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ABSTRACT

RNA-binding proteins (RBPs) play important roles
in the post-transcriptional control of RNAs. Identify-
ing RBP binding sites and characterizing RBP bind-
ing preferences are key steps toward understand-
ing the basic mechanisms of the post-transcriptional
gene regulation. Though numerous computational
methods have been developed for modeling RBP
binding preferences, discovering a complete struc-
tural representation of the RBP targets by integrat-
ing their available structural features in all three
dimensions is still a challenging task. In this pa-
per, we develop a general and flexible deep learn-
ing framework for modeling structural binding pref-
erences and predicting binding sites of RBPs, which
takes (predicted) RNA tertiary structural informa-
tion into account for the first time. Our framework
constructs a unified representation that character-
izes the structural specificities of RBP targets in all
three dimensions, which can be further used to pre-
dict novel candidate binding sites and discover po-
tential binding motifs. Through testing on the real
CLIP-seq datasets, we have demonstrated that our
deep learning framework can automatically extract
effective hidden structural features from the encoded
raw sequence and structural profiles, and predict
accurate RBP binding sites. In addition, we have
conducted the first study to show that integrating
the additional RNA tertiary structural features can
improve the model performance in predicting RBP
binding sites, especially for the polypyrimidine tract-
binding protein (PTB), which also provides a new

evidence to support the view that RBPs may own
specific tertiary structural binding preferences. In
particular, the tests on the internal ribosome entry
site (IRES) segments yield satisfiable results with
experimental support from the literature and further
demonstrate the necessity of incorporating RNA ter-
tiary structural information into the prediction model.
The source code of our approach can be found in
https://github.com/thucombio/deepnet-rbp.

INTRODUCTION

RNA-binding proteins (RBPs) play important roles in var-
ious cellular processes, such as alternative splicing, RNA
editing, mRNA localization and translational regulation
(1). RBPs contain several special RNA-binding domains
(RBDs), e.g. the RNA recognition motif (RRM) and the
hnRNP K-homology (KH) domains, which recognize their
target sites related to the RNA primary sequence and the
corresponding structural profiles (2). Although it has been
shown that several important diseases, such as neurodegen-
erative disorders, cancers and cardiovascular diseases, can
be caused by the dysfunctions of certain RBPs (3,4), rel-
atively few RBPs have been well characterized. Therefore,
identifying RNA–protein interactions and modeling RBP
binding preferences are important for decoding the post-
transcriptional processes involving RBPs and their mecha-
nisms of pathogenesis in human diseases.

Recently, the advent of high-throughput experimental
methods, such as the cross-linking immunoprecipitation
coupled with high-throughput sequencing (CLIP-seq)
protocols, has greatly advanced the genome-wide studies of
RNA–protein interactions (5–8). Despite the success stories
of these experimental techniques, the collected data still suf-
fer from the false-positive and false-negative problems due
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to the experimental noises and current limitations in these
techniques (e.g. the limited mappability of splice sites). To
address these issues and identify missing RBP binding sites,
numerous computational methods (9–13) have been pro-
posed to complete the RNA–protein interactome. In prin-
ciple, the collected CLIP-based data can be used as training
data and fed into certain computational predictors to detect
new RBP targets.

Although it is well known that the structural factors,
such as RNA secondary structure, can significantly influ-
ence the RBP binding behaviors (2), most computational
models (11,13) only consider the primary sequence and sec-
ondary structural features, and assume that the structural
profiles of different nucleotide positions are independent
with each other. With such assumptions, these models have
limited performance in predicting RBP binding sites (e.g. in
those base-pairing regions). A novel computational method
called GraphProt (10) with predefined secondary struc-
tural features has been recently proposed to address this is-
sue. Although existing computational approaches can accu-
rately predict RBP binding sites to some extent (10–11,13),
most of them lack the flexibility to integrate more struc-
tural information. Also, few of them are particularly de-
signed to exploit the tertiary structural features to investi-
gate the impacts of RNA tertiary structure on RBP bind-
ing. On the other hand, despite the paucity of the high-
resolution structural data of RNA–protein complexes, the
current available databases of RNA 3D motifs can still of-
fer a new and useful source of information for studying the
tertiary structural binding preferences of RBPs. Thus, this
leaves a certain gap to fully understand the impacts of the
integrated RNA structural features on RNA–protein inter-
actions. To tackle this issue, we need to develop an effective
method to encode both RNA secondary and tertiary struc-
tures in addition to the base sequence, as well as a general
machine learning framework to integrate the encoded RNA
sequence and structural profiles to model RBP binding pref-
erences and detect new target sites.

Nowadays, in the machine learning field, deep learning
(14,15) has become a popular and powerful tool for ana-
lyzing complicated data and capturing hierarchical repre-
sentations of the intrinsic latent features in data. A number
of empirical studies have demonstrated that deep learning
can achieve the state-of-the-art prediction performance in
various learning tasks, e.g. image classification (15), auto-
matic speech recognition (16) and natural language process-
ing (17). Also, deep learning has been successfully applied
to solve several prediction problems in the field of compu-
tational biology and bioinformatics, such as protein struc-
ture prediction (18), chemoinformatics (19) and RNA splic-
ing prediction (20). In the multimodal scenario, in which
the input data consist of multiple modalities (e.g. the audio
and visual signals in speech recognition), multimodal deep
learning architectures (21–23) have been developed to effec-
tively integrate these modalities and capture common latent
features across them for accurate inference and prediction.
The power of modeling complicated statistical characteris-
tics and the flexibility of integrative data analysis of deep
learning have given rise to a wide range of applications of
this new machine learning technique.

RNA sequence Secondary structure
prediction (RNAshapes)

Encoding sequence &
secondary structure
(replicated softmax)

Encoding tertiary structure
(RNA 3D Motif Atlas)

Multimodal deep learning framework

Predicting RBP binding sites &
generating RBP binding motifs

Figure 1. Schematic overview of our deep learning framework.

In this study, we develop a novel deep learning frame-
work to predict RBP target sites and model their sequence
and structural specificities by systematically integrating the
RNA primary sequence, (predicted) secondary and tertiary
structural features. We have made the following contribu-
tions: (i) introduction of a novel method to encode RNA
base sequence and secondary structure; (ii) introduction of
a new method to construct the RNA tertiary structural pro-
files; (iii) development of a deep learning model to inte-
grate the RNA sequence, secondary and tertiary structural
profiles, and construct a unified representation to extract
the hidden structural features of RBP targets; (iv) the first
study of exploiting the RNA tertiary structural features to
predict RBP binding sites and excellent test results on the
real CLIP-seq data, in which most of the sequence and
structural motifs derived by our algorithm own support
from experimental evidence or previous studies in the lit-
erature; (v) novel 3D structural binding motifs of RBPs de-
rived by our model, which can provide important clues for
understanding the mechanisms of RBPs’ action in the post-
transcriptional control of RNAs; (vi) test results on predict-
ing PTB binding sites for the internal ribosome entry site
(IRES) segments that agree with the previous experimental
studies.

