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Analysis of microRNA-target interactions across diverse 
cancer types
Anders Jacobsen1, Joachim Silber2, Girish Harinath2, Jason T Huse2, Nikolaus Schultz1 & Chris Sander1

Little is known about the extent to which individual microRNAs (miRNAs) regulate common processes of tumor biology across 
diverse cancer types. Using molecular profiles of >3,000 tumors from 11 human cancer types in The Cancer Genome Atlas,  
we systematically analyzed expression of miRNAs and mRNAs across cancer types to infer recurrent cancer-associated  
miRNA-target relationships. As we expected, the inferred relationships were consistent with sequence-based predictions and 
published data from miRNA perturbation experiments. Notably, miRNAs with recurrent target relationships were frequently 
regulated by genetic and epigenetic alterations across the studied cancer types. We also identify new examples of miRNAs that 
coordinately regulate cancer pathways, including the miR-29 family, which recurrently regulates active DNA demethylation 
pathway members TET1 and TDG. The online resource http://cancerminer.org allows exploration and prioritization of  
miRNA-target interactions that potentially regulate tumorigenesis.

miRNAs are small RNAs that regulate gene expression by binding 
partially complementary sites in target mRNAs1. Dysregulation 
of miRNAs can contribute to tumor formation and progression2,3.  
For example, genetic and epigenetic alterations target miRNA loci 
in cancer2,3, tumor tissues show distinctive miRNA expression sig-
natures compared with normal tissue4,5, and studies in mice show 
that malignant tumors can form by and depend on dysregulation 
of a single miRNA6. Notably, miRNAs can be both antagonized and 
mimicked by therapeutic oligonucleotides, potentially offering new 
targeted approaches to cancer treatment7.

Individual miRNAs can target hundreds or thousands of mRNAs 
on the basis of sequence complementarity, but a substantial fraction 
of these predicted interactions may depend on cell type and context1 
and on the binding of additional cofactors8. Furthermore, an even 
smaller subset of target interactions is expected to affect tumor develop
ment and progression in vivo. It is therefore challenging to nominate 
functionally relevant target genes and pathways on the basis of dys-
regulated miRNA expression profiles in tumor samples. Common 
approaches to studying miRNA target genes and function in cancer 
involve experimental perturbation of miRNA expression in cell lines 
and mouse models of cancer2,3. Although these model systems have 
yielded important mechanistic insights into cancer cell biology, they 
may not fully capture the complexity of tumorigenesis in patients9. 
More recently, comprehensive multidimensional genetic and molecular 
profiles of large tumor populations generated by research consortia 
such as The Cancer Genome Atlas (TCGA) have enabled integrated 
analysis of genetic and molecular alterations associated with individual 
human cancer types10,11. These data sets enable tracking of miRNA and 
mRNA expression across a population of tumors. As miRNAs com-
monly destabilize and degrade their target mRNAs12,13, we expect that 
miRNAs have inverse expression relationships with their target mRNAs. 

Variations of this principle have been used to predict miRNA-target 
interactions on the basis of miRNA and mRNA expression profiles14,15. 
Such approaches have also shown functionally relevant miRNA-target 
interactions in individual cancer types (for example, in TCGA glio
blastoma multiforme16–18 and serous ovarian carcinoma data sets19,20). 
However, systematic studies that evaluate miRNA-mRNA associations 
across multiple cancer types are needed to explore the hypothesis that 
individual miRNAs regulate common processes of tumorigenesis that 
are independent of organ or tissue of origin.

We developed a method and statistical score, the association recur-
rence (REC) score, that uses miRNA and mRNA expression profiles 
across many cancer types to infer miRNA-target interactions that 
could be active and functional in many different cancer types (Fig. 1). 
Using this approach, we inferred recurrent cancer-associated miRNA-
target relationships from miRNA and mRNA expression profiles of 
>3,000 tumors and 11 cancer types profiled by TCGA. We further 
analyzed these recurrent target relationships using sequence- and 
conservation-based predictions, experimentally validated target inter-
actions curated from the literature, and published data from miRNA 
perturbation experiments. We derived a high-confidence pan-cancer 
network of 143 recurrent target relationships, and we show that 
these relationships include new examples of miRNAs that are likely 
to coordinately regulate multiple members of pathways across many 
cancer types. All predictions are available through an online resource, 
http://cancerminer.org, which allows exploration and visualization of 
candidate miRNA-target interactions in TCGA data.

