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A Critical Reflection on Visualization Research:
Where Do Decision Making Tasks Hide?
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Fig. 1: Well-established taxonomies ranging from low to high-level visualization tasks [4, 19, 85]. The red annotations illustrate
our main research question: Has decision making been studied explicitly within visualization research, and, if not, should it?

Abstract— It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We
conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching
decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies.
Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization
field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of
visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand
the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how
decision making assistance could be elevated throughout visualization research.

Index Terms—decision making, data, visualization, visual analytics, taxonomies, task

1 INTRODUCTION

The introduction section of many seminal books about visualization
emphasizes that a vital goal of data visualization is to assist deci-
sion making activities. Bertin, in 1983, suggested that visualization
is to enable “the decision maker to discover what should be said and
done” [14]. Cook & Thomas, in 2005, illuminated an era where visual
analytics will be used in a “massive, multi-dimensional, multi-source,
time-varying information stream to make decisions in a time-critical
manner.” [37]. Munzner, in 2014, included decision making as a struc-
tural element of her definition of visualization, as the case where de-
cisions are made by humans, contrasting this with “computational de-
cision making” where visualization usage is redundant [111]. To illus-
trate the potential of data visualization, almost all use case examples in
Spence’s book involve a decision making task (e.g., a car purchase), to
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which visualization helps the decision maker to untangle “fuzzy” goals,
derive data, interact and annotate, all shaping a “mental model” that
will finally lead to an informed choice [150]. Ward et al., in 2015, was
even more explicit about the importance of decision making as being
the absolute reason “why visualization is important” assisting the deci-
sion maker to manage the “information overflow” [167]. More recent
books, by Tominski & Schumann (2020) and Ware (2021), in the same
spirit suggest that visualizations are to facilitate “flexible decision mak-
ing” via user “guidance” [155] while “the goal of most visualization is
decision making”, respectively [168].

These books do not claim decision making is the only important
high-level goal of visualization; they do include and describe other
goals such as sensemaking, exploratory analysis, or presentation as
well. However, in all these seminal visualization books, references to
decision making stop at an introductory or overview level. The rest
of the content guides the reader on how to select visual encodings
based on perceptual principles or which visualizations better support
users in various analytic tasks, such as to discover a correlation or
monitor a trend over time. There is a notable lack of discussion on how
users make decisions with visualized data or how we should design
visualizations to eventually facilitate a decision making task.

Now, one might argue that decision making is too high-level or too
ambiguous to be discussed within visualization fundamentals. But,
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other tasks such as “exploratory analysis” or “sensemaking” that are
arguably even more ambiguous than decision making have their de-
served place in visualization theory. Additionally, decision making is
not an ambiguous goal; it is the subject of systematic study in other
fields including psychology, cognitive science, economics, and man-
agement science. Echoing such systematic study, two seminal papers
by van Wijk (2005) and Fekete et al. (2008) argue that the final de-
cisions of visualization users constitute a better and more operational-
izable way of assessing the value of data visualization than more am-
biguous goals such as “insight” or the amount of extracted “knowl-
edge” [52,161]. Ware (2021) similarly advocates that “Most studies
have only compared parallel tasks for perception of basic patterns but
the whole point of these visualization techniques is to support decision
making where many variables are involved” [168]. Another hypothe-
sis for the lack of deeper study of decision making is that it maintains
a hierarchical, perhaps even dependent, relationship with other visu-
alization tasks. That is, decision making includes those tasks or they
include it. But if this is the case, one should, at a minimum, be able to
find some discussion of that relationship between tasks/goals.

Presumably, despite its consensually agreed importance, the study
of decision making still lacks an explicit tie to visualization research.
To be able to truly improve decision making, the field of visualization
needs to build a deeper understanding of just what decision making is
and how we can study it more explicitly.

To assist that goal, we contribute an extensive systematic literature
review of: (i) theory and empirical visualization papers on the topic of
decision making, (ii) visualization techniques and systems that aim to
aid decision making activities (iii) visualization task taxonomy papers,
(iv) visualization scholarly books. We seek solid evidence to verify or
refute our hypothesis that visualization research has largely lacked a
systematic study of and connection to decision making. Our primary
contribution is a synthesis of this literature through the lens of decision
making tasks to identify gaps in taxonomies, theories, and user studies.
Additionally, we explain potential reasons for the omission of decision
making tasks, and we provide actionable suggestions for visualization
via a research agenda. We hope all these components can help broaden
the impact of visualization to decision making activities.

2 BACKGROUND:
VISUALIZATION RESEARCH & DECISION MAKING

Visualization books, as reviewed in the introduction, refer to decision
making at an introductory or overview discussion level. To better un-
derstand the state of decision making-related research in the visualiza-
tion community, we examined academic papers related to this topic.
We first describe the rules we applied in order to identify a feasible
core of seminal visualization papers that contribute to our understand-
ing of human decisions.

2.1 Methodology for Paper Selection

Arguably, any well-designed visualization can potentially contribute
to data-informed decisions. We narrowed our scope to visualization
papers which appear explicit in their contribution to decision making
activities. To identify such papers, we applied the following criteria.
We started with a pool of visualization papers that contain the word
“decision” in title or abstract. We considered all years of all major
visualization venues resulting in 301 initial papers: TVCG (108 pa-
pers), InfoVis (9), VAST (22), EuroVis (93), and CHI (69). For CHI,
as it is not a venue targeted to visualization, we also included the word
“visualization” in the query. We considered only full-length papers
excluding extended abstracts, posters, and workshop papers, except
BELIV(7). We then removed papers where the word decision in the
abstract did not refer to human user decisions, but instead to other de-
cisions such as designer decisions, algorithmic decisions, as well as
duplicate entries. We also removed a few papers that did not contain
data visualizations (e.g., a VR experience without data). For TVCG,
InfoVis and VAST, we searched in the IEEE Computer Society Digital
Library (computer.org/csdl/). For CHI and BELIV, we used the ACM
Digital Library (dl.acm.org). For EuroVis, we used the DSpace plat-
form of the Eurographics Digital Library (diglib.eg.org). We also used
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Fig. 2: An overview stacked area chart of the 123 visualization pa-
pers of our literature review (TVCG, VAST, InfoVis, EuroVis, CHI,
BELIV) which contain the word “decision” in their abstract/title.