MATERIALS AND METHODS

Overview

Figure 1 illustrates the schematic overview of our deep
learning framework, which consists of three main phases,
including data encoding, training and application phases.
In the data encoding phase, we first truncate RNA sequence
around the bound site identified by the CLIP-based exper-
iments and use the tool RNAshapes (24) to predict prob-
able secondary structures. Then we encode the primary se-
quence and secondary structure using the replicated soft-
max model, a probabilistic graphical model that is originally
designed to discover the latent topics of documents in the
natural language processing field. To encode RNA tertiary
structure, we exploit the tertiary motifs predicted by JAR3D
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(25,26), a computational framework that infers the probable
tertiary structural motifs in the hairpin and internal loop re-
gions based on RNA 3D Motif Atlas (R3DMA) (27). The en-
coded tertiary structural profiles represent possible tertiary
motifs folded by the RNA sequence. In the training phase,
we build a multimodal deep belief network (DBN) to inte-
grate all the aforementioned encoded sequence and struc-
tural profiles. We use the experimentally identified RBP
binding sites derived from the available CLIP-seq datasets
to train our multimodal deep learning model. In the appli-
cation phase, the trained deep architecture is used to detect
novel RBP binding sites on the genome that we are inter-
ested in, and generate the sequence and structural specifici-
ties in target recognition.

Encoding RNA base sequence and secondary structure

In the literature of RBP target recognition, there is a ten-
dency to integrate RNA sequence and structural profiles as
methodic features into the machine learning models to pre-
dict unknown RBP binding sites. For example, MEMERIS
(12) incorporates the accessibility (i.e. the probability of a
nucleotide being unpaired) (28) of the RNA sequences to
identify RBP targets. RNAcontext (11) further differen-
tiates various forms of loops, e.g. hairpin, multiloop and
bulge, in RNA secondary structure for RBP binding site
prediction. In addition, CapR (13) considers the positional
correlations of different structural contexts by modeling
the joint distribution of the position and type of RNA
secondary structure in the target sequences. Furthermore,
GraphProt (10) integrates the local structural information
(e.g. RNA secondary structural contexts and their depen-
dency) using a graph kernel model to explore the RBP bind-
ing preferences. The performance of these methods depends
on how accurately and reasonably the RNA sequence and
structure are encoded in the computational model. Because
of their explicit encoding principle, these prediction ap-
proaches may miss subtle structural features hidden in the
input data, which cannot be captured by the handcrafted
feature extraction methods. In addition, they lack the flex-
ibility of integrating new structural information, such as
RNA tertiary structure. An alternative of such a ‘complex
input simple model’ principle is a relatively complicated
model with simple and nonmethodical input (29). In other
words, by feeding a sophisticated model with simple but
sufficient raw input data, we can let it automatically learn
effective hidden features, which yields an implicit encoding
method. Here, we adopt the latter principle.

Restricted Boltzmann machines. We first introduce the re-
stricted Boltzmann machines (RBMs) (30), which are fun-
damental building blocks of the deep learning architectures
(31). Generally speaking, RBMs are Markov random fields
that characterize the probability distribution of a set of bi-
nary variables. More specifically, an RBM consists of two
layers, including a visible layer of observable variables (or
referred to as vertices) and a hidden layer of unobservable
variables, with the restriction that visible and hidden lay-
ers are fully connected and there is no connection between
vertices in the same layer. An RBM example is shown in
Supplementary Figure S1(A). These structural characteris-

tics make the variables in the same layer conditionally in-
dependent with each other, given the variables in the other
layer. In our deep learning framework, we use an RBM to
integrate the RNA sequence, secondary and tertiary struc-
tural profiles, with the implicit assumption that the encoded
RNA sequence and structure can be modeled as a joint
probability distribution determined by a number of hid-
den variables. In other words, the input RNA sequence and
structural profiles are relevant to each other and can be re-
garded as a joint effect of these hidden factors. Such a mod-
eling strategy may reflect the real setting of the RBP binding
behavior.

Let wij denote the real-valued weight associated with the
edge between visible variable Vi and hidden variable Hj, let
bi and cj be the bias terms associated with visible variable
Vi and hidden variable Hj, respectively. We use lowercase
letters vi and hj to represent the values of the correspond-
ing variables Vi and Hj, respectively. We use W, b and c to
denote the vector representations of the corresponding pa-
rameters, respectively, and v and h to denote the vector rep-
resentations of the states of visible and hidden variables, re-
spectively. For an RBM with m visible variables and n hid-
den variables, its joint probability density function is de-
fined by

p(v, h; θ ) = 1
Z(θ)

exp(−E(v, h; θ )), (1)

where (v, h) ∈ {0, 1}m+n , θ = (b, c, W), Z(θ ) is the partition
function, and the energy function E : {0, 1}m+n → R is de-
fined by

E(v, h; θ ) = −
m∑

i=1

n∑

j=1

wi jvi h j −
m∑

i=1

bivi −
n∑

j=1

c j h j . (2)

To train the model, we can perform the maximum likeli-
hood estimation (MLE). In particular, the contrastive di-
vergence (CD) algorithm (32) is often used to approximate
the gradient of the log-likelihood of the training data. With
such an approximation, we can update the RBM parame-
ters using the standard gradient ascent strategy.

Replicated softmax. The replicated softmax model (33) is
a topic model that characterizes the word distribution in
documents based on the latent topics. An example of a
replicated softmax model is shown in Supplementary Fig-
ure S1(B). In our context, we treat the RNA sequences
(in which each letter stands for the nucleotide type or sec-
ondary structure type at the corresponding base position)
as ‘documents’, RNA subsequences as ‘words’ and a col-
lection of distinct RNA subsequences as a ‘dictionary’. The
‘latent topics’ in the replicated softmax represent unknown
factors that determine the sequence or structural features of
RBP binding sites. Hereinafter, we will use RNA documents,
RNA words, RNA dictionary and RNA topics to denote the
corresponding concepts that are similar to those in the nat-
ural language processing field.

For a given RNA document D of size D with an RNA
dictionary K of size K, there exists a matrix representation
V of size K × D, where vk

i = 1 if and only if its ith RNA
word takes the kth value of K. In replicated softmax, the
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probability density function of V is defined by

p(V; θ ) = 1
Z(θ )

∑

h

exp (−E(V, h; θ )) , (3)

where E(V, h; θ ) is defined by

E(V, h; θ) = −
D∑

i=1

N∑

j=1

K∑

k=1

wk
i j v

k
i h j −

D∑

i=1

K∑

k=1

bk
i vk

i − D
N∑

j=1

c j h j

= −
N∑

j=1

K∑

k=1

wk
j v̂

kh j −
K∑

k=1

bkv̂k − D
N∑

j=1

c j h j , (4)

where N stands for the number of hidden variables repre-
senting the latent RNA topics, wk

i j equals to each other for
fixed j and k as we treat the RNA words in the RNA doc-
ument D as examples sampled from the replicated softmax
model independently, and v̂k = ∑D

i=1 vk
i denotes the num-

ber of the kth RNA word of K in the RNA document. For a
collection of M RNA documents {Vm}M

m=1, the training cri-
terion is to maximize the average log-likelihood of the train-
ing data. Here, the CD algorithm can also be performed to
learn the model parameters, including wij, bi and cj (33). A
more detailed explanation of the replicated softmax model
can be found in Supplementary Section S1.

