lie ratio = 



The Lie Factor

This NY Times graph purports to show the mandated fuel 
economy standards set by the US Dept. of Transportation. The 
standard required an increase in mileage from 18 to 27.5, an 
increase of 53%. The magnitude of increase in the graph is 783%

lie factor = (783/53) = 14.8! 



The Lie Factor

Changes in the scale of the graphic should always correspond to 
changes in the data being represented. This graph violates that 
principle by using area to show the data

lie factor = 2.8



So, should we trust a data visualization?

▪ Debate 

https://youtu.be/Ybwh4lejYO4
https://www.theguardian.com/news/datablog/2013/jul/24/why-you-should-never-trust-a-data-visualisation
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Visual perception



Visual perception

▪ Looking at pictures of data means looking at lines, shapes, and colors. 

▪ Our visual system works in a way that makes some things easier for us to 
see than others.

Hermann Grid Effect, 1870



Visual perception

▪ When the gray bars share a boundary, the apparent contrast between them 
appears to increase. 

▪ Our visual system is trying to construct a representation of what it is looking at 
based more on relative differences in the luminance (or brightness) of the bars, 
rather than their absolute value.

Mach bands



Visual perception

▪ The role of background contrasts: The same shade of gray is perceived very 
differently depending on whether it is against a darker background or a lighter 
one.  

▪ We are better at distinguishing darker shades than we are at distinguishing lighter 
ones.

▪ We do better at distinguishing very light shades of gray when they are set against 
a light background. When set against a dark background, differences in the 
middle-range of the light-to-dark spectrum are easier to distinguish.



Visual perception

▪ Our visual system is attracted to edges, and we assess contrast and brightness in terms 
of relative rather than absolute values.

▪ To figure out the shade of the squares on the floor, we compare it to the nearby squares, 
and we also discount the shadows cast by other objects. 

The checkershadow illusion (Edward H. Adelson)
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Edges, contrasts, and colors

▪ Our visual system is attracted to edges

▪ Our ability to see edge contrasts is stronger for monochrome images than for 
color. 

Ware (2008, p. 71) 
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Color

▪ To label

▪ To emphasize

▪ To liven or decorate
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Color

▪ Color in data visualization introduces a number of 
complications (Zeileis & Hornik, 2006).

▪ Colors, generally, should be reserved for a 3rd (or 4th, 5th, etc.) 
variable
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Color – HSL scale

▪ Hue – Chroma – Luminance color model
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Color – HSL scale

Three components:

▪ Hue = light wave length
▪ Blue (Β) < Green (G) < Red (R)

▪ The average person perceives ~150 hues

▪ Luminance = lightness of color

▪ Saturation = density of color = how “clean” = 
quantitiy of white light

The “name” of the color
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Color

Color is important for:

▪ Categorization, grouping, distnguishing

▪ Facilitate search

▪ perception:

▪ Red = danger

▪ Blue = cool

▪ Orange = warm

▪ Good for novice users

▪ Beware of too much color
(«color pollution»)

▪ Beware of the foreground – background contrast
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Color palettes (using the HCL color model)

▪ Types of color palletes:

▪ Sequential

▪ Diverging

▪ Qualitative

The goal in each case is to generate a perceptually 
uniform scheme, where hops from one level to the 
next are seen as having the same magnitude.
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Types of data and appropriate color palettes

▪ Sequential

▪ Quantitative or ordinal data

▪ Diverging

▪ Quantitative or ordinal data 
with a meaningful midpoint

▪ Qualitative

▪ Nominal data
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Palletes: Sequential
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Palletes: Diverging
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Palletes: Qualitative (unordered)
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Visual perception: color – color blindness

Ishihara color test plates

https://en.wikipedia.org/wiki/Ishihara_color_test_plate
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▪ This is what it looks like to someone who is color blind

Visual perception: color – color blindness
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Color Coding

Large areas = low saturation

Small areas = high saturation
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Good use of color
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Problematic use of color

the values change 
smoothly, but the 
colors do not



guidelines

▪ Use color only when necessary (avoid unnecessary textures and 
colors)

▪ Saturated colors for small areas, labels

▪ Less saturated colors for large areas, backgrounds

▪ Do not pick colors in an ad hoc way: use tools like ColorBrewer 
2.0

▪ avoid producing plots that confuse people who are color blind

http://colorbrewer2.org/
http://colorbrewer2.org/
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Pre-Attentive Processing

▪ How many 3s ?

