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The recent arrival of large-scale cap analysis of gene expression (CAGE) data sets in mammals provides a wealth of
quantitative information on coding and noncoding RNA polymerase II transcription start sites (TSS). Genome-wide
CAGE studies reveal that a large fraction of TSS exhibit peaks where the vast majority of associated tags map to a par-
ticular location (~45%), whereas other active regions contain a broader distribution of initiation events. The presence of
a strong single peak suggests that transcription at these locations may be mediated by position-specific sequence features.
We therefore propose a new model for single-peaked TSS based solely on known transcription factors (TFs) and their
respective regions of positional enrichment. This probabilistic model leads to near-perfect classification results in cross-
validation (auROC = 0.98), and performance in genomic scans demonstrates that TSS prediction with both high accuracy
and spatial resolution is achievable for a specific but large subgroup of mammalian promoters. The interpretable model
structure suggests a DNA code in which canonical sequence features such as TATA-box, Initiator, and GC content do play
a significant role, but many additional TFs show distinct spatial biases with respect to TSS location and are important
contributors to the accurate prediction of single-peak transcription initiation sites. The model structure also reveals that
CAGEtag clusters distal fromannotatedgene startshavedistinct characteristics compared to those close togene59-ends.Using
this high-resolution single-peakmodel,we predictTSS for~70%ofmammalianmicroRNAsbasedoncurrently availabledata.

[Supplemental material is available online at www.genome.org. The annotation-supported classifier is publicly available as
an Open Source command-line tool at http://tools.igsp.duke.edu/generegulation/S-Peaker.]

The transcription of genes to RNA is a fundamental step in the

expression of information encoded in a genome. Animal genomes

encode three RNA polymerases, and all protein-coding genes as

well as regulated noncoding genes such as microRNAs (miRNAs)

are transcribed by RNA polymerase II (Pol II). The precise mecha-

nism and features by which the Pol II enzyme hones in on the

location of the transcriptionstart site(s) (TSS) to initiate transcription

is still not completely resolved, in particular for complex genomes

like those of mammals, where a comparatively small number of

TSS are vastly outnumbered by the noncoding fraction of the ge-

nome. Rapidly accelerating technical advances in both hybrid-

ization-based and sequencing-based methods for high-throughput

TSS identification (Sandelin et al. 2007) yield unprecedented op-

portunity for new insight into the mechanisms that guide tran-

scription initiation by Pol II. In particular, the sequencing-based

technology known as cap analysis of gene expression (CAGE) offers

a unique advantage among high-throughput methods: the 59-end

sequencing of cap-selected cDNAs provides a count of the number

of transcript starts (CAGE tags) that map to a particular location on

the genome. CAGE tags therefore provide a view not only of where

initiation events occur, but how they are distributed.

While it had been previously noted that some promoters do

not show a preference for a single initiation site (Bucher and

Trifonov 1986; Bucher 1990), transcription was largely viewed as

a process that may begin at only a few particular locations per

gene, perhaps with different frequency depending on tissue type

and other cellular conditions. The recent CAGE studies that in-

clude >12 million 59-ends of mouse and human transcripts have

fundamentally altered our understanding of Pol II promoters

(Sandelin et al. 2007), by demonstrating convincingly that initi-

ation events are not limited to one or just a few single locations

(Carninci et al. 2006). Rather, these events tend to cluster at dif-

ferent scales, and tag distributions over regions of frequent initi-

ation (CAGE tag clusters) take on a variety of distinct shapes.

Genome-wide detection of TSS using CAGE and other competing

technologies thus strongly suggests that transcription can begin at

millions of sites in the genome (Carninci et al. 2005, 2006;

Kapranov et al. 2007), and that these sites have widely varying

usage rates.

This CAGE tag information has been extensively analyzed by

the RIKEN team to show that given experimental data on the tag

frequency observed within an active promoter region, the relative

transcription start site usage of each nucleotide within the region

can be predicted with high accuracy using a first-order Markov

model (Frith et al. 2008). TSS distributions for most promoters in

this study were also found to be highly conserved between human

and mouse, suggesting a mammalian ‘‘code’’ for transcription

initiation. In particular, for ~45% of mouse CAGE tag clusters that

are supported by more than 100 tags, the cluster contains one or

more strongly preferred regions of only a few nucleotides in width.

The presence of a strong initiation event peak within these highly
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localized regions suggests that position-specific DNA sequence

features may mediate transcription within a large subset of

mammalian promoters. This finding motivates a fresh look at

whether DNA-encoded transcription signals alone, only using TSS

location and not tag frequencies, can predict the likelihood of

transcriptional activity at any particular genomic location and

serve as a complementary model to the positional Markov chain

by Frith et al. (2008).

The idea to identify TSS with the help of positional sequence

features is not a new one; computational approaches to identify

the locations of Pol II promoters have a long history, and various

models have been trained using different sets of sequence and

structural features, with varying degrees of success and sometimes

including positional preferences (Davuluri et al. 2001; Bajic et al.

2002; Down and Hubbard 2002; Ohler et al. 2002; Bajic and Seah

2003). As a successful example, the analysis of Drosophila sequences

has, indeed, led to sets of positionally enriched sequence motifs

(Ohler et al. 2002; Fitzgerald et al. 2006), and data subdivision

according to promoter type leads to a significant improvement in

modeling and classification success (Ohler 2006). Recent popular

approaches applicable to mammals (Sonnenburg et al. 2006;

Wang and Hannenhalli 2006; Goni et al. 2007; Zhao et al. 2007;

Zhou et al. 2007; Abeel et al. 2008) are typically based on high-

quality promoter data sets defined in the hand-curated Eukaryotic

Promoter Database, EPD (Cavin Perier et al. 1998), or the Database

of Transcription Start Sites, DBTSS (Suzuki et al. 2002). However,

EPD and DBTSS are relatively small compared to the CAGE set, and

the computational approaches, in general, did not use direct in-

formation on the distribution of initiation events occurring at each

transcription start site or the surrounding region.

In light of the evidence coming from the CAGE tags,

approaches that assume that all mammalian TSS are a homoge-

neous set sharing the same features may thus simply not be able to

define Pol II promoters in the most appropriate way; the difficul-

ties that have been traditionally observed are very suggestive of

multiple underlying core promoter architectures. In mammals,

a division of promoters based on the presence of so-called CpG

islands in the TSS vicinity has been popular, and the recognition of

promoters belonging to the CpG-poor group has been notoriously

difficult. CpG islands are a by-product of mammalian DNA

methylation that occurs at CpG dinucleotides and are defined as

regions relatively rich in GC content in general and CpG dinu-

cleotides in particular (Larsen et al. 1992). However, different

architectures most likely go beyond the simple presence or ab-

sence of CpG islands, particularly given that CAGE analyses sug-

gest that many layers of control by proximal and distal sequence

elements influence TSS distribution, and given that there is no

clear-cut association of TSS distribution types with CpG islands

(Frith et al. 2008).