Constructing the RNA primary sequence and secondary
structural profiles. When constructing the base sequence
and secondary structural profiles of RBP targets, the view-
point regions are the RBP binding sites identified by the
CLIP-seq experiments. When encoding an RNA primary
sequence, the four elementary bases (i.e. A, G, C and U) are
first used to construct the RNA dictionary, which includes
all possible subsequences (i.e. RNA words) of fixed length
k that are composed of bases in different orders. These sub-
sequences of length k are also referred to as k-mers. In prin-
ciple, an RNA dictionary with longer RNA words can pro-
vide a more accurate description of the RNA sequence. On
the other hand, it is usually time- and space-consuming to
process relatively long RNA words, since both time and
space complexities grow exponentially as the length of RNA
words increases. In our framework, the length of RNA
words is set to be six, i.e. k = 6. Our additional tests (see
Supplementary Section S5) have shown that slightly differ-
ent RNA word length does not impact much on the model
performance. We then use a sliding window of size 6 and
step size 1 to scan the viewpoint region for each RNA doc-
ument. After that, we construct a vector, called count vector,
to record the occurrence of each RNA word in the scanning
process. In particular, the ith element in the count vector
records the number of times that the ith word in the RNA
dictionary appears during the scanning process. This count
vector is then used as the input fed into the replicated soft-
max model, as described in the previous section, to extract
the corresponding latent RNA topics of the base sequence
(see Figure 2).

The method of encoding RNA secondary structure is al-
most the same as that of encoding the primary sequence,
except with the following processes. First, since the experi-
mental secondary structure of the target RNA is usually un-
known, we need to predict RNA secondary structure from

RNA documents

· · · AATAACGCTG · · ·
· · · SSMSSSHHHH · · ·

1 AAAAAA

2 AAAAAC
...

...

1849 UUUUUU

RNA dictionary

0

1
...

0

9

11

0

1
...

0

1

0

Count vector
Latent RNA

topics

Replicated
softmax

Figure 2. Schematic illustration of encoding RNA primary sequence and
secondary structure. The definitions of RNA document, RNA dictionary,
RNA topic and count vector are described in the text. Here, we only show
the process of encoding the primary sequence. A similar scheme can be
conducted to encode RNA secondary structure (see Section ‘Constructing
the RNA primary sequence and secondary structural profiles’ for details).

the base sequence. Here, we use RNAshapes (24) to per-
form the RNA secondary structure prediction task. Start-
ing from the base sequence, RNAshapes computes an en-
semble of representative secondary structures rather than
the single best-folded one. RNAshapes categorizes RNA
secondary structure into five levels to abstract certain struc-
tural details, in which a higher level represents more abstrac-
tion of the structural profiles. Here, we use the first-level ab-
stract representation (i.e. the most detailed representation)
of the RNA secondary structure predicted by RNAshapes.
In addition, as it has been shown in the literature that the
length of 150 nucleotides has the best performance in pre-
dicting the secondary structure of mRNAs (28), we consider
150 more nucleotides from each viewpoint region in both
directions (i.e. upstream and downstream). We scan the ex-
tended region using a sliding window of 150 nucleotides
and with a step size of 37 nucleotides (which is approxi-
mately 25% of the window size), and then predict the sec-
ondary structures in each sliding window, in which up to
three most probable secondary structures within 10% of the
minimum free energy are kept. Note that a similar predic-
tion and scanning scheme is used in (10) to encode RNA
secondary structure.

With the predicted secondary structures, now each posi-
tion in the RNA document can be represented by one of
six elements, i.e. S, M, H, I, B and E, which stand for stem,
multiloop, hairpin loop, internal loop, bulge and external
regions, respectively. We then construct the RNA dictionary
and the count vector (the RNA word is counted as long
as the sliding window overlaps the viewpoint area for any
predicted secondary structure in the ensemble) to construct
the RNA secondary structural profiles using the same pro-
cedure as described in Figure 2. Since the RNA document
of secondary structure has two more elements than that of
base sequence, we adopt slightly longer RNA words (i.e. 8-
mers) to constitute the RNA dictionary in the 2D case.

Integrating the RNA tertiary structural profiles

RNA tertiary structure is associated with many RNA func-
tions regulated by RBPs (34). However, predicting RNA
tertiary structure from the base sequence is a challenging
task in computational biology (27), which makes it difficult
to study the impact of RNA tertiary structure on RBP bind-
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· · · UUAUACUUUA · · ·

· · · CGGGAC*GGAAAG · · ·

Probable tertiary motifs

HL 67042.17
HL 72498.17 ×

...

IL 48256.2 ×
IL 92602.2

...

JAR3D

Hairpin loop
subsequence

Internal loop
subsequence

1 1

2 0
...

...

254 0

255 1
...

...

Motif indicating
vector

Encoding

Figure 3. Schematic illustration of constructing the RNA tertiary struc-
tural profiles. The RNA tertiary structural motifs are predicted by JAR3D
based on RNA 3D Motif Atlas (R3DMA) (25,26).

ing behaviors. On the other hand, the currently available
databases of the atomic resolution RNA tertiary structures
and RNA–protein complexes can still provide a useful re-
source for elucidating the RNA–protein interactions. Here,
we use JAR3D (25,26) to extract probable tertiary structural
motifs from RNA 3D Motif Atlas (R3DMA, version 1.13,
which contains 253 representative hairpin loop motifs and
276 representative internal loop motifs) (27), given the cor-
responding RNA base sequence and secondary structural
information.
R3DMA is a comprehensive collection of the RNA tertiary

structural motifs of hairpin and internal loops derived from
a nonredundant set of high-resolution RNA tertiary struc-
tures. RNA tertiary structural motifs are recurrent mod-
ules that appear in the tertiary structure and are necessary
components for RNA folding and various biological func-
tions (35). More precisely, they are unstructured hairpin
and internal loops (with respect to the secondary structure)
with well-defined geometric arrangements of interacting nu-
cleotides (with respect to the tertiary structure) (27). Thus,
the tertiary structural motifs may involve atomic-resolution
contacts that are distant in the secondary structure. Several
featured examples of the RNA tertiary structural motifs are
shown in Supplementary Figure S2. Motifs in R3DMA are
further clustered into several groups based on the maximum
cliques. Depending on R3DMA, JAR3D is a computational
tool that predicts probable tertiary motifs of the hairpin and
internal loops in a given RNA.

The procedure of constructing the RNA tertiary struc-
tural profiles is illustrated in Figure 3. Given a target RNA,
we first predict its probable secondary structures using
RNAshapes, following the same process as described in the
previous section. Next, we look up all the hairpin and inter-
nal loops that overlap the viewpoint region, and then feed
these selected loops into JAR3D to calculate the probabili-
ties of folding into the corresponding tertiary structural mo-
tifs. We take zero as the cut-off score (36) to select probable
tertiary structural motifs, i.e. only those with the prediction
scores above zero are chosen. After that, we encode RNA
tertiary structure into an indicating vector (referred to as the
motif indicating vector) of 529 dimensions, corresponding
to 253 hairpin loop motifs and 276 internal loop motifs in
R3DMA v1.13. Each element in the indicating vector defines
whether the nucleotide sites can fold into the corresponding
tertiary structural motif.