Google Scholar for complementary searches because we spotted some
missing entries or invalid links within the original digital libraries.

Our methodology resulted in 123 visualization papers (shown in
Fig. 2), from TVCG (62), InfoVis (4), VAST (12), CHI (23),
EuroVis (17), and BELIV (5). We note that while the afore-
mentioned venue selection helped us identify a large and rele-
vant collection of papers, we might have missed seminal works
from nonstandard visualization venues [116] or papers in visual-
ization venues that do not mention decisions or decision mak-
ing in their title/abstract [63]. Please refer to osf for supple-
mentary material of the methodology we followed (e.g., precise
queries and removals) as well the complete list of derived papers
https://osf.io/j7hsu/?view_only=8bdb9dfc2d214d2fa34b5a£6184bd029.

Fig. 2 shows that although in the early years of visualization the
occurrences of “decision making” were sparse, there has been a strong
trend over the last two years. We tag papers in our review into “the-
ory & empirical” and “design” categories, based on the new IEEE
VIS area model !. Theory & Empirical papers, corresponding to Area
1, are either papers that aim to contribute to fundamental questions
on how we understand, assess, categorize, or formalize visualizations
and/or visual analytics as well as empirical research papers which
aim to contribute research methodologies or concrete results of assess-
ments of a visualization/visual analytics. We expect that these papers
are more likely to contain fundamental understanding of decision mak-
ing in the context of visualization. We will use the term “design” pa-
pers to refer to all other papers containing the remaining areas. These
papers broadly include new visualization techniques, tools, or systems
to which one of the stated goals of the development effort is to assist
decision making. In many instances, the benefit to decision making
is not necessarily framed as a fundamental contribution in these arti-
cles, but more as an incidental contribution. The design papers will be
discussed in Section 5.

2.2 Visualization & Decision Making Foundations

This section discusses the 38 theory & empirical visualization papers
on the topic of decision making as derived from our paper selection
method. By investigating these papers, which we consider as the clos-
est to our paper, we sought to better understand the role of decision
making as a task in visualization research and to determine whether it
has been underrepresented in this discipline as we hypothesize. Other
objectives and questions arise as well. For example, do most visualiza-
tion researchers consider decision making a task that visualization can
or should assist? What are the characteristics or attributes of decision
making which make it an activity that could be aided by visualization?
How could visualization assist decision making or how would one eval-
uate whether a visualization is indeed assisting decision making?
Decision making has been widely identified as a task that visual-
ization can or should assist. Most works acknowledge decision mak-
ing as a critical high-level goal for visualization, but, similarly to
the scholarly visualization books, do not provide further elaboration
[12,28,40,51,109, 138, 140, 156, 190]. Others explicitly advocate via
underpinning elements [5, 6, 38, 134] or literature reviews [44,72,74]
that decision making tasks are understudied in visualization research
[36]. Empirical studies provided preliminary evidence that visualiza-
tion users respond differently to analytic tasks, such as magnitude esti-
mations [81, 184] or comparisons [42], than to their direct-equivalent
decision tasks [42,81,184]. That controversy led researchers to hypoth-

1http ://ieeevis.org/governance/area-model
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esize that visualization users rely on different heuristics (e.g. loss aver-
sion [184]) to judge the same data for different purposes, concluding
that perceptual [81] or analytic [42] accuracy “may not feed forward
directly into decision making” [81].

Visualization research has proposed potential characteristics of de-
cision making which make it an activity that could be aided by visu-
alization. At first, decision making is pervasive; even data analysis
itself involves micro decisions during the personal workflow of the an-
alyst that visualization tools could facilitate [74, 100, 133, 134, 180].
High-level decision making involves improvisational practices [98],
data communication [98], collaborative data work [79,98], and a need
for uncertainty awareness [38,54,72,82, 133] that require people to be
informed by data in a timely manner. Visualization can also help to
address irrationality phenomena related to decision making [45] such
as how vulnerable decision makers can be to framing [73], to risk aver-
sion [184] to numerical anchors [32] or irrelevant data [43]. Most
importantly, visualization can act as first-line-of-defense interface be-
tween a decision maker and skewed or malicious data [38].

Visualizations could contribute several interventions to aid decision
making tasks. Research has shown that visualizations which offer suf-
ficient guidance [136, 184] emphasize critical information [41, 136] or
alter the way users interact with the data by removing the displayed
data [41] can encourage more rational decisions. Along with visualiz-
ing the underlying data that are relevant to the decision, visualizations
can also display the decision process itself [100] or offer tools that
further facilitate multiverse analysis [100].

Guidelines of how we can evaluate whether a visualization is as-
sisting decision making remain an open challenge for visualization
research. To evaluate decisions, we eventually need to inject deci-
sion tasks into the experimental protocols. However, even when the
goal is to eventually improve decision making activities, most studies
favor perceptual accuracy [32, 115] and avoid exposing participants
to decision making tasks (we discuss this in more detail in section
5). Decision tasks also have been examined but are rather rudimen-
tary [41-43, 184]. Narrowing complexity to binary choice questions
serves to reliably capture a human tendency (e.g., to select between
a fast and an effortful strategy). Yet visualization problems typically
involve several attributes and data points. More complex tasks that
have been studied are multi-attribute choice tasks [36, 44], auction
bidding tasks [136], and time intervals choices (e.g. when to arrive
to catch a bus) [54]. A few works build on knowledge from deci-
sion making disciplines to propose new ways to evaluate the decision
making capability of a system, including profit-maximizing decision
strategies [44, 136, 184], to vary decision task complexity with cog-
nitive fit theory [154], to study group decision making tasks using
joint activity theory [79], to infer user’s decision strategies using eye
tracking [88], or to consider less common performance metrics such
as working memory and locus of control [36].