In this study, we explore in-depth how well we can compu-

tationally model the subset of promoters containing a strong TSS

within a narrowly defined location. In particular, we examine

whether the presence of known Pol II transcription factor (TF)

binding sites alone is sufficient to predict the TSS location of

promoters exhibiting a strong peak. We show that within this class

of single-peak promoters, start sites for transcripts supported by

current gene annotation can be predicted with astonishing accu-

racy using only DNA-binding affinity scores. We also observe that

single-peak CAGE tag clusters not supported by current annota-

tion constitute an overall different class. While the focus of our

work is on the identification of the features defining the single-

peak promoter class and not on a general-purpose promoter

identification tool, we can apply these models for genome-wide

scans and evaluate the resolution at which single-peak start sites

for coding and noncoding transcripts can be predicted. Together,

these results demonstrate that high-accuracy computational TSS

prediction is achievable for a specific but large subgroup of

mammalian promoters. Using this model to predict TSS of mam-

malian miRNAs at high accuracy and spatial resolution, we esti-

mate that up to 70% of these miRNAs may have single-peak

promoters.

Results

Transcription initiation can be accurately modeled
by DNA-binding affinity

In order to investigate whether transcription initiation location at

single-peak start locations could plausibly be encoded by DNA

affinity for known TF binding elements, we first examined

whether any of these elements exhibited strong localized enrich-

ment within the immediate vicinity of CAGE-defined TSS loca-

tions. We reasoned that if the Pol II transcription machinery were

guided by direct or indirect binding to a subcollection of such

elements, binding would necessarily take on some degree of po-

sitional specificity with respect to the site of initiation. We began

by examining a subset of CAGE single-peak locations that were

also supported by UCSC Known and RefSeq gene annotation, the

annotation-supported training set (see Methods). Using a standard

log-likelihood TF binding site scanning technique and a collection

of approximately 40 known TRANSFAC (Matys et al. 2003) and

Jaspar (Sandelin et al. 2004) binding elements with positional

enrichment reported in the literature, we identified a subset of 35

elements that exhibit marked enrichment within this data set. In

particular, by incorporating a local background correction for di-

nucleotide frequency into our scanning method (see Methods), we

could decouple specific local signal enrichment from broader

enrichment arising because of the interplay between TF motif com-

position and background composition (Fig. 1). As a result, cumu-

lative TF binding affinities for many elements resolved to display

a sharp, highly localized signal (Fig. 2). We observed sharp en-

richment signals in precisely the expected binding locations for

canonical Pol II elements TATA and Initiator (Smale and Kadonaga

2003), along with sharp and broad regions of positional enrich-

ment for more than 30 other elements (see Supplemental material

for a complete list and positional enrichment plots).

This observation suggests that many of these elements may

play a guiding role in initiation for at least some single-peak TSS

locations and that their regions of positional enrichment reflect

the locations in which they are most likely to do so. To test this

hypothesis, we asked whether a model based on this group of

sharp and broad regions of enrichment could accurately predict

the probability that any given genomic location is a single-peak

TSS. In order to allow such a model to distinguish locations of high

binding affinity that are the most predictive of a single-peak ini-

tiation site, we divided the regions of enrichment into several

subwindows and flanking regions as shown in Figure 3A. A cu-

mulative score that approximates affinity for the relevant binding

element was computed over each subwindow and flanking region,

and this procedure was performed for all locally enriched binding

elements to construct the scoring features for a particular location

(see Methods). Additionally, GC content in a surrounding 200-nt

region is computed. We sought to understand whether a model

based on these features could distinguish single-peak TSS locations
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not only from gene-poor regions of DNA, but also from nearby

upstream locations and coding sequence, as both may lie in

regions that are CpG-rich and/or proximal to TF binding sites. We

therefore computed scoring features for each TSS in the annota-

tion-supported training set (positive examples), and for negative

examples selected from the immediate upstream regions of these

TSS as well as from annotated coding sequence (CDS) (Fig. 3B).

Positive examples, negative intergenic examples, and negative

CDS examples are selected in a 1:20:1 ratio (see Methods).

We then performed 10-fold cross-validation over the anno-

tation-supported training set using L1-regularized logistic re-

gression (Koh et al. 2007). We optimized the L1 regularization

parameter over the validation set of each partition and estimated

performance over an independent test set within the partition (see

Methods). The optimal L1 parameter on

each partition determines how many

features are removed from the model in

such a way that the best classification

performance is achieved. Classification

performance is measured by the area

under the ROC curve (auROC). We found

that performance was remarkably high,

with a test auROC averaging 0.98 over all

partitions (Fig. 4). For a baseline perfor-

mance comparison on exactly the same

feature set, we also performed cross-vali-

dation over the same data partitions with

an empirical näive Bayes classifier. For

performance comparison with a more

elaborate generative model, we retrained

the generalized hidden Markov model (HMM) defined in the

McPromoter classifier (Ohler et al. 2000). Figure 4 compares cross-

validation performance outcome for these three models. We found

that L1-regularized logistic regression outperforms the McPro-

moter HMM, which outperforms näive Bayes, and, in fact, we

consistently observed this performance relationship between the

three model types on all subsequent CAGE data sets examined. We

defined a final annotation-supported model by training on the entire

annotation-supported training set using the average of optimal L1

parameters from cross-validation. We then tested the annotation-

supported model on a completely separate test set composed of an-

notation-supported single-peak TSS and 100,000 randomly selected

genomic locations (see Methods). Supplemental Figure 1 illustrates

the outcome with two conferring performance measures, auROC

Figure 1. The effect of local dinucleotide background frequency correction on cumulative TF scores within several kilobases of the TSS. (Left panels)
VDR (vitamin D receptor) is typical of a relatively GC-rich motif that shows score enrichment in the TSS vicinity partly due to an increasingly GC-rich
background near many TSS, and partly due to a sharp locally enriched signal, which can often be difficult to distinguish as a separate entity. (Right panels)
TEF (thyrotrophic embryonic factor) is typical of a relatively AT-rich motif that shows depletion in the TSS vicinity for the same reason. The local
background correction decouples specific local signal enrichment from broader enrichment arising because of the interplay between TF motif com-
position and background composition. TRANSFAC ID for each binding element is displayed in plot titles.

Figure 2. Regions of positional enrichment with respect to TSS for TF-binding elements TATA, OCT1,
and YY1. TRANSFAC ID for each binding element is displayed in plot titles. Plots display cumulative
score (summed over the annotation-supported training set TSS regions) for each element as a function
of position with respect to TSS. Colors show the region subdivisions diagrammed in Figure 3A. (Red and
gray) Flanking regions.
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and auPRC (area under the precision-recall curve). The model

again performed remarkably, with a near-perfect auROC of 0.99.

We observed that our annotation-supported data set contains

~40% of single-TSS that are not located in

CpG islands. We therefore also divided

the data set according to previous con-

vention, with one group of TSS in CpG

islands and the other group not in

CpG islands (the CpG-island and non-

CpG-island training sets). Using the same

regions of enrichment as for the model

trained on the full set but retraining the

L1-regularized logistic regression classi-

fier and performing a corresponding

cross-validation under this data division,

we observed an average auROC of 0.99

and 0.96, respectively, for the CpG-island

and non-CpG-island cases (Fig. 4). This

shows that the annotation-supported set

contains a large fraction of non-CpG-

island TSS that it classifies almost as suc-

cessfully as CpG-island TSS. In total, the

outcome suggests that the annotation-

supported model provides an internally

consistent, high-resolution binding af-

finity-based code for the majority of sin-

gle-peak promoters and does not need to be resolved into CpG-

rich and CpG-poor TSS. This is markedly different from previous

reports, which consistently reported significantly poorer perfor-

mance on non-CpG island promoters (Wang et al. 2007; Zhao

et al. 2007).