RESULTS
Inferring miRNA targets in individual cancer types
We used comprehensive molecular data sets for ten epithelial cancer 
types and glioblastoma multiforme in TCGA (Table 1; this included 
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11 TCGA cancer types, but colon and rectal cancer data sets were 
merged). Each cancer type had miRNA and mRNA expression profiles 
measured for 94−671 tumor samples (patients), and the combined 
data set comprised 3,290 samples. miRNA expression was profiled 
by microarrays or small RNA sequencing, and mRNA expression by 
microarrays or mRNA sequencing (depending on cancer type; see 
Online Methods).

Our method first evaluates expression relationships of miRNAs and 
mRNAs in individual cancer types. For each miRNA-mRNA pair, we 
measured the association between miRNA and mRNA expression 
across the set of tumors using a multivariate linear model that also 
factors in variation (noise) in mRNA expression induced by changes 
in DNA copy number and promoter methylation at the mRNA gene 
locus (Fig. 1 and Online Methods). This multivariate linear model 
could more accurately evaluate miRNA-mRNA expression associa-
tions in the presence of DNA copy-number and promoter methyla-
tion aberrations that extensively influence mRNA expression (see 
Supplementary Fig. 1 for examples).

In all individual cancer types, we found that miRNA-mRNA pairs 
with negative expression association had markedly more predicted 
miRNA-target interactions (determined by intersection of miRanda 
and TargetScan predictions21,22, using thresholds of −0.5 and −0.2, 
respectively) compared with weakly or positively associated pairs 
(Fig. 2a and Supplementary Fig. 2). Using the same approach, all 
cancer types were significantly enriched for predicted target inter
actions in the percentile of pairs with strongest negative association  
(P < 1 × 10−20 in each cancer type, two-tailed Fisher’s exact test,  
n ~ 15,000 in each cancer type). Consistent with earlier analyses of 
miRNA target determinants, negatively associated pairs were enriched 
in predicted target interactions with high repressive efficacy and in 

binding sites confined to mRNA 3′ untranslated regions (UTRs;  
Fig. 2b). Together these observations indicate that miRNA and mRNA 
expression associations can be used to infer probable active and func-
tional target interactions in tumors of all individual cancer types.

Recurrence of target associations across cancer types
To explore the hypothesis that individual miRNA-target relationships 
are active in multiple cancer types and may regulate common cancer 
traits, we developed a method and rank-based statistical score, the 
REC score. The method ranks miRNA-mRNA expression associations 
in the context of miRNA and cancer type and evaluates the null hypo
thesis that no association exists between the miRNA-mRNA pair in all 
cancer types (Fig. 1 and Online Methods). The rank-based approach 
ensures that individual cancer types are weighted equally, and limits 
bias from cancer data sets with large sample sizes or from strong asso-
ciations measured in only a single cancer type. Furthermore, the REC 
statistic allows different types of cross-cancer relationships to achieve 
high scores: a miRNA-mRNA pair with very strong association in only 
four cancer types (let-7b:LIN28B, REC = −6.76) and a pair with less 
strong but consistent association in all cancer types (miR-21:PDCD4, 
REC = −6.49) may each achieve a high REC score.

We computed REC scores for all miRNA-mRNA pairs in which the 
miRNA and mRNA were expressed simultaneously in at least five of 
the ten cancer types. Of the top ten pairs with the strongest negative 
REC scores, eight had evolutionarily conserved target interactions or 
target interactions predicted by both miRanda or TargetScan (Fig. 2c). 
At least two of the top ten target interactions have previously been 
studied and are likely to be functionally relevant in a cancer context. 
A target interaction between miR-18a, a member of the mir-17-92 
cluster, and the transcription factor ZBTB4 has been reported in breast 
and prostate cancer23,24. Our analysis suggests that this interaction 
could be functionally relevant in all analyzed cancer types. The target 
relationship between miR-141, a member of the miR-200 family, and 
ZEB1 has been widely studied in many cancer types and is a critical 
component of the epithelial-mesenchymal transition25. Similarly, the 
other recurring miRNA-mRNA relationships in the top ten might 
represent unappreciated functional miRNA-target relationships with 
a general role in tumorigenesis.

We present all predictions in an online resource that allows rapid 
exploration and visualization of candidate miRNA-target interactions 
in TCGA cancer types. The user may query inferred target relation-
ships using an miRNA, gene or pathway identifier, and relationships 
can be scored for recurrence across all or selected subsets of cancer 
types (Fig. 2d).