All these works outline several opportunities for visualization to aid
decision making tasks. Yet, as with the scholarly books, when com-
pared to the perceptual design guidelines, theories, and evaluations,
the content on decision making remains scarce in the visualization lit-
erature. We next investigate how the theory meets the practice; how vi-
sualizations verify their effectiveness on aiding decision making . We
first specify what constitutes a “decision making task” in the context
of visualization (Section 3) and then investigate its place in the visual-
ization task taxonomies (Section 4). Section 5 finally investigates how
visualizations validate their ability to assist decision tasks in practice.

3 WHAT Is DECISION MAKING?

Decision making has been studied across several domains including
mathematical optimization problems [107], machine automation [29],
economics [25], political [70] and management science [13], as well
as psychology perspectives [68]. Within computer science, the related
notions of decision support systems and recommender systems also
have a rich history with significant study [128]. Providing a synthesis
overview of “What is decision making?” across all these disciplines
would be a valuable, but unfeasible goal for a single paper to con-
tribute to visualization research. Even within fields where the study
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Fig. 3: 3-stage decision making model by Herbert Simon [112, 146].

of decision making has been a primary focus for years, extracting the
“big picture” of human decisions with ontological commonalities with
other fields (e.g. psychology or economics) is exceptionally challeng-
ing [1]. The purpose of this paper is not to explain decision making as
a field of study. Instead, we narrow our scope by approaching decision
making as a potential user task that can be aided by visualization.

Decision making that is more relevant to visualization can be a task
to which solely computational solutions appear inadequate and thus
cannot be fully automated. For example, suppose that a country needs
to decide on an energy transition plan accounting for costs, supply risk
of materials, and recycling potential of energy technologies, and all
these cumulative of time, global and local politics as well as human
factors and incentives. This type of decision is common and critical
for organizations (e.g., policing, recidivism, recruiting, medical judg-
ments). Personal decision making also can be hindered by data com-
plexity or, even when datasets are small, by human biases and uncer-
tainty (e.g., which real-estate property to buy, which medical treatment
to undergo, or who to vote in national elections). Instead, a decision
problem that can be automated or is solvable by the human brain alone
does not necessarily require aid from a visualization tool [142].

One of the most versatile accounts of the act of human decision
making was given by the Nobel Prize and Turing Award winner Her-
bert A. Simon [146]. Due to its conceptual simplicity and wide appli-
cability, Simon’s model, originated in management science, has been
transposed by several other domains including economics [145], psy-
chology [148] and political science [147]. Building on that, Simon
invented the concept of “bounded rationality” as an alternative basis
for the mathematical modeling of decision making [23]. Within a psy-
chology perspective, Kahneman later expanded upon Simon’s idea by
focusing on the erroneous effects of irrationality in simple tasks [80].
Interestingly, Gigerenzer’s research on decision making—which greatly
contradicts Kahneman’s approach—also expands upon Simon’s model
to argue that simplified decision strategies often lead to better out-
comes than a theoretically optimal procedure [58].

Simon identifies three essential stages in human decision making:
INTELLIGENCE, DESIGN, and CHOICE [146] (Fig. 3). During the
INTELLIGENCE decision stage, the decision maker is identifying the
problem by collecting and understanding the data relevant to the deci-
sion to be made [112,146]. In the context of a decision making process,
the INTELLIGENCE stage is a subtask that can be approached as “sense-
making” [172] or data exploration [85]. Sensemaking concerns the
framing of a cognitive representation of a situation by drawing upon
various data sources [90]. Conversely, in analytics, decision making
has been also identified as a subtask within a sensemaking loop [121]
(we elaborate on this conflicting observation in Section 4) .

During the DESIGN decision stage, the decision maker deals with
the generation and synthesis of alternative solutions to the problem
[112,146]. Visualization research has shown that the design and sce-
nario simulation of decision alternatives can be a large area of opportu-
nity for novel visualization tools [11,47]. During the CHOICE decision
stage, the decision maker deals with selecting the ‘best’ solution from
amongst the alternative solutions using some criteria. Choice tasks
have been defined in the context of multidimensional visualizations as
a multi-attribute choice tasks [44] and have been addressed by several
visualization techniques that help users to define the importance of de-
cision criteria and visually combine multiple attributes into aggregated
scores [63, 118]. Choice tasks have also been studied in visualization
as tasks of narrower complexity, yet vulnerable to cognitive biases and
uncertainty [45,81]. We note here that while these classes of activities

Authorized licensed use limited to: University of Athens. Downloaded on May 29,2023 at 13:18:58 UTC from IEEE Xplore. Restrictions apply.



DIMARA AND STASKO: A CRITICAL REFLECTION ON VISUALIZATION RESEARCH: WHERE DO DECISION...

in Simon’s model conceptually can help us disentangle the decision
making process, they are shown to be more tangled and iterative in
real world decision making [47].

In this paper, a task is identified as a “decision making” task when
the human user has an explicit intent to derive an ultimate choice of di-
rection as a final outcome (i.e., CHOICE stage of Simon’s model). Such
choices can be involved with an important decision, such as the energy
plan mentioned before, or other large, collaborative, or high-stakes de-
cisions. Other choices can be also more personal or smaller, such as
a person deciding which coffee maker to buy or an analyst choosing
which model parameter to use. Now, specifying the way such large
or micro tasks can be ultimately assisted by a tool is another impor-
tant discussion, which it is out of the scope of this paper. Assistance
might be needed in the form of traditional decision-support, including
a level of automation or guidance, but also with minimal intervention,
by providing the kind of information the decision maker needs in an
effective format. The means with which decision makers need to be
aided by visualization is left to future work to investigate. Our focus
here is study, in the context of visualization, of the human decision
task, at any level of granularity, as soon as it leads to an explicit and
intentional CHOICE act.