Test set scans demonstrate the model’s ability to identify TSS
locations with high precision

In order to understand how the annotation-supported model

performs over contiguous genomic regions, we scanned 8-kb

regions surrounding all TSS in the annotation-supported test set.

We observe that within a reasonable range of classifier cutoffs, the

annotation-supported model picks up single-peak TSS with very

high resolution. The ability of the annotation-supported model to

accurately identify start sites both within and outside of CpG

islands is also confirmed. Figure 5 displays the percentage of TSS

hit by a probability peak as a function of the number of additional

peaks (hits) observed and examines how well these TSS-containing

peaks approximate actual TSS location. Results for the annotation-

supported model are displayed as solid dotted curves in Figure 5.

About 70% of the TSS were hit within 10 nt at thresholds allowing

very few additional hits, even in this difficult set of TSS proximal

genomic regions. The average distance to peak center for proba-

bility peaks containing a TSS is well within 20 nt at thresholds

where ~90% of TSS are contained by these peaks.

To place these results in context, we also scanned this same

set of 8-kb test regions using three additional programs: (1) the

retrained version of McPromoter; (2) ARTS (Sonnenburg et al.

2006), a support vector machine (SVM)-based TSS prediction

program designed for high-performance genome-wide scanning;

and (3) CoreBoost (Zhao et al. 2007), a decision-tree-based pro-

gram intended for high-resolution prediction in shorter regions

known to contain a TSS, for example, regions preidentified by

a chromatin immunoprecipitation with microarray hybridization

(ChIP-chip) experiment. Results are displayed in Figure 5 for

comparison with the annotation-supported model. We observe

that the annotation-supported model outperforms ARTS and

CoreBoost in sensitivity/specificity and spatial resolution, although

Figure 3. (A) For each example (location) considered, features are
generated by adding up affinity scores for each TF within its region of
enrichment. The lower portion of the diagram illustrates how this is done
in detail: Each region is divided into five overlapping subwindows cov-
ering the region of enrichment, plus two flanking subwindows. Positive
log-likelihood scores are summed over all positions in each subwindow,
generating seven features for each TF. Additionally, GC content within
a 100-nt region on either side of the location is also computed as a fea-
ture. The intuition behind this setup is to allow a trained model to select
which elements and regions are most predictive of a TSS. (B) Training data
sets are constructed from positive examples (the TSS locations them-
selves) and two types of negative examples: intergenic locations drawn at
random from the immediate upstream regions of the TSS locations, and
coding sequence examples drawn at random from annotated CDS
regions on the mouse genome. Twenty intergenic locations are drawn
from each immediate upstream region, and CDS locations are drawn in
a 1:1 ratio with positive examples (to comprise ~5% of the negative data
set).

Figure 4. Tenfold cross-validation performance comparisons for the annotation-supported model.
(Left) The plot compares the performance of two additional classifiers, a näive Bayes classifier and
McPromoter’s HMM classifier. (Right) The plot compares CpG-island and non-CpG-island models. ROC
curves with threshold averaging are displayed in both plots, along with the average area under the
curve (auROC). Positive examples are the experimentally supported CAGE single-peak TSS locations,
while negative examples are selected from intergenic and coding regions (see Fig. 3B).

A TF code for mammalian transcription initiation

Genome Research 647
www.genome.org

 Cold Spring Harbor Laboratory Press on May 21, 2019 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


the trade-offs between these two programs are apparent. ARTS

achieves nearly the same performance in calling the TSS peaks as

the annotation-supported model and does a bit better than Core-

Boost in this sense, but at a cost of much lower spatial resolution.

Interestingly, the retrained McPromoter algorithm calls a slightly

higher percentage of TSS per additional kilobase hit when low

thresholds are considered, but produces such wide probability

peaks that spatial resolution is by far the lowest of the programs

considered. Encouragingly, we also observe that additional peaks

called by the annotation-supported model in the region of the

TSS frequently agree with the annotated starts of mRNAs, ESTs,

and other CAGE tag clusters. Figure 6 displays a typical example

of an annotation-supported model scan.

TF affinity-based code enables
high-resolution genomic scans
of coding and noncoding sequence

Having observed that the annotation-

supported model can delineate single-

peak TSS with excellent spatial resolution

in gene-proximal promoter regions, we

explored the model’s output when scan-

ning on a chromosome-wide scale. We

applied the annotation-supported model

to mouse chromosome 16 (chr 16), se-

lected for its high degree of synteny with

human chromosome 21 (a historical gold

standard of comparison for genome-wide

promoter prediction). By removing the

relatively few TSS regions on mouse chr

16 contained in the annotation-sup-

ported test set, this chromosome pro-

vides an ~100-Mb body of sequence that

has not previously been seen by either

the annotation-supported model or by

other TSS prediction programs evaluated

here. As McPromoter was less successful

than the other predictors and CoreBoost

is intended to only scan small regions, we

limited ourselves here to comparing our

approach to the ARTS predictor.

We obtained single-nucleotide reso-

lution predictions for both ARTS and our

model and performed a comparison for

these two programs over RefSeq genes

and over CAGE start sites supported by

10 or more tags following the genome-

wide performance comparison strategy in

Sonnenburg et al. (2006) (see Methods).

In brief, chr 16 is divided into equal-sized

chunks, and the prediction having the

largest value within each chunk is com-

puted for each program. For RefSeq

genes, the comparison is implemented

just as described in Sonnenburg et al.

(2006): positive chunks are defined as

those that contain a RefSeq start, while

negative chunks are all non-positive

chunks containing any downstream

portion of a RefSeq gene. For CAGE starts,

full-length transcripts are not available,

so all non-positive chunks are considered as negatives. Figure 7

and Supplemental Figure 2 display the results for 50-nt and 500-nt

chunks, respectively. While both RefSeq and CAGE sets contain all

types of promoters, it is striking that performance as defined by

auROC is not vastly different. ARTS clearly picks up less putative

start sites downstream from annotated RefSeq gene starts and calls

less very-high-probability additional chunks with respect to the

CAGE set although auROC values on this set are nearly identical.

As chunk size becomes smaller, the annotation-supported model

consistently improves its auROC performance relative to ARTS

across different types of data sets. These trends are not difficult to

reconcile given the nature of the output signals observed in test

scans. Smaller chunks allow the annotation-supported model to

‘‘home in’’ on single-peak promoters and to distinguish between

Figure 5. Performance on scans of the annotation-supported test set. (Left) The case in which a TSS is
considered to be a hit if a probability peak contains the TSS. The curve represented by each symbol type
shows the percentage of TSS hit as a function of the number of additional hits per kilobase. (Right) Each
curve displays the average distance to the center of the probability peak computed over all of the peaks
containing a TSS. At each threshold value (color), the plots give a comparative view of how many
additional peaks are being called versus how well the TSS-containing peaks approximate actual TSS
location.

Figure 6. At the top, the UCSC custom track displays probability output from a representative scan
over the region of a test set TSS using the annotation-supported model (this particular example shows
CAGE tag cluster T17F00727F78). The model calls out highly probable single-peak start regions with
surprising accuracy, often indicating additional possible single-peak starts in locations that are sup-
ported by mRNA transcripts from GenBank.
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more alternative high-probability start regions than ARTS does,

particularly for the RefSeq gene set.

Using the limited data available, we investigated annotation-

supported model output for noncoding genes by scanning over

a hand-curated set of 20 putative human and mouse miRNA pri-

mary transcript start sites having some degree of experimental

support (see Methods). We applied the annotation-supported

model to scan 8-kb regions surrounding the supported start sites.