Global analysis of interactions using public data sets
To further analyze whether recurrent pan-cancer miRNA-mRNA 
associations capture miRNA regulatory relationships, we evaluated 

Table 1  Summary of analyzed TCGA cancer types and data sets
Cancer  
type Description Samples miRNAs mRNAs

GBM Glioblastoma multiforme 380 446 17,805

OVA Ovarian serous cystadenocarcinoma 509 589 17,805

CRCb Colon and rectum adenocarcinoma 181 347 15,855

KIRC Kidney renal clear-cell carcinoma 368 376 18,213

LUSC Lung squamous-cell carcinoma 195 439 18,135

BRCA Breast invasive carcinoma 671 419 18,099

UCEC Uterine corpus endometrioid carcinoma 247 498 15,897

BLCA Bladder urothelial carcinoma 94 507 15,377

HNSC Head and neck squamous-cell carcinoma 298 463 15,140

LUAD Lung adenocarcinoma 347 472 15,455

Total 3,290 429a 16,190a

amiRNAs and mRNAs expressed in at least five cancer types. bData sets for TCGA colon 
(COAD) and rectum adenocarcinoma (READ) were merged in the analysis, and the merged 
data set is listed as CRC.

Cancer types: GBM OVA CRC KIRC LUSC BRCA UCEC BLCA HNSC LUAD
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rank-transform associations, and evaluate combined
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Figure 1  Overview of statistical approach. 
Statistical method used to evaluate recurrence 
of miRNA-mRNA expression association across 
cancer types. In individual cancer types, pairwise 
miRNA-mRNA relationships are evaluated using 
a multivariate linear model, which also factors 
in variation (noise) in mRNA expression induced 
by changes in DNA copy number and promoter 
methylation at the mRNA gene locus. Associations 
are rank transformed in individual cancer types, 
and the method subsequently evaluates the null 
hypothesis that no association exists between the 
miRNA-mRNA pair in all cancer types.
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the extent to which the REC score could predict mRNA expression 
changes induced by experimental perturbation of miRNAs in vitro. 
For six miRNAs with many strong negative associations (miR-106b, 
miR-29, miR-30d, miR-200b, miR-16 and miR-21), we obtained public 
data sets of mRNA expression changes after miRNA perturbation. 
These data sets captured both miRNA inhibition and overexpres-
sion experiments, and were all done in cancer cell lines (see Online 
Methods). For each miRNA, we defined, independent of sequence-
based predictions, a set of putative target mRNAs using a set slightly 
less conservative REC score threshold (REC < −5.7, corresponding 
to a false discovery rate (FDR) < 0.001). In all analyzed miRNA per-
turbation experiments, we found that these REC target mRNAs were 
significantly downregulated or upregulated after miRNA overexpres-
sion or inhibition, respectively (Fig. 3, range of P values: 0.06–1.9 × 
10−13, one-tailed Wilcoxon’s rank-sum test, 7 < n < 179), consistent 
with the hypothesis that the recurrent pan-cancer miRNA-mRNA 
associations capture miRNA regulatory relationships.

A pan-cancer network of recurring miRNA-target interactions
We extracted miRNA-mRNA pairs with strong negative REC score 
(REC < −6.2, FDR < 2 × 10−4, 4,584 pairs with less than one esti-
mated false positive) and evidence for target 
interaction as predicted by miRanda (score < 
−0.5), TargetScan (context score < −0.2) and 
evolutionary conservation (TargetScan prob-
ability of conserved targeting, PCT, >0.5). 
These thresholds were chosen to obtain a 

high-confidence list of candidate miRNA-target interactions with pos-
sible functional roles across a range of cancer types. The combination 
of the REC score and target prediction filters yielded 143 miRNA-
mRNA pairs (Fig. 4a), significantly more than was expected by chance  
(P = 3.1 × 10−85, two-tailed binomial test, k = 143, n = 4,584, r = 3.4 × 
10−3 = 22,589 predicted targets / 6,642,349 total pairs), consistent with 
the hypothesis that the REC score can be used to augment sequence-
based miRNA-target predictions and infer functionally relevant target 
interactions in vivo. These 143 putative recurring target interactions 
formed a network of 40 evolutionarily conserved miRNAs and 72 target 
mRNAs (Fig. 4b and Supplementary Table 1). At least 61 of the 143 
putative target interactions have experimental support, and 23 interac-
tions (comprising 16 miRNAs and 8 genes) have functional relevance 
in cancer on the basis of earlier studies (Supplementary Table 2). 
Interactions with strong functional evidence include pairs such as  
let-7b:LIN28B, miR-21:PDCD4, miR-16:RECK, miR-19a:ZBTB4 and 
miR-106:TGFBR2, and the interactions between the miR-200 family 
and ZEB1, ZEB2 and ZFPM2. The network also showed several pos-
sible and less studied target interactions with genes frequently studied 
in cancer, such as those encoding estrogen receptor α (miR-18a:ESR1), 
BLIMP-1 (miR-30c:PRDM1) and Janus kinase 1 (miR-106:JAK1).