3D structure

Label

Sequence 2D structure

Top-layer RBM

Modality A Modality B

A  A traditional multimodal
 DBN

B The multimodal DBN used in
 our framework

Hidden layers

Figure 4. Schematic illustration of the multimodal DBN architecture. (A)
A traditional multimodal (bimodal) DBN. (B) The multimodal DBN used
in our framework, the overall architecture of which is (d1,d2) – (2000, 1000,
529) – 3000 – 3000, where d1 and d2 denote the dimensions of the count
vectors for the primary sequence and secondary structural profiles, respec-
tively. The label vertex attached to the top layer is used to generate the
sequence and structural motifs in our test.

Predicting RBP binding sites using multimodal deep belief
networks (DBNs)

In the previous sections, we have introduced the proce-
dures of encoding RNA primary sequence, predicted sec-
ondary and tertiary structures to construct individual types
of structural profiles. Next, we describe how to integrate
them into a unified representation using a multimodal DBN
model.

Multimodal DBNs. The multimodal DBN is a specific
form of the deep learning architecture that is used to capture
common latent features from the multimodal input data.
For a dual-wing multimodal (also referred to as bimodal)
DBN shown in Figure 4(A), its joint probability density
function of the visible variables is defined by

p(vl ,vr ) =
∑

h1
l ,h1

r ,h2

p(vl |h1
l ) · p(vr |h1

r ) · p(h1
l , h1

r , h2), (5)

where the subscripts r and l mean that the variables are in
the right and left wings (i.e. the bottom RBMs) of the DBN,
respectively, and the superscript i (i = 1, 2) means that the
variable is in the ith layer of the DBN, and p(h1

l , h1
r , h2)

represents the joint probability density function of the top-
layer RBM. Here, we treat the primary sequence, secondary
and tertiary structures as individual modalities of the tar-
get RNA. After constructing the base sequence and sec-
ondary structural profiles using the replicated softmax, we
integrate them with the predicted tertiary structural profiles
using a standard DBN, which results in a multimodal DBN
(see Figure 4(B)), in which the bottom two wings are the
replicated softmax instead of RBMs in the traditional mul-
timodal DBNs.

In our multimodal DBN model, we roughly halve the di-
mension of each input modality for the dimension reduc-
tion purpose and use 2000 and 1000 RNA topics to en-
code the base sequence and secondary structure, respec-
tively. Then these 3000 latent RNA topics are concatenated
with the predicted tertiary structural profiles (i.e. the 529-
dimensional motif indicating vector), which constitute the

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article-abstract/44/4/e32/1851554 by guest on 16 M

ay 2019



e32 Nucleic Acids Research, 2016, Vol. 44, No. 4 PAGE 6 OF 14

hybrid layer in the network. Furthermore, we stack another
two RBMs, each of which has a 3000-dimensional hidden
layer. For each RBP, the overall architecture of the multi-
modal DBN is (d1,d2) – (2000, 1000, 529) – 3000 – 3000,
where d1 and d2 stand for the dimensions of the count vec-
tors for the primary sequence and secondary structural pro-
files, respectively. Note that except the dimensions d1 and d2,
we use the same network architecture for all RBPs in our
tests. The training and implementation details of our deep
learning framework are provided in Supplementary Section
S4.

Generating RBP binding motifs from multimodal DBNs

Our multimodal DBN is a generative model in nature,
which enables us to generate RBP binding motifs directly
from the trained model. There are two phases to gener-
ate the binding motifs from our framework, including the
training and sampling phases. In the training phase, we per-
form the training procedure that is similar to the pretraining
process in RBP binding site prediction (see Supplementary
Section S4). In particular, we follow the same principle of
(14) and pretrain the multimodal DBN layer-by-layer, while
training the top-layer RBM with the input layer catenated
by a label vertex, which denotes whether the nucleotide sites
are bound or not (see Figure 4(B)). In this case, the multi-
modal DBN actually models the joint distribution of the
RNA base sequence and structural profiles together with
its label, i.e. P(1D, 2D, 3D, label). In the sampling phase, we
first clamp the label vertex to be one, and conduct the mean-
field based Gibbs sampling in the top-layer RBM. Then
the ancestral sampling method (37) is applied to downward
generate the RBP binding motifs.

To generate the specific RBP binding motifs, we also need
to eliminate the background motifs that appear universally
in both bound and unbound scenarios. To achieve so, we
also compute the expected sequence and structural profiles
of the unbound RNA sites by clamping the label vertex to
be zero. After that, the difference of these two probabilities,
i.e. �P = P(1D, 2D, 3D|label = 1) − P(1D, 2D, 3D|label =
0), is calculated, which can be treated as the likelihood of
the RBP binding motifs modeled by our framework. Based
on �P, we sample from the expected RNA word distribu-
tion when clamping label = 1 in a rejection-sampling-liked
manner, i.e. at each sampling step, the RNA word with the
probability difference larger than a threshold � is kept; oth-
erwise, it is dropped. More implementation details of gen-
erating RBP binding motifs can be found in Supplementary
Section S4.

RESULTS

We validated the performance of our deep learning frame-
work on 24 datasets of the HITS-CLIP-, PAR-CLIP- and
iCLIP-derived RBP binding sites, in which 23 datasets
were derived from doRiNA (38), and the remaining one
which measured the PTB binding sites by HITS-CLIP was
derived from (39). The list of RBP names is shown in Ta-
ble 1, where the Ago1–4 and IGF2BP1-3 datasets contained
binding sites of several RBPs, and the four datasets, i.e.
ELAVL1 HITS-CLIP, ELAVL1 PAR-CLIP (A), ELAVL1

Table 1. AUROC performance of predicting RBP binding sites

RNA-binding protein GraphProt mDBN- mDBN+

ALKBH5 PAR-CLIP 0.680 0.686 0.714
C17ORF85 PAR-CLIP 0.800 0.817 0.820
C22ORF28 PAR-CLIP 0.751 0.783 0.792
CAPRIN1 PAR-CLIP 0.855 0.825 0.834
Ago2 HITS-CLIP 0.765 0.805 0.809
ELAVL1 HITS-CLIP 0.955 0.964 0.966
SFRS1 HITS-CLIP 0.898 0.927 0.931
HNRNPC iCLIP 0.952 0.961 0.962
TDP43 iCLIP 0.874 0.874 0.876
TIA1 iCLIP 0.861 0.888 0.891
TIAL1 iCLIP 0.833 0.867 0.870
Ago1–4 PAR-CLIP 0.895 0.872 0.881
ELAVL1 PAR-CLIP (B) 0.935 0.956 0.961
ELAVL1 PAR-CLIP (A) 0.959 0.965 0.966
EWSR1 PAR-CLIP 0.935 0.964 0.966
FUS PAR-CLIP 0.968 0.979 0.980
ELAVL1 PAR-CLIP (C) 0.991 0.994 0.994
IGF2BP1-3 PAR-CLIP 0.889 0.872 0.879
MOV10 PAR-CLIP 0.863 0.831 0.854
PUM2 PAR-CLIP 0.954 0.965 0.971
QKI PAR-CLIP 0.957 0.981 0.983
TAF15 PAR-CLIP 0.970 0.980 0.983
PTB HITS-CLIP 0.937 0.879 0.983
ZC3H7B PAR-CLIP 0.820 0.786 0.796

mDBN- stands for the multimodal DBN that only integrates the RNA base
sequence and secondary structural profiles, while mDBN+ stands for the
framework that integrates the RNA base sequence, secondary and tertiary
structural profiles. The reported AUROC score was averaged over the 10-
fold cross-validation process. The AUROC scores dropped by >2% after
eliminating RNA 3D structural information are noted in bold.