We observed that 70% of these scans are qualitatively and quan-

titatively similar to those of the annotation-supported test set (see

Supplemental material), exhibiting a high-probability region

containing the TSS and other nearby probability peaks delineating

annotated starts for many of the surrounding mRNAs and ESTs.

The remaining 30% of scans generally have very few probable

single-peak start site regions in the vicinity, suggesting that the

start sites for these particular transcripts

are not likely to be high-propensity start

locations. This is consistent with the

view that Pol II non-protein coding genes

are also transcribed by a variety of pro-

moter types that broadly tend to correlate

with specificity of expression. Supple-

mental Figure 3 illustrates a typical exam-

ple of a miRNA scan that is consistent with

a single-peak TSS, while Supplemental

Figure 4 shows an example that has no in-

dicated single-peak TSS near the annotated

start of the putative primary transcript.

We additionally investigated anno-

tation-supported model output on a set

of predicted miRNA promoter regions

based on histone H3 trimethylation data

in human and mouse embryonic stem

cells (Marson et al. 2008). In contrast to

the hand-curated set of 20 transcripts

above, this set is significantly larger but

provides putative miRNA primary tran-

script start regions on the order of several

kilobases in length as opposed to specific

experimentally supported TSS. Regions in

this set may overlap the actual miRNA

precursor foldback, or be as far as 250 kb

away from it. Starting from the 268

nongenic mouse miRNA start regions in

the set, we retained 84 unique regions

after selecting the upstream-most miRNA

from each cluster, and requiring that

there was some distance between the

start region and the miRNA, but that no

annotated UCSC Known Gene start site

was contained in this intervening se-

quence (see Methods). We then defined

a set of positive regions as the 84 putative

miRNA start regions, and a set of negative

regions composed of all sequence between

the miRNA start regions and the miRNA

locations themselves. We scanned both

positive regions (161 kb) and negative

regions (2833 kb) and compared the

density of probability peak hits in each

type of sequence (Fig. 8). We observed

a dramatically lower density of hits in

the negative regions—6.2-fold less than in positive regions at

a probability threshold of 0.5, a level where 68% of positive

regions contain one or more hits. This increases to approxi-

mately a 10-fold difference at higher probability thresholds. Our

predictions therefore correlate well with the Marson data set

predictions, and given the high precision of our predictor, can

be used to locate specific TSS within the larger regions from

Marson et al. (2008). When we compared the percentage of

positive regions hit with the negative region hit density (Fig. 8),

we observed that this percentage declines with decreasing

probability threshold at a distinctly more rapid rate after ~70%

of positive regions are hit. This agrees well with our finding on

the hand-curated miRNA TSS set that suggested that ~70% of

miRNA primary transcripts have strong single-peak start site

predictions.

Figure 7. Output comparison of the annotation-supported model and the ARTS TSS prediction
program. Chromosome 16 is divided into 50-nt chunks, and the prediction having the largest value
within each chunk is computed for each program. Positive chunks contain RefSeq or CAGE starts,
respectively. Negative chunks comprise downstream gene portions for RefSeq, and all non-positive
chunks for CAGE. The area under the curve (auROC) provides a performance measure given these
chunk definitions.

Figure 8. Output of the annotation-supported model on the Marson putative miRNA TSS region data
set. Each positive region is predicted by the Marson data set to contain one or more miRNA TSS,
whereas negative regions are not predicted to contain any miRNA TSS. (Left) The curve compares the
percentage of positive regions at each probability threshold (color) hit by an annotation-supported
model probability peak to the number of hits per kilobase (hit density) within the negative regions.
(Right) The curve compares hit density within the positive regions to hit density within the negative
regions.
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Single-peak CAGE tag clusters do not constitute one
homogeneous set

Our use of logistic regression allowed us to investigate the im-

portance of model features directly by examining their logistic

regression coefficient values. Logistic regression coefficients de-

scribe the partial contribution of each feature to a predictive

model; because our model features approximate regional binding

affinities, these values provide insight into the predictive roles of

each binding element. In the annotation-supported model, three

prominent canonical sequence elements have very large coef-

ficients (TATA-box, Initiator, and GC-content), while a second tier

of prominent coefficients tunes performance. This model struc-

ture, with precisely the same elements in the top and second tiers

of coefficients, is consistently repeated across all cross-validation

partitions as well as the final annotation-supported model.

In particular, 17 out of 20 binding factors appear in all 10 cross-

validation sets with values >0.1, while the remaining three factors

do so in at least eight out of 10 cross-validation sets. Figure 9

provides a graphical breakdown of logistic regression coefficients

for the annotation-supported model, according to binding ele-

ment. A complete set of enriched elements for all data sets is

provided in the Supplemental material.

While annotation-supported TSS comprise the majority of

single-peak promoters, a considerable fraction of CAGE tags does

not coincide with annotated 59-ends; rather, these tags are found

in gene-poor areas or in the interior of annotated transcripts. We

refer to these clusters as the CAGE-only-supported set, that is, CAGE

single-peak TSS that did not fall into the annotation-supported

category, and split them into training and test sets just as for the

annotation-supported tag clusters (see Methods). We note that

many CAGE-only-supported TSS (51%) lie in the introns and

exons of annotated gene transcripts, and an overwhelming por-

tion of the remainder (~80%) fall within mapped expressed se-

quence tags (ESTs). Overall, only 14% of tag clusters fall within

CpG islands, a drastically lower fraction than for annotation-

supported tags. When we applied the annotation-supported

model to the CAGE-only-supported test set, performance dropped

to a significantly lower auROC of 0.71. At a threshold of 0.5, only

109 out of 1240 samples (~9%) are predicted to be a TSS. In this

subset, 65% overlap with CpG islands, and 67% of successful

predictions fall outside annotated genes, a strong deviation from

the overall pattern (14% CpG islands, 49% outside of genes).

This striking difference in performance could result from two

different scenarios. One possibility is that while these clusters do,

indeed, represent capped transcripts, they do not, in fact, corre-

spond to transcription start sites. The alternative is that this set

constitutes a different set of Pol II promoters, for which different

sequence features are discriminative. To investigate this, we ap-

plied the same positional enrichment and TF selection method

(see Methods) to determine the binding elements that are posi-

tionally enriched in the CAGE-only-supported training set. We

observed that CAGE-only-supported TSS as a group are not only

enriched for a different set of binding elements, but even when

certain elements are enriched in both sets, they may have different

regions of positional enrichment (Supplemental Fig. 5). Further-

more, by using the CAGE-only-supported training set to retrain

the model, we observed an improvement to an auROC value of

0.80 in cross-validation (Supplemental Fig. 6). The final CAGE-

only-supported model achieved an auROC of 0.83 on the CAGE-

only-supported test set. The CAGE-only-supported model distrib-

utes smaller but approximately equal coefficient weights across

a larger top tier of coefficients (Supplemental Fig. 7). GC content

plays a very small role compared to other coefficients in the

model. Furthermore, there is much more variation among the

individual cross-validation partitions in regard to which coef-

ficients are chosen among the top-tier coefficients. About 10% of

TSS in this class are identified with high resolution, and the

remaining TSS are only identified at low classifier thresholds

where many additional probability peaks are called.