Figure 2  Concordance with predicted miRNA-
target interactions. (a) Enrichment of predicted 
miRNA-target interactions as a function of 
miRNA-mRNA expression association in the 
ten cancer types (using 100 equally sized bins; 
cancer types are color coded as in Fig. 1).  
(b) Enrichment for predicted target interactions 
in the percentile of miRNA-mRNA pairs with 
strongest negative association, evaluated using 
different thresholds for miRNA target prediction 
methods: miRanda-miRSVR score (−0.15 versus 
−1.2), TargetScan context score (−0.1 versus 
−0.45) and presence of heptamer in mRNA  
5′ UTR, coding sequence and 3′ UTR. Enrichment 
was evaluated using Fisher’s exact test. (c) The 
top ten inferred recurring negative miRNA-
mRNA associations. Left, inferred association 
rank (negative to positive) in each cancer 
type. Predicted target interactions with bars 
corresponding to (absolute) scores of three target 
prediction methods: miRanda-miRSVR, TargetScan 
context score and TargetScan conservation.  
(d) Results are available at http://cancerminer.org.
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Figure 3  Global analysis using public miRNA 
perturbation experiments. For six miRNAs in the 
inferred pan-cancer network (miR-106b,  
miR-29c, miR-30d, miR-200b, miR-16 and  
miR-21), we obtained public data sets 
measuring mRNA expression changes 
after miRNA perturbation (inhibition or 
overexpression) in different cancer cell lines.  
In each data set, we compared the distribution 
of expression changes for inferred target mRNAs 
(REC < −5.7, FDR < 0.001) with expression 
changes for all other mRNAs measured in the 
given experiment (Wilcoxon’s rank-sum test, 
one-tailed).
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In summary, these results suggest that the REC score, in com-
bination with sequence- and conservation-based predicted target 
interactions, can be used to infer candidate target interactions with 
functional roles across many cancer types.

Genetic and epigenetic alterations regulating miRNAs
We explored the possibility that a subset of miRNAs, and thereby also 
target mRNAs, in the inferred pan-cancer network could be regulated 
by somatic genetic or epigenetic alterations, a common property of 
cancer driver genes. We first considered DNA copy-number altera-
tions targeting miRNA loci. For each miRNA, we estimated the extent 
to which changes in DNA copy number at the miRNA locus could 
explain the variation in miRNA expression measured for a given 
cancer type (R2, Supplementary Table 3). We then compared these 
copy-number correlations (selecting the third highest R2 in the ten 
cancer types) measured for the 40 miRNAs in the pan-cancer net-
work with correlations for all other miRNAs also expressed in the 
studied cancer types (n = 180). This test showed that miRNAs in 
the pan-cancer network were more often regulated by DNA copy-
number alterations across the different cancer types (P = 1.2 × 10−8,  
two-tailed Wilcoxon rank-sum test, n = 40 versus 180; Fig. 4c), sug-
gesting that dysregulation of these particular miRNAs and target 
mRNAs could be under clonal selection in multiple cancer types.  
For example, mir-30d is encoded in a frequently amplified region 
(8q24, ~7 megabases (Mb) from MYC), and its expression was strongly 
regulated by DNA copy-number alterations in breast, ovarian and 
bladder carcinoma (R2 of 0.41, 0.31 and 0.25, respectively).