PAR-CLIP (B) and ELAVL1 PAR-CLIP (C), contained
ELAVL1 binding sites derived by different experimental
techniques. The preprocessed datasets were derived from
(10), which included both positive samples (i.e. the RBP
binding sites identified by the CLIP-based experiments)
and negative samples (i.e. the unbound RNA sites created
by shuffling the positions of bound sites). The descriptive
statistics of these 24 RBP datasets is provided in Supple-
mentary Table S1.

Predicting RBP binding sites

We first used the 10-fold cross-validation procedure with
the standard area under receiver operator characteristic (AU-
ROC) to evaluate the performance of our method on pre-
dicting RBP binding sites. We compared the prediction per-
formance of our deep learning framework with that of the
state-of-the-art method GraphProt (10). We also adopted
the relative error reduction that has been commonly used for
comparing the prediction performance of two different ap-
proaches (10), which is defined by (c′ − c)/(1 − c), where c
denotes the baseline performance and c′ is the performance
of the new method. Table 1 summarizes the prediction per-
formance comparison betweenGraphProt and our frame-
work, which indicates that our model yielded comparable
or superior performance to that of GraphProt. In partic-
ular, among 24 RBPs, our method outperformed Graph-
Prot for 19 RBPs, with an average relative error reduction
of 22%, the median relative error reduction of 21% and the
largest relative error reduction of 73% (achieved for the PTB
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A 1D versus full
 structure

B 1D + 2D versus
 full structure

Figure 5. Comparison of the prediction performance between models with
partially and fully structural profiles. The prediction performance was eval-
uated in terms of AUROC. The x-axis and y-axis represent the prediction
performance of the models with partially and fully structural information,
respectively. The points representing the results with similar performance
are located near the solid diagonal line and the points in the area between
two dashed lines have the performance difference smaller than 2%. RBPs
with significant performance difference (i.e. with AUROC difference >2%)
between the partially- and fully-structured models are marked with col-
ored nodes. (A) Performance comparison between models with only base
sequence and fully structural profiles. (B) Performance comparison of the
model with base sequence and secondary structural profiles versus fully-
structured model.

dataset). Based on the prediction performance provided
in (10), we further concluded that our framework outper-
formed RNAcontext (11), a weaker model than Graph-
Prot, for all 24 RBPs with an average relative error reduc-
tion of 44%. Since we used the same datasets as in (10), this
comparison was fair and reasonable.

Impacts of RNA structure on RBP binding

In addition to predicting new candidate RBP binding sites,
the proposed deep learning framework enables us to inves-
tigate the impacts of RNA structure on RBP binding be-
haviors, i.e. whether and how much the structural profiles
contribute to the RNA–protein interactions. We used the
following procedure to investigate this problem: After train-
ing the multimodal DBN for classification, we provided the
network with partially structural information to study the
influence of the missing structural profiles on the prediction
performance.

Most previous work (10–11,13) only focuses on study-
ing the influence of the RNA secondary structural fea-
tures on RNA–protein interactions. Here, we first stud-
ied the overall secondary and tertiary structural prefer-
ences of RBP binding by comparing the prediction per-
formance between the fully structured and sequence-only
models. For the sequence-only model, we removed the in-
puts in the secondary and tertiary structural modalities. As
shown in Figure 5(A), we observed noticeable drop in per-
formance (with AUROC score reduced by >2%) in seven
RBPs, i.e. ALKBH5, AGO1–4, C22ORF28, CAPRIN1,
MOV10, PTB and ZC3H7B. This result implies that RNA
(secondary and tertiary) structure can play an important
role in RBP binding.

Table 2. Predicted RBP binding motifs with literature evidence

We further investigated the contribution of the RNA ter-
tiary structural features to the RBP binding preferences.
We removed the tertiary structural profiles and let the deep
learning model only take the base sequence and secondary
structural profiles as input. After that, we compared the pre-
diction performance with that of the fully structured model.
As shown in Figure 5(B), we observed a noticeable drop in
performance (with AUROC score reduced by >2%) in three
RBPs: ALKBH5, MOV10 and PTB. Note that for other 21
proteins, we cannot rule out the possibility of their binding
preferences attributed by the RNA tertiary structural fea-
tures. The lack of difference in AUROC scores may be due
to the current insufficient number of RNA tertiary struc-
tural motifs for these 21 RBPs available in R3DMA, which
resulted in the limited prediction power in our model.

Discovering potential RBP binding motifs

Discovering the potential sequence and structural bind-
ing motifs of RBPs may provide useful biological hints for
studying the RBP regulation mechanisms. Here, we gener-
ated the potential sequence and structural motifs of RBP
targets using the procedure described in Section ‘Materi-
als and Methods’. Test results are summarized in Tables 2
and 3.

Identifying the potential base sequence and secondary struc-
tural binding motifs. We first compared the predicted se-
quence binding motifs with those identified in the literature.
Note that for fairness and rationality, here the comparing
literature (for both sequence and secondary structure cases)
was chosen only if it is different from that accompanying
with the training samples we used. The enriched motifs of
AGO1–4 identified in previous studies agreed with our re-
sults in Table 2. Particularly, AGO family proteins present
a 5-mer binding motif depleted at miRNA bound sites, i.e.
strong consensus base A at both ends and weak conserva-
tive bases A, C, U in the middle (40). The binding preferences
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Table 3. Top five potential tertiary structural binding motifs predicted by our model for ALKBH5, MOV10 and PTB

of TIA1/TIAL1 and ELAVL1 captured by our framework
showed a high level of motif similarity with the previously
reported consensus motifs of AU-rich or U-rich elements
(41,42). EWSR1 recognizes and binds to G-rich and GGU-
rich elements (43,44), conforming to the motif captured by
our model. SFRS1 was predicted to bind in regions with
an over-represented GA-rich motif, which closely matched
the consensus areas validated by the previous studies (45).
IGF2BP1-3 have been identified with the common binding
sites in CAU and G-less patterns (7), which displayed great
agreement with the consensus motif found by our model.
TDP43 binds to a consensus (UG)n motif in both 3′ UTR
and long intronic sequences, regulating pre-mRNA splicing
or RNA transport and translation (46), and our model also
generated the motif containing UG repeats. PTB has been
described in (47) to bind to a polypyrimidine tract with the
help of the RRM domains (48), which also matched the UC-
rich motif identified by our model.