Given the success of our approach on annotation-supported

promoters, one could expect our strategy to work well on other

strongly peaked CAGE tag clusters. The results demonstrate that

even with a retrained model, known transcription factors cannot

describe the CAGE-only set nearly as accurately as the annotation-

supported set. While there is the possibility that our set of PWMs is

not adequate, and that other as-yet-unknown TFs are responsible

for positioning Pol II for this subset, it certainly leaves open the

possibility that these clusters are, in fact, not representing Pol II

TSS.

Discussion
In this study, we determined a set of features, based solely on DNA

affinity for known binding elements, that are sufficient to define

single-peak TSS at near-perfect-accuracy levels. The available high-

quality CAGE data on the precise patterns of initiation events al-

low us to define several subclasses and study separate models for

TSS close to annotated protein-coding genes, as well as for TSS

only supported by CAGE tags but not close to TSS of annotated

genes.

The success of the TSS model trained on currently annotated

genes derives from this highly informative data set, along with

biologically motivated feature definition, feature selection, and

interpretability. Using a background-corrected signal that

accounts for local dinucleotide sequence composition was also

a key factor in observing positional specificity of factor enrich-

ment, and therefore in creating a high-resolution classifier. The

Figure 9. Logistic regression coefficients above 0.05 for the annotation-
supported model. TATA-box, GC content within a 100-nt region, and
Initiator elements are dominant, but highly accurate performance relies
heavily on many other TFs. A complete listing of all factors and binding
element abbreviations is provided in the Supplemental material.
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built-in feature selection property of L1-regularized logistic re-

gression penalizes features that are not predictive of outcome. The

model can therefore not only determine which TFs tend to be

predictive of TSS location within their regions of enrichment, but

also precisely which windows within that region are most pre-

dictive. The contrasting negative data set was chosen very strin-

gently in order to force our model to distinguish single-peak sites

with high spatial resolution. We found that choosing a negative

example set very near to the single-peak TSS sites themselves came

at a small cost of reducing apparent cross-validation performance,

with a substantial benefit of reducing noise, particularly in GC-

rich areas.

The set of CAGE tag clusters not falling near annotated gene

starts warrants further investigation. The vast majority of these

clusters do not show the same set of features as annotation-sup-

ported TSS. While training a specific model improved prediction

performance on this set, it emerged that the features we use do not

accurately represent these clusters. At this point, it is open as to

whether these clusters correspond to TSS that could be as reliably

modeled using other yet-to-be identified features, or if these

clusters, in fact, do not represent initiation events. A small fraction

of this set, on the order of 10%, are similar to annotation-sup-

ported TSS and can be predicted by our model; we expect these

clusters to correspond to alternative start sites of known genes, or

start sites of as-yet-unannotated, possibly noncoding genes.

Our TSS model can be used as a high-resolution predictor to

identify TSS when scanning genomic sequences. While many

other learning algorithms may be used for promoter prediction,

we selected our classifier not simply to optimize performance, but

also to offer specific insight on which TFs commonly play a sig-

nificant role in the determination of single-peak promoter loca-

tion. While other discriminative algorithms such as SVMs may

perform comparably well on our feature set, they are often more

difficult to interpret (Sonnenburg et al. 2008), whereas logistic

regression is a method exactly suited to provide a probabilistic

classification outcome from continuous features that illuminates

how that outcome was derived. In the annotation-supported and

CpG-island models, TATA, Initiator, and GC content are the single

most dominant signals as expected. However, in sharp contrast to

previous approaches whose automatically derived feature sets

mostly centered on TATA and GC content (Down and Hubbard

2002), a numerous second layer of features collectively provides

a large contribution to predictive value. Among the second tier of

elements, several factors have been suggested to be over-repre-

sented at specific regions in the vicinity of TSS, for example, YY1

and CREB (Xi et al. 2007), but none have been previously used to

predict TSS location.

We observe that within all models, the regions of enrichment

for some TFs are broadly defined despite the local background

correction, and effectively act as ‘‘GC sponges,’’ whereas elements

with narrowly defined regions of enrichment provide locational

specificity on top of this GC enrichment information. Inclusion of

a specific GC content variable simplifies the model by readily

explaining broad increases in GC content near a TSS, thereby re-

ducing GC sponges. It has recently been observed that GC content

is anticorrelated with nucleosome occupancy (Lee et al. 2007),

lending a sensible biological explanation for its prominence in the

model. Together, these observations suggest a possible DNA code

in which broadly defined affinity for GC-rich binding elements

such as SP1 can serve to recruit these factors to nucleosome-free

regions, while TFs with narrowly defined regions of enrichment

are likely to interact directly with core Pol II machinery to help

refine the location of transcription initiation. This biological

model is consistent with other recent studies that observed that

many TFs in higher eukaryotes have strong biases for binding sites

to be highly position-specific if they are close to the start of a gene

(Tabach et al. 2007).

When examining the regression coefficients in more detail, it

is apparent that for many elements including the canonical TATA-

box, coefficients are highest within the central part of the region

of enrichment as expected. Negative coefficients, however, are

equally as important as positive coefficients; the model learns not

only where the factor should be, but also where it should not be

observed in relation to a TSS location. Regions of enrichment for

canonical elements agree with literature-supported models of

spacing with respect to the initiation site. Intriguingly, some TFs

are enriched in certain single-peak CAGE data sets within regions

that agree with their literature-described positions, while others

show a different narrowly defined region of enrichment. One

particularly striking case of this is the DPE element, a binding el-

ement that has experimental support in Drosophila but largely

theoretical support via conservation evidence in vertebrates

(Burke et al. 1998). In the annotation-supported data set, the

strongest peak of enrichment for this element is, in fact, located

upstream of the TSS. However, we need to interpret each of these

cases with some caution, as it may also happen that binding ele-

ment motifs in some cases serve as surrogates for other factors,

that is, that the enrichment of one factor actually reflects the

preference of a different, possibly unknown factor with a some-

what similar binding preference.

There is a strong indication that most miRNA genes are also

transcribed by Pol II; however, the majority of their primary

transcripts (pri-miRNAs) remain uncharacterized because of the

experimental difficulty of isolating these rapidly degraded tran-

scripts (Kim and Nam 2006). Current experimental evidence

suggests that pri-miRNAs may be very long, with examples rang-

ing from ~4 kb (Cai et al. 2004) to >50 kb in length (Fukuda et al.

2007). It further suggests that mature miRNAs are not necessarily

located near the start of these transcripts. High-resolution geno-

mic scans are therefore of particular utility for investigating pro-

moter architecture in this situation. Our application of the

annotation-supported model to a set of 20 putative miRNA pri-

mary transcripts with some degree of experimental support con-

servatively suggests that ~70% of miRNAs may have one or more

single-peak promoters. Our investigation on the Marson data set

(Marson et al. 2008) indicates that annotation-supported model

predictions correlate well with miRNA start regions predicted us-

ing histone H3 trimethylation data, and supports the idea that up

to ~70% of miRNA transcripts are likely to be associated with

a strong single-peak TSS. Our work strongly suggests that single-

peak promoters of non-protein coding genes can be distinguished

at high resolution on the genome.

The annotation-supported model provides an alternative way to

describe TSS location based solely on DNA affinity for known bind-

ing elements. Unlike other methods designed for high-resolution

scanning such as the CoreBoost program, it does not require sepa-

rate treatment of CpG-rich regions, regions defined by ChiP-chip

data, or any other prior knowledge about the nature of a sequence to

be scanned. A priori, we did not know what performance to expect

when our model was applied to promoters with broad initiation

patterns rather than single peaks; these broad TSS are currently

estimated to outnumber single-peak promoters in the genome.