We then analyzed the influence of pro-
moter DNA methylation on transcription of 
miRNA loci (Supplementary Table 3). A sim-
ilar statistical approach showed that changes 
in promoter DNA methylation more often 
influenced expression of miRNAs in the pan- 
cancer network than other expressed miRNAs  
(P = 3.6 × 10−5, Wilcoxon rank-sum test; 
Fig. 4c). The miR-200 family members, which 
are encoded at two different loci (1p36 and 
12p13), showed the most marked evidence 
for regulation by promoter DNA methylation 
across multiple cancer types. Expression of 
miR-200b (1p36) and miR-200c (12p13) was 

strongly correlated with DNA methylation (R2 > 0.2) in six cancer  
types (LUSC, BRCA, UCEC, BLCA, HNSC and LUAD; defined in 
Table 1), and changes in DNA methylation could explain >50% 
of expression variance of miR-200b (R2 = 0.50) and miR-200c  
(R2 = 0.67) in bladder cancer. In summary, these data are consistent 
with the hypothesis that the inferred recurrent miRNA-target relation-
ships have a role in tumorigenesis of many different cancer types.

miR-106 family modulation of TGF-b signaling
Several miRNA families that have been widely studied in cancer were 
represented by many putative target interactions in the inferred pan-
cancer network (such as the miR-200, miR-30, miR-29 and miR-106 
families), and we hypothesized that selection for miRNA dysregula-
tion would be particularly advantageous to tumors when miRNAs 
coordinately regulate multiple components of a tumorigenic pathway 
or process. The miR-106 family of miRNAs was represented with 
several putative target relationships in the network. At least two of 
these targets, TGFBR2 and DAB2, encode known components of 
the transforming growth factor (TGF)-β signaling pathway (TGF-β  
type II receptor and disabled homolog 2, respectively), and our 
analysis shows consistent negative associations among miR-106  
family members and the two pathway components in all cancer types 
except for colorectal cancer (Fig. 5a). Furthermore, members of the 
miR-106 family directly target TGFBR2 and attenuate TGF-β signal-
ing in cancer cells5,26,27. The function of TGF-β signaling may be 
context dependent during tumorigenesis by inhibiting cell growth 
at early tumor stages and promoting tumor progressive processes 

Figure 4  Pan-cancer network of miRNA-target 
interactions. (a) Pan-cancer network defined 
by intersection of miRNA-mRNA pairs with 
strong negative REC scores and strong evidence 
for conservation-based target interaction. 
(b) Inferred pan-cancer network comprising 
143 putative target interactions between 40 
evolutionarily conserved miRNAs and 72 target 
mRNAs. Edge width represents strength of 
the REC score for a given miRNA-mRNA pair, 
and miRNAs are color coded by seed family 
relationships (singletons in white). (c) Genetic 
and epigenetic alterations regulating miRNAs. 
For the 40 miRNAs in the pan-cancer network 
and all other miRNAs also expressed across 
all the studied cancer types (n = 180), we 
estimated the extent (third highest R2 measured 
in the ten cancer types) to which changes in 
copy number (left) or promoter DNA methylation 
(right) at the miRNA locus could explain the 
variation in miRNA expression.
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at later stages28. Epigenetic silencing of DAB2, which encodes an 
adaptor protein that facilitates interaction of Smad proteins with the  
activated TGF-β receptor complex29, is one mechanism by which 
cancer cells can switch TGF-β signaling from growth suppressive to 
tumor progressive30.

The miR-106 family members are encoded at three different 
genomic loci (represented by miR-17, miR-106a and miR-106b in 
Fig. 5a), yet miRNAs from each of these loci frequently showed 
negative association with TGBFBR2 and DAB2 expression in the 
same cancer types, indicating transcriptional or post-transcriptional  
co-regulation of the three miR-106 loci. miR-106b showed the strong-
est negative association with the two target genes across cancer types, 

and a comparison of tumor and representative normal samples showed 
that miR-106b was generally upregulated, whereas TGFBR2 and 
DAB2 were downregulated, in tumors of most cancer types (Fig. 5b).  
We analyzed DNA copy-number alterations targeting miRNA loci and 
found that mir-106b showed moderate and consistent regulation by 
copy-number alterations across most cancer types (R2 > 0.08 in nine 
of ten cancer types). Although cases of significantly recurring focal 
alterations targeting miRNA loci were generally rare (as inferred by 
the Gistic algorithm31), we identified a significantly recurring focal 
amplification targeting mir-106b in endometrial cancer (FDR < 0.18,  
Gistic; Fig. 5c). In endometrioid tumor samples for which both DNA copy-
number and miRNA expression profiles were available, 4% (18 of 479)  
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Figure 5  miR-106 family regulation of TGF-β pathway components TGFBR2 and DAB2. (a) Association between miR-106 family members and 
predicted target genes TGFBR2 and DAB2 across cancer types. Cancer types are color coded as in Figure 1, and REC scores are listed for each pair.  
(b) The relationship between miR-106b expression and TGFBR2 and DAB2 mRNA expression in tumor and representative normal samples in four 
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miR-106b in endometrioid tumors with diploid mir-106b and tumors with focal mir-106b amplification. (e) Expression of miR-106b and TGFBR2 in 
endometrioid tumors; tumor samples with focal mir-106b amplification are highlighted, and expression in normal samples is included for comparison.