4 WHERE Do DECISION TASKS HIDE?

This section investigates whether decision tasks, as described in the
previous section, are included in visualization task taxonomies, and if
s0, how and where. We identify as “decision tasks” those tasks that, at
a minimum, contain the CHOICE stage (see Figure 3). We characterize
as “low-level” decision tasks those tasks that contain only the CHOICE
stage and “high-level” decision tasks as those including the addition of
any other stage in Figure 3.

4.1

Visualization task taxonomies can serve both general-purposes as well
as particular domain activities and datasets [86]. Building on the re-
view of general-purpose visualization task taxonomies by Brehmer &
Munzner [19], we revisit papers that explicitly contribute a visualiza-
tion task classification system including low-level tasks (often con-
flated with interaction techniques) [4, 9,21, 26, 31, 33, 48, 61, 83, 96,
131,144,157,158,166,171,181,188], high-level tasks [6,24,102,121],
and papers with intermediate tasks or tasks that span both levels
[19,69,110,120,130,131,151].

Although decision making is often considered as the ultimate high-
level goal of data visualization [6,9,24], we could not find a taxonomy
that contains decision making as an explicit task [6, 19,102, 121] akin
to other high-level tasks such as exploratory analysis, identification of
causal-effect relationships, or presentation [85, 139]. We found one
paper [141] (not in Brehmer & Munzner’s review) that explicitly iden-
tifies decision making as a task that differs from other high-level tasks
such as problem solving, sensemaking, knowledge discovery, and fore-
casting, without unfortunately providing descriptions for each of them.

Several taxonomies of low-level analytic tasks have been proposed
[4,9,21,26,31,33,48,61,83,96,131,144,157,158,166,171, 181, 188].
Low-level analytic tasks, such as retrieve a value, filter, find extrema,
sort, characterize distribution, find anomalies, cluster, and correlation
[4] (shown in Fig. 1.C), are meant to cover basic activities people do
when analyzing data. Similarly with the high-level taxonomies, we
could not find a low-level taxonomy that contains making a decision
as an explicit task even in the form of a low-level choice task of narrow
complexity (e.g., a binary choice).

The visualization task taxonomy papers do not clarify whether de-
cision making tasks are intentionally omitted nor do they identify the
reasons for such omission. Decision making is almost never defined or
even casually described. Some taxonomy papers mentioned decision
making as a distinct task from sensemaking [19, 141]. For example,
Brehmer & Munzner [19] specify sensemaking as a task which is in-
cluded in “Discover” and all types of “search™: “lookup”, “locate”,
“browse”, and “explore” (shown in Fig. 1.A), but there is no similar
clarification for decision making tasks. Instead, other researchers men-
tion a type of decision making as a subpart of the sensemaking loop of

Revisiting Visualization Task Taxonomies
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the analyst (e.g., choosing a prediction or next action) [121] or, gener-
ally, of the analyst’s workflow (e.g., choose analysis steps/encodings)
[69] without further elaboration of their relation with a broader class
of decision making tasks.

Similarly, while omitting decision tasks from their taxonomy, other
researchers mention decision making as part of collaborative activ-
ity [120], or as a component of the tasks “Expressing Ideas” and “De-
scribe” [151]. Interestingly, participants involved in the creation of
Roth’s taxonomy seem to describe some of their tasks as “advanced
decision making” [130]. Yet it was not clear why decision making
was finally omitted. Other works admit explicitly that decision mak-
ing constitutes a gap in visual analytics [6, 158], while Andrienko &
Andrienko [9] suggest that their low-level tasks can be pre-conditions
to assist the CHOICE decision making stage (i.e. multi-attribute choice
task) (described in Section 3). We only found one non-visualization
paper (but included in Brehmer & Munzner [19] review) that includes
both “decide” and “choose” tasks in their taxonomy [110]. This was
an extensive taxonomy from 1993 containing over 150 elements, both
high-level and low-level tasks. The tasks “decide” (“Arrive at an an-
swer, choice, or conclusion based on the available information (the
current situation)” and “choose” (“Select after consideration of alter-
natives - decide on one among the proffered alternatives”) are listed as
distinct subtasks of the “Problem solving and planning task”. Yet, this
relation was briefly listed in a table and not discussed in the paper.

4.2 Why Visualization Taxonomies Omit Decision Tasks?

Although we were not able to extract explicit argumentation on why
decision making is omitted in visualization taxonomy papers, we hy-
pothesize possible reasons and discuss them next.

Speculation 1: Lack of Distinctiveness: Decision making is a
subtask of other analytic tasks or just a combination of them.
HIGH-LEVEL TASKS: While elements or certain types of decision mak-
ing could be part of other high-level analytic tasks, the visualization pa-
pers do not seem to suggest that decision making constitutes a subtask.
For example, some well established visualization tasks are exploratory
analysis, confirmatory analysis and presentation (shown in Fig. 1.B).
Exploratory and confirmatory analysis differ on whether the user has
formed a-priori hypotheses when conducting data analysis. If not, the
user conducts an exploratory analysis task, to search the data, analyze
and finally identify useful information [85]. As soon as she forms one
or more hypotheses, the user conducts a confirmatory analysis task,
seeking to either confirm or reject these hypotheses [85]. Once the
analysis is concluded, the aim is to communicate the result effectively
in a presentation task [85].

To help illustrate how decision making does not necessarily fit ex-
ploration or hypothesis tasks, we draw from an interaction with a se-
nior manager who described her common decision tasks and her rela-
tion with the data analyst team of the company: “The decision maker
always has a question in mind;a why and the reason is always there.
And you stick with that. Whatever you are doing you're trying to
answer that question, while analysts, a large proportion of analysts,
don’t have a concrete question in mind. They see data and try to high-
light whatever interesting pattern they find. There are a lot of inter-
esting patterns, but likely not relevant to your question.” [47]. In this
example, decision making appears to be closer to directed search hav-
ing a concrete question in mind which cannot be easily characterized
as exploratory analysis. On the other hand, there is no hypothesis test-
ing either since the decision maker has a question and not a statement
in mind. Some later extensions of Simon’s model (Figure 3) proposed
a REVIEW stage right below the CHOICE stage. Perhaps this stage of
decision making (check if a choice was indeed a good one) could be
seen as a form confirmatory analysis.