When applied in a chromosome-wide scan, model performance

over RefSeq genes as well as other CAGE start sites was competitive
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with ARTS, an SVM-based TSS predictor using a modular kernel

and thousands of features that has demonstrated superior per-

formance in genome-wide scans over an array of other methods.

This is particularly remarkable considering that the peak types of

TSS in these data sets are unknown, and that such a course

chunked-genome comparison yields the advantage to ARTS as

a predictor with broader regional identification as opposed to

a high-spatial-resolution signal. Our analyses thus strongly sug-

gest that the annotation-supported model is suitable for high-

resolution de novo TSS prediction on the genome in the absence

of experimental data. While the model predicts the probability

that a given location on the genome is a narrowly localized high-

propensity start location, it is not designed to predict the relative

number of CAGE tags present or to operate with single-nucleotide

resolution. Our investigation therefore implies a complementary

role for this classifier in conjunction with the first-order Markov

model described in Frith et al. (2008). The annotation-supported

model may first be applied to search for probable single-peak TSS

locations, suggesting suitable regions for experimental scrutiny,

followed by an analysis of relative start site propensity at the

single-nucleotide level.

Our study suggests several worthwhile future directions of

investigation. An exhaustive analysis of all current TRANSFAC and

Jaspar binding elements with positional weight matrices may yield

an even larger number of elements that display regions of posi-

tional enrichment with respect to single-peak TSS. In particular,

this may help to increase performance on the CAGE-only sup-

ported TSS set—the lower level of success of this model is less

surprising if one considers that the TF binding models currently

included in our study were selected because of previously reported

enrichment upstream of coding genes. Furthermore, including

higher-order interactions in the logistic regression model may re-

veal specific combinations of the enriched subregions that are

predictive of single-peak TSS location, suggesting modules that are

active in single-peak promoters. A breakdown of CAGE tags by

tissue type may enable single-peak TSS prediction with some de-

gree of tissue specificity, particularly for those tissues in which

a large number of tags become available for training. By expanding

the scope to include broad-peak and multi-modal CAGE tag dis-

tributions, one can also investigate the extent to which other

promoters with other TSS distribution types are accurately iden-

tified using the current local DNA binding affinity model, or if not,

whether it can be adapted to these initiation distributions. Finally,

many current studies suggest that the incorporation of epigenetic

information such as histone modification and nucleosome loca-

tion data can prove fruitful in predicting TSS location.

Methods

Data sets
A ‘‘CAGE tag’’ is a 20–21-nt 59 cDNA end that has been mapped to
the genome. A ‘‘CAGE tag cluster’’ (TC) is composed of tags that
overlap on the same strand by one or more nucleotide positions.
Our analysis uses two groups of mouse single-peak CAGE tag
clusters, defined by the authors of the original high-throughput
experimental study in a subsequent analysis of TATA-initiation site
spacing (Ponjavic et al. 2006). A single-peak TC contains at least 50
tags and has a distance of <4 nt between the 25 and 75 tag density
percentiles. Each TC in the twin-TSS subgroup of single-peak TCs
has a neighboring TSS within 4 nt of the highest TSS peak that
contains at least 25% of the tags in the highest peak, and together
these two positions contain >75% of tags within the cluster (461

TCs in total). The single-TSS subgroup consists of single-peak TCs
that are not in the twin-TSS subgroup (2399 TCs in total). In brief,
both subgroups have a very tiny region within the cluster that
contains the vast majority of tags. As detailed below, one subgroup
is used for training and the other for independent testing. In all
cases, the highest peak is considered the representative TSS within
the cluster. According to estimates from the RIKEN authors,
peaked TSS comprise ~45% of all tag clusters.

The single-TSS and twin-TSS groups are each further sub-
divided for analysis. Each group is split into annotation-supported
and CAGE-only-supported subgroups. The annotation-supported
subgroup contains only TCs that fall within 500 nt of an anno-
tated UCSC Known Gene or RefSeq gene start. The CAGE-only-
supported subgroup contains all remaining TCs. For comparative
analyses, the annotation-supported subgroup is additionally split
in an alternative way into the CpG-island and non-CpG-island
subgroups. The CpG-island subgroup contains only annotation-
supported TCs where the representative TSS lies within a CpG-
island, and the non-CpG-island subgroup contains all remaining
annotation-supported TCs. All CpG islands are defined using
EMBOSS newcpgreport, the application used in the production of
CpG island database CPGISLE (Larsen et al. 1992). Supplemental
Table 1 provides a chart of the TC counts in each subset of the
single-TSS and twin-TSS groups.

We use each of the four data subsets of the single-TSS group
(annotation-supported/CAGE-only-supported, CpG-island/non-
CpG-island) for model training and cross-validation, and the re-
spective subsets of the twin-TSS group for completely independent
testing. A training set is produced from each single-TSS data subset
in the following way: Each TC contains a representative TSS, and
together the set of genomic locations of these TSS comprises the
positive examples. For each TSS in the positive set, a group of 20
intergenic locations is drawn at random from the region between
100 nt and 4 kb upstream of the TSS. Additionally, one location is
drawn at random from the annotated CDS of mouse UCSC Known
Genes. Intergenic and CDS locations comprise the negative
examples. Therefore, each training set is composed of positive,
negative intergenic, and negative CDS examples in a 1:20:1 ratio.
Figure 3B provides a visual summary of how positive and negative
examples in a training set are derived. An independent test set is
produced from each twin-TSS data subset by taking all twin-TSS
locations as positive examples, while negative examples are
composed of 100,000 randomly selected locations from the most
recent mouse genome build (mm9).

All CAGE tags were mapped to the mm5 mouse genome build
in their definition (Carninci et al. 2006), and therefore positive
and intergenic samples must be taken from this build. CDS
examples in each training set are drawn from the latest mouse
genome build, mm9. Data set composition of ~5% CDS was cho-
sen to broadly reflect the low fraction of coding sequence in the
mouse and human genomes. All data sets are made available in the
Supplemental material.

We constructed a miRNA putative primary transcript data set
by identifying 20 miRBase miRNAs (Griffiths-Jones et al. 2006)
located within transcripts that have some degree of experimental
support. To date, mammalian miRNA TSS data have been difficult
to obtain on a large scale because miRNA primary transcripts are
rapidly cleaved and degraded in the cell nucleus (Kim and Nam
2006). Transcripts containing five miRNAs have explicit literature
support as miRNA primary transcripts: hsa-mir-23a (Lee et al.
2004), hsa-mir-21 (Cai et al. 2004), hsa-mir-155 (Tam 2001; Tam
and Dahlberg 2006), mmu-mir-223 (Fukao et al. 2007), and mmu-
mir-199a-2 (Fukuda et al. 2007). An additional 15 transcripts are
curated from several UCSC data sources. UCSC gene sets contain
transcripts from cDNA libraries or other clone sources that are
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annotated as entirely noncoding or with a few atypically small
exons. These transcripts are often identified either explicitly as
noncoding or as producing an unknown protein product. Addi-
tionally, the ENCODE regions provide several sources of experi-
mental evidence for UCSC annotated start sites, including the
Stanford Promoter set (Trinklein et al. 2003).