Figure 6  miR-29 regulation of DNA-demethylation 
factors TET1 and TDG. (a) Association between the 
three miR-29 family members and predicted target 
genes TET1 and TDG across cancer types. Cancer 
types are color coded as in Figure 1a, and REC 
scores are listed for each pair. (b) Relationship 
between miR-29a expression and TET1 and TDG 
expression in tumor and representative normal 
samples in four different cancer types. (c) Global 
association between TDG expression and gene 
promoter hypomethylation. In each cancer type, 
we computed the fraction of gene promoters that 
were hypomethylated with TDG overexpression 
among the top 100 promoters showing strongest 
correlation (Spearman) of DNA methylation and 
TDG mRNA expression. The average fraction of 
TDG-associated hypomethylated gene promoters 
across all cancer types was compared with an 
empirical null distribution computed from 1,000 
sample permutations of the DNA methylation data 
set in each cancer type.
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of samples had evidence of focal chromosomal amplification of the  
mir-106b locus, and these tumors showed significant miR-106b 
upregulation compared with diploid mir-106b tumors (two-fold 
on average, P = 1.9 × 10−5, two-tailed Wilcoxon rank-sum test,  
n = 16; Fig. 5d). The focally amplified region contained six addi-
tional genes, but only the host gene encoding the intronic mir-106b, 
MCM7, and the neighboring gene, COPS6, showed consistent mRNA 
expression upregulation in amplified samples (P = 3.0 × 10−5 and 
2.0 × 10−5, respectively, two-tailed Wilcoxon rank-sum test, n = 16).  
Finally, the tumors with focal amplification and overexpression 
of miR-106b also tended to have lower mRNA levels of DAB2 and 
TGFBR2 when compared with tumors lacking focal miR-106b ampli-
fication (Fig. 5e). In summary, these data suggest that the miR-106 
family targets and modulates the TGF-β pathway at multiple levels in  
many cancer types.

miR-29 regulates active DNA demethylation pathway
The miR-29 family had multiple inferred target interactions in the pan-
cancer network, and two of these genes, TET1 and TDG, encode critical 
components of the active DNA demethylation pathway in mammals32–35.  
In this pathway, TET proteins recognize and successively oxidize meth-
ylated cytosine nucleotides, and thymine DNA glycosylase (TDG) 
subsequently converts these modified bases to unmethylated cyto-
sine through base-excision repair (Fig. 6a). We observed a very strong 
inverse correlation between miR-29a and TDG across all cancer types 
except kidney cancer, and TET1 expression was strongly negatively 
correlated with miR-29 family members in all cancer types (Fig. 6a).  
Furthermore, two earlier studies provide experimental support for 
the direct miR-29 target interaction with TET1 (ref. 36) and TDG37 
in cancer cells. The three miR-29 family miRNAs are encoded at two 
different genomic loci, yet miRNAs from each of these loci (miR-29a 
and miR-29c) frequently showed anticorrelation with TET1 and TDG 
in the same cancer types (Fig. 6a), suggesting strong co-regulation of 
the miR-29 loci. miR-29a was generally downregulated, and TET1 and 
TDG were generally upregulated, in tumors of most cancer types as 
compared with representative normal samples (Fig. 6b).