Another important relationship to explore is that between decision
making and sensemaking. Figure 4 illustrates some of the possible
relationships between the two. One view is that decision making is
a component of the sensemaking process. For example, Pirolli and
Card suggest that there is decision making as a part of the sensemak-
ing loop of the analyst (without clarifying if this is about every type

of decision makin% [121]. This model views decision making as a
:58 UTC from IEEE Xplore. Restrictions apply.
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How does “decision making” relate to “sensemaking”?
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Fig. 4: Tllustrating the confusion on the relation of decision making
with well-established high-level visualization tasks like sensemaking.

specific, distinct activity one makes after knowledge and insight have
been gathered and synthesized.

In contrast, one might view decision making as a broad expansive
task which frequently contains sensemaking as an important initial
subtask. This point of view elevates decision making to be a primary
human activity and positions sensemaking as a vital step in the pro-
cess employed to make a decision. We wonder if many of the seminal
books on visualization cited in the introduction of this paper follow
this perspective, even if not explicitly stated there.

Sedig et al. [141] argue that sensemaking and decision making tasks
can differ in terms of processing load and can be highly user—and con-
text—dependent. For example, there are types of decision making that
are rapid and based on dynamic, ‘real-time’ information. In such cases,
little processing load should be placed on the user’s mental state, and a
deep understanding of the information space might not be feasible. On
the other hand, sensemaking by definition requires the user to engage
in deep and effortful mental processing of information. Consequently
those tasks might need to be aided by different visual analytic sys-
tems [141]. So, it seems plausible that decision making could have
its deserved place among other high-level analytic tasks (illustrated in
Fig. 1 A+ B).

Considering all these different points of view, we are not able to

identify a consensus view on the relationship between decision making
and sensemaking.
LOW-LEVEL TASKS: Arguably, to make a choice one might need to
perform several other analytic tasks, e.g., to sort attributes and com-
pare values. So one could argue that making a choice is not a primary
low-level task. However, the other low-level analytic tasks are not nec-
essarily mutually exclusive. For example, to find an extreme value, a
user may first sort the data cases [4], or to find an anomaly, the user
may in some cases be looking for extreme values and in others for dif-
ferent patterns [4]. So the lack of distinctiveness does not seem to be
a sufficient argument for excluding “choice” from low-level visualiza-
tion taxonomies. In addition, depending on the decision making strat-
egy (e.g., elimination by aspects, weighted additive, satisficing [41])
the associated subtasks might differ. So, the reasonable overlap be-
tween a decision task and other low-level tasks does not seem to be
enough reason for its omission (illustrated in Fig. 1 C).

Speculation 2: Lack of Operationalizability: Decision making is
too high-level, thus not operationalizable to be included as a task.
HIGH-LEVEL TASKS: Indeed, decision making can be inherently sub-
jective, domain-dependent, and it often concerns ill-defined problems
and trade-offs [146]. But are exploratory analysis and sensemaking
more operationalizable? We would argue that those two activities are
most often viewed generally or abstractly, without a formal, opera-
tional model. Yet each of them is frequently listed in high-level visu-
alization task taxonomies. Furthermore, the fields of economics, op-
erations research, and management science have extensively studied
decision making and can provide models that operationalize complex
decision making activities [1]. Based on knowledge extracted by those
fields, van Wijk (2005) [161] and Fekete et al. (2008) [52] argued that
the final decisions of visualization users could be a more operational-
izable way of assessing the value of visualization than other currently
established visualization goals such as “insight” [27,114,135].
LOW-LEVEL TASKS: As we saw in the related work, some tasks
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that belong to the CHOICE stage have already been operationalized
in visualization studies either as choice tasks of lesser complexity
[41-43, 184] or as a multi-attribute choice where many alternatives
and attributes are examined [36,44]. Moreover, most low-level tasks
are not necessarily designed to systematically cover high-level tasks
such as “Learning a domain” or “Predicting the future” [4].

Overall, the lack of operationalizability does not seem a sufficient
reason for excluding decision tasks from visualization taxonomies.

Speculation 3: Lack of Interestingness: Decision making is too
uninteresting or too low-level to be included as a task.

HIGH-LEVEL TASKS: It was clear from all of the scholarly books men-
tioned in the introduction and the papers on visualization theory dis-
cussed in the related work section that decision making as a high-level
activity is crucial and an integral part of the definition of visualization
as a scientific field [111]. So a lack of relevance or interestingness
does not seem to be a sufficient argument for excluding decision tasks
from high-level visualization task taxonomies.

LOW-LEVEL TASKS: One argument for excluding “choice” in a low-
level task taxonomy is that it can be computationally solvable and thus
is not so relevant for visualization. However, this is also the case for
most low-level tasks, e.g., finding a correlation or a max value can be
fully resolved by computational methods. Thus, a lack of “interesting-
ness” could be attributed to many other low-level analytic tasks.

Generally, low level tasks are not meant to be the reason why we
need visualization systems. Visualizations are needed where there is
room for human judgment, and automated computational methods can-
not provide sufficient solutions [111]. Such low-level analytic tasks
when evaluating a system are often meant to act like a “checklist” [4] to
assess its effectiveness. For example, if a user can effectively identify
a correlation in a visualization system, it may be a stepping stone to-
wards complex pattern recognition during exploratory analysis. Like-
wise, systems which fail to aid low-level analytic tasks are unlikely to
assist high-level tasks. Therefore, a choice task of narrow complexity,
although it cannot cover high-level decision making activities, could
still constitute an informative proxy task.

On that, as we saw in the related work, there is evidence that vi-
sual analytic tasks elicit different responses from equivalent decision
making tasks. Users who respond correctly to visual analytic tasks
(e.g. a ”comparison” task) were shown to fail on an almost identical
task, when framed as a decision [42]. So, the lack of interestingness
does not seem to be a sufficient reason for omitting decision tasks from
visualization task taxonomies.