08028085080830802809850-802808

567847298872ty4582020947577200

21789843890r455790456099272188

897594797902855892594573979209
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Pre-Attentive Processing (Pops out)

▪ How many 3s ?

08028085080830802809850-802808

567847298872ty4582020947577200

21789843890r455790456099272188

897594797902855892594573979209
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Pre-Attentive Processing (Pops out)

▪ How many 3s?
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Pre-Attentive Processing (Pops out)

▪ How many 3s?

Slow, sequential, conscious

Rapid, parallel, automatic
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Task: (distracted) search

▪ Which side has the red circle?
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Task: (distracted) search

▪ Which side has the red circle?
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Task: (distracted) search
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Task: (distracted) search

▪ Which side has the red circle?
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Task: (distracted) search

▪ Which side has the red circle?
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Task: (distracted) search

▪ Searching for the blue circle becomes progressively harder...

▪ Shape and color are two distinct channels: pop-out on the color channel is stronger 
than it is on the shape channel
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Visual perception: Gestalt principles

1. Proximity
2. Similarity
3. Continuity
4. Closure
5. Symmetry

6. Figure/ground
7. Common fate
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Visual perception: Gestalt principles

▪ Proximity: Things that are spatially near to one another seem to 
be related.
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Visual perception: Gestalt principles

▪ Similarity: Things that look alike seem to be related.
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Visual perception: Gestalt principles

▪ Similarity: Things that look alike seem to be related.
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Visual perception: Gestalt principles

▪ Similarity: Things that look alike seem to be related.
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Visual perception: Gestalt principles

▪ Closure: Incomplete shapes are perceived as complete.
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Visual perception: Gestalt principles

▪ Closure: Incomplete shapes are perceived as complete.

Γραμματοσειρά σε πινακίδα στο Ιστορικό Μουσείο Κρήτης, 2019
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Visual perception: Gestalt principles

▪ Closure: Incomplete shapes are perceived as complete.

Γραμματοσειρά σε πινακίδα στην Εθνική Πινακοθήκη, 2022
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Visual perception: Gestalt principles

▪ Closure: Incomplete shapes are perceived as complete.
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Visual perception: Gestalt principles

▪ Continuity: Partially hidden objects are completed into familiar 
shapes.
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Visual perception: Gestalt principles

▪ Continuity: Partially hidden objects are completed into familiar 
shapes.
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Visual perception: Gestalt principles

▪ Figure and Ground: Visual elements are taken to be either in 
the foreground or the background.



Visual perception: Gestalt principles

▪ We look for structure all the time



Interpreting and understanding graphs

▪ Schematic representation of basic perceptual tasks for nine chart types.

▪ Participants were asked to make comparisons of highlighted portions of 
each chart type, and say which was smaller. 

Cleveland & McGill, 1984, 1987
Heer and Bostock
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what types of plots do we understand best?
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what types of plots do we understand best?

performance worsens substantially as we move away from comparison on a common scale to length-
based comparisons to angles and finally areas. Area comparisons perform even worse than the 
(justifiably) much-maligned pie chart.
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Important for Design of Visualizations

▪ Do not

▪ Put too much in two axes (produce separate plots instead)

▪ Truncate axes

▪ Use 3D unnecessarily

▪ Do 

▪ Show the data

▪ Be as clear as possible

▪ Let the data tell the story
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Check out

▪ Bach, M. 136 Optical Illusions & Visual Phenomena

▪ Visual Complexity 

▪ Perceptual Edge

▪ Edward Tufte website

https://michaelbach.de/ot/
http://www.visualcomplexity.com/vc/blog/
http://www.perceptualedge.com/blog/
https://www.edwardtufte.com/
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References & further reading

▪ Tufte, E. R. (2001). The Visual Display of Quantitative Information (2nd ed.). 
Graphics Press.

▪ Ware, C. (2013). Information Visualization: Perception for Design (3rd 
Editio). Morgan Kaufmann.

▪ Zhang, J. (1997). The Nature of External Representations in Problem Solving. 
Cognitive Science, 21(2), 179–217. Retrieved from 
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog2102_3

▪ Current approaches to change blindness Daniel J. Simons. Visual Cognition 
7, 1/2/3 (2000), 1-15.

▪ Semiology of Graphics, Jacques Bertin, Gauthier-Villars 1967, EHESS 1998

https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog2102_3
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Thank you!

mroussou@di.uoa.gr

http://eclass.uoa.gr/courses/DI411/

mailto:mroussou@di.uoa.gr
http://eclass.uoa.gr/courses/DI411/
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