Given the observation that TDG and TET1 were probably targeted 
and coordinately upregulated by miR-29 family downregulation in 
many cancer types, we hypothesized that the upregulation of these 
target genes is associated with patterns of DNA demethylation in 

the tumors. To test this hypothesis, we identified gene promoters 
with strong correlation (positive or negative Spearman correlation 
coefficient) of DNA methylation and TDG mRNA expression across 
tumor samples. In nine of ten cancer types we found that the majority 
of TDG-associated promoters (top 100) were hypomethylated with 
TDG mRNA upregulation (Fig. 6c), and the average fraction (0.85) 
of hypomethylated promoters across all cancer types was significantly 
higher than expected by chance (P < 0.001, sample permutation test, 
n = 1,000; Fig. 6c). These data are consistent with earlier observations 
that TDG and TET1 regulate active DNA demethylation, and they 
support a functional role for the miR-29 family as a possible master 
regulator of this process in many cancer types.

miR-29b and NREP form a double-negative feedback loop
The pan-cancer network included known examples of regulatory 
miRNA-mRNA double-negative feedback loops, such as let-7b:LIN28, 
ref. 38, and miR-200:ZEB1 (ref. 25). We hypothesized that miR-29 family  
expression is regulated by such a relationship with NREP, which 
showed the strongest recurrent negative association of all mRNAs;  
we observed strong anticorrelation of miR-29b and NREP expression 
in all cancer types studied (REC = −19.6; Fig. 7a). miR-29b had a 
single evolutionarily conserved and unusually highly complemen-
tary predicted target site in the NREP 3′ UTR, with base pairing 
potential for 20 of 23 miRNA bases (Fig. 7a). miR-29a and miR-29c 
also showed extensive complementarity with the NREP target site  
(18–19 bases with pairing), and both of these miRNAs also had strong 
recurring negative association with NREP expression (REC < −8.4). 
NREP was generally upregulated in tumors compared with normal 
samples, but unlike miR-29a, miR-29b showed less consistent down-
regulation in tumor samples (Fig. 7b). We experimentally tested the 
putative target interaction between miR-29b and NREP in cancer cell 
lines. Overexpression of miR-29b caused at least 40% reduction of 
NREP mRNA expression in HeLa and U251 glioma cell lines relative to 
experiments with control siRNAs (P = 0.03 and P = 0.07 respectively, 
one-tailed t-test, ntreatment = 2, ncontrol = 4, mean ± range of two mea
surements for treatment and mean ± s.e.m. for control groups; Fig. 7c).  
Inhibition of miR-29b expression using antisense oligonucleotides 
resulted in less potent but consistent upregulation of NREP mRNA 
expression across the two cell lines relative to experiments with con-
trol antisense oligonucleotides (P = 0.03 and P = 0.2 respectively, 

Figure 7  Experimental validation of regulatory 
interaction between miR-29b and NREP.  
(a) Association between miR-29b and NREP 
across cancer types. Bottom, conserved 
predicted miR-29 target site in NREP, 
Watson-Crick and wobble (G•U) base pairs 
are highlighted. (b) Relationship between 
miR-29b and NREP expression in tumor and 
representative normal samples in four different 
cancer types. (c) NREP mRNA expression 24 h  
after transfection with miR-29b mimic (n = 2 
biological replicates, mean ± range) and two 
different control hairpins (n = 4 biological 
replicates, mean ± s.e.m.) in cancer cell lines. 
(d) Relative NREP mRNA expression 24 h after 
transfection with miR-29b locked nucleic acid 
(LNA) anti-miR (n = 2, mean ± range) and two 
control LNAs (n = 4 biological replicates,  
mean ± s.e.m.). (e) miR-29b expression  
24 h after transfection with two different NREP 
siRNAs (n = 4 biological replicates, mean ± s.e.m.) and two different random control siRNAs (n = 4 biological replicates, mean ± s.e.m.). (f) Putative 
double-negative feedback loop between the miR-29 family of miRNAs and NREP, which is predicted to impact the active DNA demethylation pathway.
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one-tailed t-test, ntreatment = 2, ncontrol = 4, mean ± range of two mea
surements for treatment and mean ± s.e.m. for control groups; Fig. 7d).  
These data strongly suggest that miR-29b targets and destabilizes 
NREP mRNA. NREP encodes a small protein (P311, 68 amino acids) 
that is associated with wound healing and glioma migration39,40 but 
whose specific biological function is largely unknown. Knockdown of 
NREP mRNA expression (using two different small interfering RNAs  
(siRNAs), yielding 35–70% NREP mRNA reduction) led to strong 
(1.6- to 2.8-fold) upregulation of miR-29b expression in the two can-
cer cell lines (P = 0.002 and P = 0.02, respectively, one-tailed t-test, 
ntreatment = 4, ncontrol = 4, mean ± s.e.m.; Fig. 7e), suggesting that NREP 
could directly or indirectly repress miR-29b expression. In summary, 
these data indicate that miR-29b and NREP expression could in part 
be regulated through a novel double-negative feedback loop that 
might also involve the other miR-29 family members, and this could 
provide conditions for a bistable system balancing miR-29 activity 
and active DNA demethylation (Fig. 7f).