We also constructed a set of ‘‘positive regions’’ predicted to
contain miRNA primary transcript start sites from a recent study
by Marson et al. (2008), along with a corresponding set of ‘‘neg-
ative regions’’ deemed less likely to contain these start sites
according to the same data. We collectively refer to these regions
as the ‘‘Marson data set.’’ In order to select positive regions from
Marson et al. (2008), we started from the 268 miRNA TSS regions
not specifically labeled as Genic in the Supplemental material
provided by the authors. Many of these were labeled as putative
start regions for more than one miRNA (since mature miRNAs can
be transcribed together in a cluster on a single primary transcript);
among such regions, we selected the upstream-most miRNA as the
unique cluster representative. From this set of TSS regions asso-
ciated with a unique miRNA, we selected those regions with a non-
zero distance between the TSS region and the location of its
associated mature miRNA. Some of these cases contained an an-
notated UCSC Known Gene start site between the TSS region and
the miRNA; we removed these cases. The 84 remaining TSS regions
comprise the set of positive regions. These regions are associated
with 81 unique miRNA cluster representatives. Each positive re-
gion has a corresponding negative region, defined as the sequence
between the positive region and the miRNA location. In the case
in which a miRNA is associated with more than one positive re-
gion, the negative regions associated with the more upstream
positive regions are defined as the sequence between the end of
the positive region and the start of the next positive region
downstream. Thus, each positive region is predicted to contain
one or more miRNA TSS, and each Negative region, in contrast, is
not predicted to contain a miRNA TSS. Negative regions also do
not contain any UCSC Known Gene start by definition.

Calculation of background-corrected TF binding site scores

Features were designed to approximate the DNA binding affinities
of TFs to a particular genomic region, and these approximate af-
finities were computed using the method of log-likelihood scoring
for positional weight matrices (PWMs) (Stormo 2000). Each TF is
represented by a PWM, in our case, a matrix of frequencies with
which this TF is expected to bind certain DNA motifs. We used the
standard method of adding pseudocounts to eliminate zero-valued
matrix entries (we add 0.25 pseudocounts). The standard scoring
method can be viewed as sliding this PWM along a DNA sequence,
and at each nucleotide position computing the likelihood that the
DNA motif at this particular location was generated by the PWM
description versus the likelihood that the motif was generated by
a background frequency model. The log of this ratio of likelihoods
defines the score at a particular position, and a high positive score
implies that a DNA location is a probable binding site for the TF.

The background model is usually defined as the set of single-
nucleotide frequencies within a large set of promoters in a partic-
ular genome. However, in mammalian genomes, the dinucleotide
base composition can change dramatically within the local vi-
cinity of a TSS. As an obvious example, a TSS within a CpG island
contains a much higher number of CG dinucleotides than the
surrounding sequence. As a result, the standard background model
can make TF scores in the region of a TSS ‘‘look big’’ for a slightly
GC-rich PWM or ‘‘look small’’ for a slightly AT-rich PWM. Figure 1
shows this concept. In order to examine whether a TF is enriched
at a particular location within the vicinity of the TSS, we wanted to

use a scoring method that discounts enrichment arising solely
from the relationship between PWM composition and back-
ground composition.

To this end, we used a local dinucleotide background model,
where frequencies are calculated within a 500-nt window of the
position at which the log-likelihood score is computed. This type
of model is known in the literature as a local first-order Markov
background model (Blanchette et al. 2006). For simplicity, we call
this method the local background correction. It is used for all scoring
computations in this study. Figure 1 illustrates how a locally
background-corrected binding affinity signal elucidates the spe-
cific region of positional enrichment for TFs. In theory, one may
use background models of increasingly high order to discount for
local sequence content, at risk of fitting the background signal to
an undesirable degree. The overall idea of choosing a first-order
background model is to use the simplest possible method that
accounts for fluctuations in GC content that are not related to the
presence of any specific binding element.

Positional enrichment and TF selection

In order to understand which TFs may be enriched with respect to
TSS location in a particular data set, we began with a list of 39
known TFs and canonical binding elements from two sources. The
first source comes from an analysis that uses a context-free
grammar-based TF scanning model to find elements that show
some degree of positional enrichment within mouse and human
promoters (Schug 2005). Subsequent analyses support the en-
richment findings for elements in this original study (Stepanova
et al. 2005; Xi et al. 2007). All TRANSFAC elements are represented
by PWMs in the TRANSFAC 9.4 and Jaspar databases. We then
added several elements to this list from the recent literature that
are contained in Jaspar Pol-II 2008 (Bryne et al. 2008). The com-
plete list of elements (provided in the Supplemental material)
ranges from canonical binding elements such as TATA and Initi-
ator to less well-known factors such as VBP (von Hippel-Lindau
binding protein) and RREB (Ras-responsive element binding pro-
tein).

Using this list of elements and the local background correc-
tion method described above, we scanned each PWM over a 1-kb
region on either side of each TSS in the training data set under
consideration. At each nucleotide position with respect to the TSS,
we summed all positive scores over the examples in the TSS data
set. This procedure was performed on both the sense and anti-
sense DNA strands. In some cases, an element is represented by
more than one TRANSFAC or Jaspar PWM, and in these cases we
select the PWM that displays the greatest enrichment on either
strand according to our scoring method. The result is a histogram
of cumulative positive scores for this data set within 1 kb of the TSS
position, for each binding element and each strand. (Results are
shown for each training set in the Supplemental material.)

A region of positional enrichment is then computed for each
element and strand as follows: First, the location of the maximum
cumulative score is determined; if this score peak location is not
within 100 nt of the TSS, this element–strand combination is
discarded. Next, the average of all cumulative scores >1 kb from
the TSS is computed and stored as the background average. We
then step upstream from the score peak, one nucleotide position at
a time, until the cumulative score falls below the background av-
erage at least five times. We perform the same procedure stepping
downstream from the score peak, and the difference between
upstream and downstream stopping locations determines the
width of the region of positional enrichment (this width is not
allowed to exceed 500 nt). Thus, each region of enrichment is
described by score peak location and score peak width.
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Building the feature set

We use the binding elements and their regions of positional en-
richment to build a set of features describing each training ex-
ample. For both positive and negative examples, we compute all
scores and feature values by treating each location as a putative
TSS. For each binding element and strand, we scan the element’s
PWM over the region of positional enrichment using the local
background correction. As illustrated in Figure 3A, we subdivide
the region into five center-overlapping windows of equal width,
with two flanking windows on either side of the region. For very
wide score peaks (score peak width >200 nt), flanking window size is
equal to that of the other windows; in all other cases, flanking
window size is equal to score peak width. Within each window,
positive scores are summed to produce the feature value. Addition-
ally, GC percentage is computed within 100 nt on either side of the
putative TSS location. Therefore the total number of features is seven
times the number of binding element–strand combinations with
defined regions of positional enrichment, plus one for GC content.

Training and classification

We use L1-regularized logistic regression for training and classifi-
cation of the data in each training set. This method effectively
performs automatic feature selection by penalizing the use of more
variables; it eliminates the least significant features to the model.
Our software pipeline uses the l1_logreg package, an efficient C
implementation of the interior-point method for L1-regularized
logistic regression (Koh et al. 2007). The L1 penalty parameter
defines the degree to which a large number of features is tolerated.
We select the L1 parameter as part of the cross-validation process.
L1 is chosen to optimize classification performance as measured
by auROC (area under the ROC curve), and provides information
on variable selection stability. We divide the data set into 10 parts,
where each part contains an equal number of positive, negative
intergenic, and negative CDS examples. Each cross-validation set
contains eight parts for training, one part for validation (selection
of the optimal L1 parameter), and one part for independent test-
ing. For each of the 10 cross-validation sets, a logistic regression
model is trained for each value of L1 in (0.0001, 0.0002,. . ., 0.01)
and tested on the validation part. l1_logreg is always applied using
the feature data standardization option. In all data sets and par-
titions, we observe that plotting validation auROC for each L1
value results in a smooth curve with a global optimum. We then
apply the optimal L1 model to the test part for an independent
estimate of performance as measured by auROC.