Various studies have validated that double-stranded
RNA sites can restrict RBP binding by their stem struc-
tures, and the ubiquitous binding sites lie in single-stranded
regions with relatively high affinity (49,50). These observa-
tions were consistent with our finding that a large fraction of
RBPs tended to bind in unpaired regions (see Table 2). Pre-
vious experimental studies on certain RBPs have confirmed
this finding. For example, ALKBH5 and ELAVL1 prefer
to bind at single-stranded RNA sites during gene regulation
(42,51). PTB interacts with the internal ribosomal entry site
(IRES) in the 5′ or 3′ UTR, forming stem loops in both vi-
ral genome and cellular mRNAs (52), which agreed with the
secondary motif identified by our model (Table 2). The FUS
binding motif was found to have paired structure at the bor-
ders and hairpin loop at the center in our framework. There
is also related evidence (53) indicating that FUS may prefer
an AU-rich stem loop in non-neuronal cells while this result
may not be so reliable in the CHIP studies in neural cells
(46,53). On the other hand, no significantly specific bind-

ing motif recognition can imply that probably it also needs
certain conformational features for RBP binding (46).

To check how the input RNA secondary and tertiary
structural profiles contributed to the extraction of struc-
tural binding motifs in our framework, we performed an
additional test on PTB by introducing a fraction of unstruc-
tured RNA sequences (i.e. bound and unbound sites devoid
of the structural profiles) during the motif generating pro-
cess. The test result showed that by inactivating the struc-
tural profiles for a fraction (20%) of training samples, our
framework lost certain ability to fully discover the struc-
tural binding preferences of PTB, but still grasped some sec-
ondary structural specificities. More details of this test can
be found in Supplementary Section S7.

Identifying the potential tertiary structural binding motifs.
We also identified the highest scored tertiary structural
binding motifs for three RBPs, i.e. ALKBH5, MOV10 and
PTB, which were shown to own tertiary structural specifici-
ties for their binding targets based on the tests performed
previously. Based on the probability difference �P of the
RNA tertiary structural profiles for each RBP, we selected
the top five potential tertiary structural binding motifs with
the largest difference values. Detailed case studies on these
three RBPs are provided in the next section.

We also checked the consistency between the derived ter-
tiary structural binding motifs and the corresponding se-
quence and secondary structural features, taking PTB as an
example. As summarized in Supplementary Table S3, the
consistency was confirmed based on the following obser-
vations. First, the fraction of C and U bases in the top five
motifs was high (≥60%), which was in line with the fact that
PTB has CU-rich sequence binding motifs (see Table 2). Sec-
ond, all these top five 3D motifs had hairpin loops, which
were consistent with the PTB 2D binding motif (i.e. hairpin-
loop-rich) derived by our model (see Table 2). In addition to
the fact that the derived base sequence and secondary struc-
tural binding motifs of PTB have been shown to agree with
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the evidence in the literature, the above consistency exam-
ination provides another verification on the rationality of
the potential RBP binding motifs derived by our method.

Case studies on the impacts of RNA tertiary structure on
RBP binding

Here, we present detailed discussions on the potential in-
fluence of RNA tertiary structure on RNA–protein inter-
actions for ALKBH5, MOV10 and PTB.

ALKBH5 has been recognized as an important demethy-
lase of N6-methyladenosine (m6A), which is referred to
the methylation of the adenosine at the nitrogen-6 posi-
tion (51,54–55). The RNA methylation m6A is the most
abundant modification in mammalian mRNAs and lncR-
NAs, and has been found to be related to various aspects of
RNA functions (55,56). The structural biology studies have
validated that ALKBH5 interacts and catalyzes the m6A
methylation of single-stranded RNAs (51,56), and it has
been strongly believed that the N6-methylation can change
RNA tertiary structure (55). In particular, the m6A modi-
fication can weaken RNA secondary structure and change
tertiary interactions, such as base triples or Hoogsteen in-
teractions, that involve the hydrogen bonds connected to
the N6 proton (55,57). In addition, it has been hypothe-
sized that m6A sites located in the hairpin stems can form
a major groove to facilitate the RNA–protein interactions
(58,59). Probably the RNA tertiary structural motifs as-
sociated with the nucleotide sites of m6A methylation can
be used as the implicit indicators of RBP target sites. This
may explain the improvement of prediction performance for
ALKBH5 after incorporating the predicted RNA tertiary
structural profiles (see Figure 5(B)). Note that the relatively
poor prediction performance for the ALKBH5 dataset (for
both GraphProt and our framework, see Table 1) may
be attributed to the lack of m6A methylation information
(which are probably related to both RNA secondary and
tertiary structures) incorporated in the prediction model.

MOV10 has been known as a putative RNA helicase,
which involves various RNA-mediated functions through
the RNA-induced silencing complex (RISC). The recent
study in (60) has indicated that MOV10 may act as an RNA
clearance factor to remove proteins and resolve RNA struc-
tures from 3′ UTRs to facilitate the UPF1-regulated mRNA
degradation. In (61), it has been found that, although sev-
eral sequence motifs are enriched in MOV10 binding sites,
these motifs are only observed with a small number of oc-
currences. This observation suggests that the RNA primary
sequence features are not the dominant factor, and possibly
the secondary and tertiary structures are also involved in
the MOV10 binding preferences. Our prediction results on
the binding sites of MOV10 (see Figure 5(B)) are consistent
with this hypothesis.

In our prediction results of PTB, integrating the predicted
RNA tertiary structural features yielded a much higher pre-
diction accuracy than that of using only RNA primary
sequence and secondary structural profiles, with the AU-
ROC score improved from 0.879 to 0.983. As indicated by
its name (i.e. polypyrimidine tract-binding), PTB prefers
binding to polypyrimidine sites, and plays important roles
in many functions of mRNA metabolism, such as splic-

ing regulation, internal ribosomal entry site (IRES) medi-
ated translation and RNA localization (52). The fact that
the RNA tertiary structural profiles can significantly con-
tribute to the RBP binding site prediction agrees well with
the previous studies on the structure–function relationships
of PTB and the mechanisms of its interactions with RNAs
(52,62). For example, it has been shown that the interac-
tion between PTB and the IRES of an mRNA is highly
correlated with the tertiary structure of the IRES elements
(52,62). In addition, the structural studies of PTB have
shown that its two RRM domains bound to the CU-rich
sites of a U1 snRNA form a special spatial arrangement to
prevent U1 from interacting with the downstream spliceo-
somal elements (63). In this situation, the tertiary structure
of U1 snRNA may play an important role in the binding
preferences of these two RRM domains of PTB.

A case study of the predicted PTB–RNA complex structure

PTB consists of four RRM domains (64). To further inves-
tigate how the RNA motif structure can be fitted into the
protein, we tried to examine the structural details of the in-
teractions between PTB and the top RNA 3D motifs de-
rived from our model. Unfortunately, the experimentally-
determined structures of these complexes are quite scarce.
To our best knowledge, the only available structures of
the RNA–protein complex involving PTB are comprised of
each domain of the protein and a CUCUCU oligonuleotide
which does not have an explicit tertiary structure. Thus, we
used HADDOCK (65,66) to dock our derived RNA 3D motifs
to the four domains of PTB respectively and examined the
details of the docked complex structures.