Overall, a low-level decision task has the same limitations as do
the existing low-level analytic tasks. First, as in low-level analytic
tasks, low-level decision tasks do not necessarily systematically cover
high-level decision tasks. Second, as in low-level analytic tasks, low-
level decision tasks are not necessarily mutually exclusive with other
low-level analytic tasks. For example, to choose an alternative, one
may need to derive values, determine ranges, identify an outlier (e.g.,
a cheap choice), and check the correlation between price and quality.
Third, as in low-level analytic tasks, a low-level decision task does not
necessarily specify the procedure to complete the task (e.g., one may
choose the first alternative that satisfies her needs or review extensively
all options). Finally, it is again possible to replace some low-level deci-
sion tasks with computational methods (e.g., computationally identify
a single alternative that is superior to all others).

Both a low-level or a high-level decision task differs from other an-
alytic tasks in that it serves different user goals. The goal of making
a decision is not to compare values, sort, determine ranges or correla-
tions, neither to explore, confirm a hypothesis or derive a comprehen-
sive summary of a dataset. Instead, the goal of decision making is to
investigate, synthesize, and finally to make a selection among several
possible alternatives. It seems that the omission of decision tasks from
visualization taxonomies is not a strategic or intentional act, especially
given the confusion and lack of clarity with terminology. We think that
instead it might be associated with the lack of fundamental knowledge
of decision theories within the visualization literature and community.
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5 DOES VISUALIZATION AsSSIST DECISION TASKS?

In prior work with professional decision makers who work in large
organizations [47], we found that while the decision makers might
use some visualizations within the preliminary steps of the INTELLI-
GENCE stage (discussed in Section 3) or when they want to present re-
sults to others, they do not typically use visualizations as an aid within
their actual decision making process (stages DESIGN and CHOICE).

One decision maker explained this as “Visualization is just one little
part of the job. How to model the decision process supporting the flow
with sufficient flexibility is more important. [...] It’s inconvenient to
distinguish between the tool itself and how I do the decision process.
I can explore the data, the patterns, which are also important and
useful, but that part is more in collecting evidence for my later decision
making. But in the existing tools, either you have to program it or you
have to do a lot to transform the data. [...] For visualization, I still use
those tools, but for decision making I draw flow charts. [..] Computers
don’t give you much advantage over pen and paper [...] It’s not about
sitting in front of the computer, but have the notebook with me, maybe
when I am eating lunch and I think or talk to people for something. It is
about the convenience” [47]. Although this could simply be a matter of
personal preference for this individual, it suggests that visualizations
might not be designed to aid such decision making tasks.

This section examines whether, in practice, visualization systems in-
tended to assist decision making activities are actually evaluated based
on their ability to improve decision tasks. As derived by our methodol-
ogy (Section 2.1), we found 85 design papers (shown in Table 1) that
mention decision making as an objective. More specifically, all these
papers report in their abstract that decision making is one of the (or
the only) key motivation for the creation of the technique or system.
The table illustrates both the quantity and diversity of applications/use
cases/domains needing decision making assistance. Note, however,
that these papers provide a superset; a pool of papers about techniques
or systems that are probably the closest to contributing to decision
making. It is reasonable to infer that all those papers do not explicitly
test decision tasks. Some of them do not have decision making as the
only target goal of the visualization.

Only a few (6% or 5/85 papers) of these design papers [3,22,64,132,
152] mentioning decision making performed a quantitative evaluation
involving decision tasks. However, in multiple of the cases, the evalua-
tion was more focused on a particular aspect of decision making, such
as fairness/anti-bias [3], prediction under uncertainty [64], or speed of
decision [22]. The papers with quantitative evaluations also typically
focused not on general multivariate decision making, but on decisions
in a specific domain context such as network security [152] or im-
age analysis [22]. Perhaps the most rigorous quantitative analysis was
done on a visual analytics system for financial planning [132]. The
research team found that their FinVis application helped their study
participants make better financial portfolio decisions as compared to
subjects using a tabular version with the same information.

In the papers from this set involving some form of qualitative eval-
uation (categories #2 and #4 in Table 1), a larger group overall, the
researchers still did not seem to ask participants to attempt to make a
decision with the tool. Just 4% or 3/85 papers [11, 66, 173] involved a
decision task. Two of these again focused on a specific domain, soft-
ware release planning [11] and prostate cancer treatment [66], while
one involved more general ranking and multi-criteria decision mak-
ing [173]. Also, note that the papers discussed in the prior paragraph
above about quantitative evaluations using decision tasks also typically
gathered qualitative feedback as well.

Perhaps surprisingly, the LineUp system [63], which many might
associate most closely with the CHOICE stage of decision making via
visualization, does not even appear in Table 1 because decision making
is not mentioned in its title or abstract. The paper includes a qualitative
evaluation, but it is not focused on decision making. A similar subse-
quent system, Weightlifter [118], appears in the Table, but its paper
only included a general qualitative evaluation of its design.

Looking at all of these design papers mentioning decision making
as a goal, one finds a notable scarcity of actual user studies assessing
that objective. Our review showed that even for those researchers who
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wanted test decision tasks, decision making was difficult to assess. Fur-
thermore, the visualization literature does not provide guidance and
support on how to do it, while taxonomies do not encourage it.

Table 1: 85 visualization design (technique or system) papers mention-
ing decision making in their title or abstract.