As a baseline performance comparison for each data set, we
also train a näive Bayes classifier using precisely the same features
and cross-validation partitions. The vast majority of features are
not normally distributed over the positive or negative example
sets; their distributions are heavily right-skewed because the re-
gion of enrichment for a particular factor will have near-zero
scores for many examples, while fewer examples attain a variety of
very high scores. We therefore use an empirical näive Bayes
implementation (BioMaLL version 0.83, http://www.geneprediction.
org/biomall/), where the number of feature discretization bins is
optimized over the validation set. Finally, we also retrain the
generalized HMM defined in the McPromoter classifier. We per-
form cross-validation on each data set using the same training,
validation, and test partitions for performance comparison. All
performance comparison curves and auROC values here and
throughout this work are computed using the ROCR package
(Sing et al. 2005) for the R statistical computing language. De-
tailed summaries of all results for each method over all training
sets are provided in the Supplemental material.

Evaluation on an independent set of TSS

Tenfold cross-validation on a particular data set using L1-regular-
ized logistic regression results in a set of 10 models, each with its
own optimal L1 parameter and performance estimate on a sepa-
rate test partition. A final model is created by taking an average of
these L1 values and training on the entire training data set (all 10
parts) using this consensus value of L1. This results in one model
for the annotation-supported and CAGE-only-supported training
sets, which we will call the ‘‘annotation-supported model’’ and the
‘‘CAGE-only-supported model,’’ respectively. For each training set,
the final model is tested on the independent test set of similarly
annotated single-peak TSS. This provides a performance evalua-
tion on data that has not previously been seen by the classifier in
cross-validation.

Scanning over genomic sequence: Coding genes

The annotation-supported model is used to classify each position
in the region from 4 kb upstream to 4 kb downstream of each TSS
in the annotation-supported test set. At each position, the model
predicts the probability that this position is a single-peak TSS.
Because the subwindows covering each region of enrichment are
not a single nucleotide in width, this signal is conservatively
smoothed using a median filter with window width equal to that
of the smallest feature subwindow (5 nt). A probability peak is
called a ‘‘hit’’ for a given threshold if the signal exceeds the
threshold value. Moving from upstream to downstream over the
scanned region, the signal is considered to enter a peak when it
exceeds the threshold, and to exit a peak when it falls below the
threshold and remains below for at least 10 nt. We consider a lo-
cation as a TSS hit if the probability peak contains a TSS. By
computing average distance from a TSS hit center to the TSS itself,
we assess how well the TSS hits approximate TSS location when
scanning the genome.

Figure 5 shows the outcome of this assessment for the
annotation-supported model, along with ARTS, CoreBoost, and
retrained McPromoter outcomes for comparison. Output from
ARTS and CoreBoost was obtained directly from the authors of
these programs for 10 kb surrounding each of the 266 regions in
the annotation-supported test set. Because CoreBoost requires 1.3
kb of flanking sequence for its predictions, there are 300-nt regions
on either end of the 8-kb test regions for which no TSS predictions
are made. This technically confers a slight advantage to CoreBoost
in Figure 5 comparisons; however, we consider this negligible for
practical purposes. Additionally, the feature generation methods
of different programs may be affected to varying degrees by large
portions of uncalled bases (appearing as Ns) in a sequence; this
could potentially be an issue for older assemblies such as mm5
where the mapped CAGE tag data are available. For purposes of
equitable comparison, care was taken that no sequence in the test
set contained more than 25% Ns within a 1500-nt window on
either side of a TSS.

We applied the annotation-supported model to mouse chr
16, and also obtained SVM score predictions at single-nucleotide
resolution for the entire chromosome from the authors of the
ARTS program. Both programs used the mm5 assembly so that
outcomes on CAGE data could be compared. Two data sets were
selected for comparison: (1) RefSeq genes as defined by the UCSC
mm5 refGene track; and (2) CAGE starts, defined as locations on
chr 16 having 10 or more CAGE tags by the UCSC mm5 riken-
CageCtssPlus and rikenCageCtssMinus tracks. We then imple-
mented the chunking method for genome-wide performance
comparison on the RefSeq gene set exactly as described for ARTS in
Sonnenburg et al. (2006). Each annotated start is given a buffer of
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620 nt, which we will call the start region. Chromosome 16 is
divided into chunks of size 50 nt (Fig. 7) and 500 nt (Supplemental
Fig. 2). Positive chunks are defined as those overlapping a start
region, and negative chunks are defined as non-positive chunks
overlapping any part of a RefSeq gene. In our case, any chunk
(positive or negative) associated with a RefSeq gene whose anno-
tated start was within 500 nt of an annotation-supported training
set CAGE TSS is removed from consideration. For a particular
chunk size and program, the largest predicted value within
a chunk is then taken to represent the chunk. Finally, performance
comparison curves and auROC values are computed using these
definitions. For the CAGE set, an identical procedure is used (in-
cluding removal of any chunk that includes a training TSS), except
that negative chunks are defined as any chunk of sequence on chr
16 that has not been labeled as positive or removed from consid-
eration.

Scanning over genomic sequence: Noncoding genes

For an additional perspective on noncoding RNAs, we scanned
[TSS � 4 kb, TSS + 4 kb] regions from a set of 20 putative human
and mouse miRNA primary transcripts. The miRNA putative pri-
mary transcript data set used is detailed above in the ‘‘Data sets’’
section. Scans were performed with the annotation-supported
model exactly as described for the 8-kb genomic scans over the
annotation-supported test set. Using the annotation-supported
model, we also scanned the positive and negative regions of the
Marson data set (described above in the ‘‘Data sets’’ section). We
call a probability peak a ‘‘hit’’ using exactly the same criteria de-
scribed above for scanning over coding regions. We examine the
degree to which our predictions correlate with the Marson data set
predictions by computing two types of ‘‘performance curves’’
shown in Figure 8. At a series of probability thresholds ranging
from 0.05 to 0.95 in increments of 0.05, we compute the number
of hits per kilobase (hit density) separately for the positive regions
and for the negative regions. We plot these two hit densities in
Figure 8 on the right. For each threshold, we also compute the
number of positive regions in the data set that contain at least one
hit, and compare the percentage of positive regions hit to the hit
density within the negative regions in Figure 8 on the left.

Availability

The annotation-supported classifier is publicly available as an
open source command-line tool at http://tools.igsp.duke.edu/
generegulation/S-Peaker.
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Note added in proof

A study concurrent with ours also examined CAGE-only sup-
ported tag clusters, i.e., gene-internal clusters that fall >500 nt
from the annotated gene start (Affymetrix/Cold Spring Harbor
Laboratory ENCODE Transcriptome Project 2009). The authors
provided initial evidence for the intriguing possibility that these
clusters arise from processed and recapped mRNA transcripts, in
agreement with our observation that the sequence properties of
this group is distinct from bona fide transcription start sites.
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