The structures of the oligonucleotide and each domain
of PTB were extracted from model 1 of the correspond-
ing NMR complex structure. The PDB IDs of RRM1 and
RRM2 domains are 2AD9 and 2ADB, respectively. The
PDB ID 2ADC contains both RRM3 and RRM4 domains.
The corresponding conformations of oligonucleotide CU-
CUCU were first docked back to the individual RRM do-
mains to confirm if the docking platform was reliable for
this test. The residues involved in the interactions between
PTB and the RNA in the complex were defined as the ac-
tive sites during the docking process. The docking results
of RRM1, RRM2 and RRM3 generated by HADDOCK dis-
played RNA binding patterns that were quite similar to
those determined by NMR (overall backbone RMSD val-
ues were 0.832 Å for RRM1, 0.673 Å for RRM2 and 0.723
Å for RRM3, respectively), giving us confidence to con-
tinue the docking experiments. Meanwhile, these docked
complex structures for the domains RRM1, RRM2 and
RRM3 were used as positive controls in the latter tests.
On the contrary, the complex structure of the RRM4 do-
main with the docked RNA was distinct from the original
NMR structure, whose binding might be influenced by its
interaction with RRM3 (64). Thus, the docking results in-
volving RRM4 were abandoned in the following tests. Af-
ter that, the five derived RNA 3D motifs with the highest
binding scores according to our framework (see Table 3)
were tested, whose structures were extracted from the cor-
responding PDB files of the motifs with the lowest discrep-
ancy according to R3DMA. The active sites were remained
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the same as those in the positive controls. Since a longer
RNA could introduce more interactions beyond the active
sites and thus result in the decrease of the total energy, here
we calculated the docking efficiency, which is defined as –
E/M, where E represents the total energy and M represents
the molecular weight of all nucleotides involving the polar
contacts with the protein.

The results showed that four of the top five motifs pre-
sented descent docking efficiency that were comparable to
the positive controls (see Supplementary Table S4), sug-
gesting that the score of the binding motif calculated by
our framework may indicate the binding affinity to some
extent. In addition, the enrichment pattern of pyrimidines
was found when measuring the ratios of C and U among all
the nucleotides involved in the interactions with PTB (see
Supplementary Table S5), which indicated that our docked
complex structures were probably reasonable. As presented
in Supplementary Table S4, four of the top five motifs were
successfully docked to at least one domain through the con-
served binding residues without serious steric clash between
atoms.

The docking results may provide useful hints for under-
standing the intermolecular recognition between PTB and
RNA. An example of the docked structure between the
derived RNA 3D motif and PTB is given in Figure 6, in
which the docked structure of the motif HL 86115 in com-
plex with the RRM1 domain is shown. Certain interac-
tions identified in the docked structure were consistent with
the experimentally-determined structure (67), including the
stacking force between His62 and C237 and the hydrogen
bond between Phe130 and the amino group in C237. In ad-
dition, some novel interactions were observed. For instance,
Lys94 or Gln96 on the second beta-sheet of RRM1 also dis-
played hydrogen bonds with the RNA motif and might also
contribute to RNA binding, which suggests that different
RNA binding patterns may also appear when PTB is bound
to a well-structured RNA. As PTB plays a suppressing role
in splicing along with other cofactors (64), the bound RNA
may not always be a linear single strand but a structured
motif bound together with other factors. Thus, it is reason-
able to hypothesize that the specific RNA tertiary motifs
also affect their binding affinities. Overall, these docking re-
sults might provide useful hints for understanding the post-
transcriptional gene regulation of PTB.

In practice, it is generally expensive and time-consuming
to experimentally study the atomic interactions between the
derived RNA 3D structural motifs and PTB. Our dock-
ing procedure provided an alternative and cheap way to in-
vestigate the atomic details of their potential interactions.
The motivation of our docking studies was mainly to of-
fer a more detailed view about the RNA–PTB interactions
predicted by our framework, rather than providing a direct
validation of the interactions between the derived RNA 3D
motifs and PTB. Thus, our docking results cannot rule out
the possibility that PTB can also bind to other RNA 3D
motifs that were not selected in the top list. Without exper-
imental validation, our docking strategy can only provide
a limited solution for investigating the atomic interactions
between PTB and the derived RNA 3D structural motifs.

Predicting PTB binding sites in the IRES regions

An internal ribosome entry site (IRES) segment is a nu-
cleotide sequence that attracts the eukaryotic ribosomal
translation initiation complex to facilitate the translation
initiation without the usual 5′-terminal 7mG cap structure
(68), and PTB has been shown to interact with the IRES re-
gions in the translation initiation process (64). Meanwhile, it
has been known that RNA tertiary structure of IRES is es-
sential in IRES–protein interactions and the corresponding
functions of IRES (69–74). Thus, we hypothesize that RNA
tertiary structure can play an important role in PTB–IRES
interactions. Under this hypothesis, we expected to observe
better performance in predicting the PTB binding sites for
the IRES regions after incorporating RNA 3D structural
information. To validate this speculation, we ran our ap-
proach and GraphProt for the known IRES regions avail-
able from the database IRESite (68), and evaluated the
prediction performance before and after integrating RNA
3D structural profiles. Note that though the IRES regions
can interact with different RBPs, here we mainly focused on
the case study of PTB to demonstrate the necessity of inte-
grating RNA tertiary structural information into the pre-
diction model.

We downloaded a set of 40 IRES segments in Homo sapi-
ens from (68) that have been experimentally verified, and
then predicted possible PTB binding sites in these IRES re-
gions. More details of the tests can be found in Supplemen-
tary Section S9. Note that these IRES segments were not
found in the CLIP-seq dataset of PTB that we used as
training data, and among these 40 IRES regions, 13 have
been validated experimentally with PTB binding. We also
performed an additional negative control test on another set
of 40 mRNA subsequences that did not overlap any of the
40 IRES segments (see Supplementary Section S9 for more
details). Figure 7(A) shows the overall test results. Based
on the tests on both IRES segments and negative control
dataset, we had the following observations: (i) all three pre-
diction approaches, including GraphProt, DBN-3D (i.e.
our DBN model without RNA 3D structural information)
and DBN+3D (i.e. our DBN model with RNA 3D struc-
tural information), yielded low enrichment of the predicted
binding sites on the negative control dataset; (ii) Graph-
Prot yielded similar prediction results on both IRES seg-
ments and negative control dataset; (iii) our deep learn-
ing method incorporating RNA 3D structural information
showed a significantly higher enrichment of the predicted
binding sites in the IRES regions than the negative con-
trol dataset (with P-value = 5.57 × 10−6); (iv) our DBN
model integrating RNA 3D structural information achieved
a much higher fraction of hits on the IRES segments than
GraphProt and DBN-3D (with P-values 3.59 × 10−12