F =Focus E
generic designs #1
- domain specific designs |52

= User Evaluation
quantitative with decision tasks
qualitative with decision tasks

quantitative
qualitative
- no user evaluation
REF F E Name Short Description
2] Afzal et al. epidemic analysis
10] AHP treemaps analytic hierarchy process
8] Andrienko et al. transportation-planning
1591 Baobab View decision trees
15] Biswas et al. weather data analysis
174] BNVA bus route planning tool
101] Boba multiverse analyses
178] Causality Explorer causal graph visualization
39 Crnovrsanin et al. nelworﬁ recommendations
30 DECE counterfactual explanations
20 Decision Exploration Lab operational management
17 Dynamic Reweighting bias mitigation support
119] eStadium football data analysis
3] FairSight ML bias mitigation
132] FinVis personal finance
186] FluxFlow social media analysis
59 Gorg et al. document exploration
60 Gosink et al. ensemble forecasting
64 Guo et al. decisions with ML
67 Hao et al. time series prediction
106] Hi-Trees hierarchical data
105] Hierarchical Network Map network flow behavior
185] IDMVis diabetes data analysis
22 EI [mageVis3D Mobile deep brain stimulation
76 Inselberg parallel coordinates
78 Jiang et al. atmospheric data
71 Jietal clinical record analysis
164] KAVAGait clinical gait analysis
89 Kim et al. mobile visual analytics
93 Kreiser et al. manometry diagnosis
94 Kruger et al. neck dissection
35 Lattice graphs speech recognition/translation
149] LiteVis lighting design analysis
103] Maciejewski2 et al. spatiotemporal data analysis
104] Malik et al. resource allocation analysis
170] Many Plans flood management
99] MaraVis marathon data analysis
o1] N MarketAnalyzer competitive intelligence support
97] MatchPad sports performance analysis
108] Meyer et al. environmental management
7] MineTime Insight meeting habits visualization
162] N MobilityGraphs Eeople mobility analysis
65] NWSChat2 azardous weather events
34] PeckVis social ﬁroups analysis
160] Pelt et al. blood flow analysis
66] B2 PROACT health risk communication
122 Poco et al. traffic data analysis
165 Podium multi-attribute ranking
125 Rados et al. enhancing linking&brushing
137 Rationale explaining reasoning algorithm
175 ReACH home finder revisited
62] Reader’s Helper document analysis
126 hyne www for scivis
127 Ribicic et al. sketching for simulation steering
129 Rodgers et al. ambient artistic visualization
92] Run Watchers flood management decisions
75] S3s synthesized social signals
571 sampleAction incremental visualization
18] ScatterBlogs2 microblog analysis
152 Sesame security decisions
187 SkyLens multi-attribute decision making
163 Statsplorer statistics for novices
11] # Stratos software release plans
173 SRVis spatial ranking visualization
123 SmartClient e-commerce
143 Storied Navigation video editing
71] Summit deep learning interpretability
56] TaxiVis urban data analysis
50] N Tiled++ display wall
53] Topology Density Map urban analysis map
153] TRACTUS code experiments visualization
113] U4 action sequence analysis
55] Urbane urban planning decisions
87] Verdant past analysis choices
179] ViDX manufacturing industry
16] Vismon fisheries management
124] ‘WeaVER weather forecast analysis
118] WeightLifter multi-attribute choice
176] Willems et al. vessel movements
169] World Lines heterogeneous simulation runs
177] Wright animated visualization
183] Zhang et al. public utility management
182] Zhang et al. microblog analysis for disasters
189] Ziegler et al. financial data analysis
951 Il Zooids dynamic physicalizations

Admittedly, many of these visualizations help with a level of data

understanding of certain stages of decision making (e.g., the INTELLI-
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GENCE stage) assessing only that. Yet it is notable that in this pool,
so few papers focus on decision making explicitly. One can wonder
whether the lack of decision tasks in visualization taxonomies (dis-
cussed in 4) might make researchers overlook decision tasks.

6 DEVELOPING A RESEARCH AGENDA

Historically, the notion of visual analytics emerged in the early 2000’s,
when the field was described as the union of three key components: in-
teractive visualization, computational analysis, and analytical reason-
ing [37]. The interactive visualization component has always been a
fundamental aspect of the discipline either out of necessity to handle
increasing amounts of data, or as a way to allow human-driven and
iterative data exploration in which the analyst is in control of the infor-
mation space [46]. The other two components, however, were viewed
as areas for growth, where researchers from other communities could
migrate towards visual analytics and add to this growing field.

The computational analysis component of the discipline has been a
great success as researchers and ideas from neighboring fields such as
statistics, data mining, machine learning, and big data have flocked to
visual analytics and made fundamental contributions over the past 15
years. Visual analytics systems are now addressing larger and more
complex data sets and they are providing sophisticated new platforms
for analysts to better understand these data sets.

We believe it is safe to say that the analytical reasoning component
of visualization research has not achieved the same level of focus or
success, however. It is much less common to encounter papers with a
strong emphasis on support for analytical reasoning and that apply ap-
proaches from disciplines such as the cognitive and decision sciences.
We view this shortcoming of achieving the true visual analytics vision
as a key research goal for the future with respect to decision making
and visualization. In fact, Keim et al’s [84] early definition of visual
analytics included decision making at its core: “Visual analytics com-
bines automated analysis techniques with interactive visualizations for
an effective understanding, reasoning and decision making on the ba-
sis of very large and complex data sets”. Fostering new and innovative
research for both assisting decision making activities in visualization
systems and evaluating that objective remains as a fundamental objec-
tive for our community to achieve.

To help realize the visual analytics vision, our analysis of the
current state of decision making as a component of the visualization
research agenda leads us to believe that this is an area ripe for fur-
ther work. Below we list directions or natural next steps that follow
from our analysis. Each provides an opportunity for visualization re-
searchers to make important contributions and explore how visualiza-
tion can better assist decision making.

6.1 Leverage Other Domains & Expand

It is important that visualization researchers become more aware of
and learn from research done on decision making in other disciplines
[74]. Academic areas such as economics, behavioral science, manage-
ment, naturalistic decision making, operations research, psychology,
and cognitive science, among others, all have deep and rich histories of
studying decision making both among individuals and organizations.

Invite researchers from decision making domains: One challenge in
using techniques from decision making domains is that they tend to
use a set of terminology and jargon that makes it difficult for visual-
ization researchers to approach that work [1]. We consider it vital to
encourage contributions from researchers in other domains who can
help us adapt and transpose this knowledge to fit visualization applica-
tions better. This can be achieved through cross-domain collaborations
or by embracing initiatives like the IEEE VIS 2020 Workshop on Vi-
sualization Psychology 2, and even expanding them with economists,
management researchers and decision theorists.