and 1.53 × 10−7, respectively). Based on these observa-
tions, we concluded that: (i) the increased number of hits
in the IRES regions produced by DBN+3D was not at-
tributed to the false-positive issue, in other words, our deep
learning method did not suffer from the false positive prob-
lem; (ii) compared to GraphProt and DBN-3D, which did
not consider RNA 3D structural information, DBN+3D
yielded a much higher enrichment of the predicted binding
sites on the IRES segments, which was probably due to the
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Figure 6. An example of the docked structure of PTB in complex with the top RNA 3D motifs derived by our model, in which the docked structure of
the RRM1 domain of PTB in complex with the motif HL 86115 was predicted by HADDOCK (58,65). (A) The surface representation of the RRM1 domain
showing how the RNA motif with a 3D structure fitted into the binding groove. (B) Overview of the docked structure of RRM1 domain in complex with
the RNA 3D motif, in which the nucleotides and residues involved in the intermolecular interactions are shown with sticks. Close views of the binding sites
of (C) A235 and U236, (D) C237, (E) U238 and U239 are presented in detail, respectively. The potential hydrogen bonds (predicted by PyMOL (78)) are
indicated in magenta dashed lines.

A Performance comparison B Local structure of 
 APAF1

C Prediction results of 
 APAF1

Figure 7. Results on predicting the PTB binding sites of the IRES regions. (A) Overall performance comparison (box plot), in which DBN+3D and DBN-
3D represent the DBN models with and without RNA 3D structural profiles, respectively. The first three boxes represent the prediction results in the
IRES regions, while the last three boxes represent the prediction results on the negative control dataset, in which C1, C2 and C3 denote the control tests
for GraphProt, DBN-3D and DBN+3D, respectively. The Student’s t-test was used to compare two different prediction methods. ‘***’ means that the
P-value of the corresponding comparison was less than 0.001. (B) Local secondary structure of APAF1. Here we only present the local secondary structure
of APAF1 that covers the P1 and P2 sites (shown in red), which are the experimentally-verified PTB binding sites. The whole secondary structure of APAF1
is provided in Supplementary Section S9. The figure was generated using RNAstructure (79). (C) Prediction results of APAF1. The first three labels
represent the prediction results of the scanning windows overlapping the P1 and P2 sites, and the hairpin loop covering the P2 sites, respectively. The last
label represents the prediction result of the remaining sites, which was considered as the unbound region. The faction of hits was defined as the ratio of the
number of predicted bound windows versus the total number of scanning windows in the corresponding region.

PTB recognition preference in RNA 3D structure in these
IRES regions. All these results further demonstrate the ne-
cessity of integrating RNA 3D structural information into
the model of predicting RBP binding sites.

We also examined individual prediction results of the 13
IRES segments, in which the PTB binding has been vali-
dated experimentally in the literature (see Supplementary
Figure S5(A)), and provided the predicted PTB binding
sites for the other 27 IRES regions (see Supplementary Fig-

ure S5(B)). More details about these individual results can
be found in Supplementary Section S9. To further investi-
gate the prediction performance of our method in more de-
tail, we also investigated the details of the predicted bind-
ing sites in IRES segments APAF1 and UNR, in which the
exact PTB binding sites have been verified experimentally
(70,75–76). Here we mainly used the results of APAF1 as
a case study. The prediction results of UNR (upstream of
N-ras) can be found in Supplementary Section S9.
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APAF1 is a well-studied IRES segment that is bound to
PTB, and multiple functional assays on its mutations have
been performed to identify the binding patterns (70). Im-
portantly, these studies indicate that PTB can only bind to
the IRES region of APAF1 when it folds into a correct ter-
tiary conformation, which is achieved by UNR co-binding
that opens the loops near the PTB binding sites (70). The
experimentally-verified PTB binding sites of APAF1 con-
tain both P1 and P2 sites, as shown in red in Figure 7(B), in
which the P1 sites are located around an internal loop while
the P2 sites are located in a hairpin loop. The P2-loop sites
were defined as the hairpin loop that contains the P2 sites.
We examined the prediction results of four different types of
regions, including the P1, P2, P2-loop regions, which con-
tained the RNA subsequences in the scanning windows that
overlapped the P1, P2 and P2-loop sites, respectively, and
the unbound region, which contained the remaining sites
that are not found to bind to PTB experimentally. As shown
in Figure 7(C), GraphProt failed to detect any bound
site in the P1 and P2 regions of APAF1. In contrast, our
deep learning method can detect the experimentally-verified
PTB binding sites in both P1 and P2 regions. In particu-
lar, for the P1 region, both DBNs with and without RNA
3D structural information can detect bound subsequences
that overlapped the experimentally-verified sites. This im-
plies that the PTB–P1 interaction may strongly prefer cer-
tain secondary structural features. In fact, the P1 sites are
located in an almost double-stranded region (with only a
one-nucleotide internal loop, see Figure 7(B)). Although
GraphProt also considered RNA secondary structural in-
formation for binding site prediction, it was unable to dis-
cover any target site in the P1 region. Furthermore, only
the DBN model with RNA 3D structural information was
able to detect the PTB–P2 interaction, which indicates that
probably there is certain tertiary structural preference for
PTB binding in this region. For the P2 region, the num-
ber of the detected bound sites consistent with experimental
validation was relatively small compared to that in the P1
region. We speculated that, due to the complicated mecha-
nism of PTB-(APAF1) interactions, there may be some bias
in our prediction. To demonstrate this point, we relaxed the
‘ground-truth’ bound sites to the entire hairpin loop cov-
ering the P2 sites and found that the consideration of such
bias can yield a much better prediction result, as shown in
Figure 7(C). We also observed that the false-positive ratio,
i.e. the fraction of hits in the unbound region, was much
smaller than that of the bound regions. This result further
indicates that it is unlikely that our method suffered from
the false-positive issue.

The test results of APAF1 and UNR (see Supplementary
Figure S7) provide excellent examples to explain PTB’s role
as a general RNA chaperone to mediate the translation of
mRNAs. According to the previous experimental studies,
the binding of PTB and other cofactors to these RNAs can
generate a conformational change, usually the disturbance
of the stem regions to release the structured regions into
available loops, and make the RNA fold into a specific ter-
tiary structure required for translation (70,72,75,77). Thus,
it is reasonable to speculate that RNA tertiary structure
can contribute to RBP binding preferences, which may ex-

plain the improvement of the prediction performance of our
framework after integrating the RNA 3D structural profiles.

CONCLUSION

We have developed a deep learning framework to model the
binding preferences of RNA-binding proteins by integrat-
ing the primary sequence, predicted secondary and tertiary
structural profiles of the target sites. Our framework con-
sidered RNA tertiary structure for RBP binding site pre-
diction, and provided strong evidence to support the view
that the RNA tertiary structural features can contribute to
RBP target recognition. Tests on real CLIP-seq datasets
showed that our framework can achieve the comparable
or superior performance to the state-of-the-art method for
predicting RBP binding sites. In addition, the structural
motifs generated by our framework agreed well with the pre-
vious experimental studies in the literature, and may provide
useful hints for further elucidating the molecular recogni-
tion mechanisms of RBPs.
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