Provide Evaluation Methodologies: Decision making disciplines can
also help visualization research to develop more sophisticated eval-
uation methods to determine how well a visualization provides that

2https ://sites.google.com/view/vispsych/
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support [44,49]. If the developers of a new system opt to make this
claim, then they need the tools to validate that it does. Research in
uncertainty visualization currently paves this path [74, 117], and we
hope that many other visualization areas will follow in developing bet-
ter methods to evaluate the effectiveness of visualization systems for
aiding decision making. Currently, we lack effective methods and ap-
proaches for assessing that capability especially for tasks that go be-
yond the CHOICE stage combining choices with the DESIGN and the
INTELLIGENCE decision making stages.

However, while the partnership with decision making disciplines
will help visualization research to refrain from ‘“re-inventing the
wheel”, none of those domains studies decisions in the context of
large data and technology artifacts. The tasks under study typically
involve very small datasets or are even not related to data and tech-
nology, which partly explains why most visualization papers focus on
binary or decision tasks of narrow complexity. Thus the appropriation
of those methods to serve the true visualization challenges and needs
is necessary. For example, the cognitive bias research often faces the
limitation that the biases studied in psychology are observed within
two or three decision alternatives, so visualization researchers need to
propose procedures for extending those observations to larger datasets
as well as to verify that the observed phenomena replicate in the data
analysis context [43]. Identifying how to balance this equilibrium at
a point at which satisfactory internal and external validity accompany
applicability for visualization adds another level of complexity to the
design of evaluation methodologies that verify decision quality.

6.2 Clarify Tasks & Calibrate Claims

The developed frameworks and taxonomies for visualization tasks
largely omit decision making as a fundamental activity that visual-
ization can aid. Researchers must explore further whether decision
making should occupy a position in such taxonomies alongside tasks
such as exploratory analysis, sensemaking, and discovery. We see op-
portunities to further develop visualization-focused task taxonomies,
particularly for high-level tasks and objectives. Generating a better
understanding of the relationships, overlaps, and differences between
such high-level goals can help our community better explain the value
of visualization and how it can be applied to many different real world
scenarios. Decision making, sensemaking, exploration, problem solv-
ing, insight extraction and several other high-level tasks share many
similarities, and visualization researchers are often not clear about dis-
tinguishing them. As a result, such terms are often used interchange-
ably [141]. We advocate for the importance of making a formal dis-
tinction among those high-level tasks in the context of visualization
to bring more clarity to the visual analytics landscape [141]. We
will attempt a bolder suggestion here: visualization, as a multidisci-
plinary yet independent scientific field, can also propose its own defi-
nitions and boundaries of relevant tasks without being intimidated by
the fuzziness that accompany those terms in other domains.

As we observed, many visualization papers currently make ambigu-
ous claims in their introduction that their work aids decision making.
If visualization taxonomies provide a more clear terminology on de-
scribing those tasks, that will also help visualization design papers to
be more succinct in their claims, tool descriptions and evaluations.

Moreover, while in this work we discuss decision making as a sin-
gle user task, in reality, decision making constitutes a class of various
decision making tasks, from which some might be more or less rele-
vant to data analysis. Thus the design space of those decision tasks
needs to be thoroughly investigated in the context of data analysis.

6.3 Equip visualization designers with
decision making guidelines

Visualization literature has contributed a vast number of frameworks
and guidelines based on how humans see data. Visualization empirical
research offers several design guidelines. For example, visual chan-
nels have been ranked by effectiveness according to channel and data
type; color palettes have been investigated based on discriminability
or aesthetic preferences; and various visualization designs have been

compared for their ability to represent probabilities and risk. Yet, our
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literature analysis showed that in comparison to the large body of work
that builds on vision science and statistics, we know very little about
how to design for humans who make decisions with visualized data
after veridically perceiving them [116].

To provide such guidelines, we consider two critical pre-conditions.
First, visualization research needs to increase the user studies that con-
tain decision making tasks [81]. Second, visualization research needs
to broaden the profiles of target users. Most visualization field works
focus on data analysts; people whose primary job function is to an-
swer questions with data, not to make decisions with data [47]. Empir-
ical findings suggest that decision making can rely on different heuris-
tics (e.g., loss aversion) which are not always related to analytic accu-
racy [81]. Preliminary research with organizational decision makers
indicates several improvements that decision makers would like to see
in visualization systems, such as trade-off analysis, scenario-based and
question-oriented data interfaces, or to enrich interactivity with flexi-
ble data inputs, collaboration features, and in situ visualizations [47].
We further need to explore the data visualization needs of everyday de-
cision makers. We suggest that the profile of the decision maker needs
to be investigated, both in professional and casual contexts.

7 CONCLUSION & FUTURE

Visualization research collectively advocates that decision making is,
or should be, a core goal of visualization. We revisited visualization
history, theory and practice to find that, in fact, visualization largely
lacks explicit ties to decision making. Visualization task taxonomies
typically omit decision tasks. Visualization theory fails to provide
guidance on how to study human decisions in the context of data anal-
ysis and visualization. Finally, visualization designs lack evaluation
of their capability to improve decision activities and neglect to consult
decision makers as their target users. To help address these shortcom-
ings, we propose a research agenda on how we, as a community, can
incorporate the formal study of decision making as a fundamental use
case for future visualization systems to effectively support and assist.
Building such visualizations for decision makers entails that more
data will become accessible to everyday citizens and persons of au-
thority. Decision making plays a vital role in society, one in which all
our information, beliefs and elaborate analyses come into action. Vi-
sualization can contribute to both ends of influence on those actions; it
can equip citizen decision makers with personal visual analytic tools
contributing to data democratization movements, and it can equip or-
ganizations with visual systems that promote transparency, fairness via
bias mitigation, and mixed-initiative decision workflows. The result-
ing interfaces, while being able to exploit the advantages of intelligent
technologies, will also be able to shift control to the human decision
maker.
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