DISCUSSION
In this study, we demonstrate that miRNA-mRNA expression 
covariation in patient tumors can augment sequence-based miRNA 
target predictions to infer probable active and functional miRNA-
target interactions in vivo. We used this observation to develop a 
robust rank-based statistical approach that infers recurrent miRNA-
target relationships across multiple cancer types. By applying this 
method to transcriptomes of >3,000 tumors in 11 different cancer  
types, we have inferred a pan-cancer network of 143 evolutionarily 
conserved miRNA-target interactions, comprising 40 miRNAs and 
72 target mRNAs. These candidate interactions show strong evi-
dence of regulatory activity across many cancer types, and miRNAs 
in the network were more likely to be dysregulated by genetic and 
epigenetic alterations than were other miRNAs also expressed in 
the studied cancer types, consistent with the hypothesis that these 
interactions could be implicated in tumorigenesis. Furthermore, 
several miRNA families that have been widely studied in cancer 
were represented by many target interactions in the pan-cancer  
network, and there is functional evidence for at least 23 interactions 
from earlier experimental studies in cancer.

The association patterns we observe between miRNA and target 
mRNA expression may reflect a trace left on target mRNA expression 
by perturbation of miRNA expression through multiple and varying 
genetic, epigenetic and regulatory alterations across the set of tumors. 
We acknowledge that our approach cannot be used to infer target 
mRNAs for miRNAs with very low expression in tumors because 
variation in expression for such miRNAs would in most cases not 
have a strong impact on target mRNA expression. Furthermore, some 
miRNA-target interactions primarily influence mRNA translation 
efficiency, and our approach may miss such interactions if there is 
not an associated change in mRNA stability. Our pan-cancer network 
of candidate miRNA-target relationships also sacrifices sensitivity in 
favor of specificity by applying stringent sequence- and conservation- 
based filters, and it may also miss interactions that are functional 
only in a few cancer types. However, our online resource allows rapid 
exploration and visualization of any miRNA-mRNA association inde-
pendent of sequence-based filters, and it can also explore relationships 
specific to individual cancer types.

Our analysis highlights at least two cases in which miRNA families 
are predicted to coordinately target and regulate multiple members 
of a cancer-related pathway across many cancer types. In the first 
case, our method predicts that the miR-106 family directly targets 
and regulates TGFBR2 and DAB2, two genes encoding components 

of the TGF-β signaling pathway. Consistent with the hypothesis that 
miR-106 miRNAs are oncogenic, we identified a novel recurring focal 
amplification targeting the mir-106b loci in endometrial cancer, and 
tumor samples with focally amplified mir-106b showed significant 
miR-106b upregulation in combination with TGFBR2 and DAB2 
downregulation. Although earlier studies have shown that members 
of the miR-106 family directly target TGFBR2 and attenuate TGF-β  
signaling in cancer cells5,26,27, DAB2 has not been reported as a func-
tional target of the miR-106 family. Moreover, our analysis suggests 
that all three miR-106 family loci, and in particular mir-106b (at 7q), 
contribute to TGFBR2 and DAB2 mRNA repression in vivo. In sum-
mary, these results suggest that activation of miR-106 family expres-
sion is a potent mechanism by which cancer cells can target the TGF-β 
pathway at multiple levels to switch TGF-β signaling from growth 
suppressive to tumor progressive.

We also identified a strong recurring negative correlation between 
members of the miR-29 family and two genes encoding recently dis-
covered core components of the active DNA demethylation path-
way, TET1 and TDG32–35. Active DNA demethylation is important 
for embryonic development and tissue differentiation41. Although 
somatic mutations in genes encoding TET protein family members 
(TET1 and TET2) have been reported in various hematologic malig-
nancies42, it is currently unknown to what extent dysregulation of 
active DNA demethylation pathways has a general role in cancer 
development. Two studies experimentally support direct miR-29 
target interaction with TET1 (ref. 36) and TDG37 in acute myeloid 
leukemia and nasopharyngeal carcinoma, respectively. Furthermore, 
miR-29 miRNAs directly regulate expression of TDG and TET pro-
teins with downstream effects on DNA 5-hydroxymethylcytosine 
(5hmC) levels in noncancer cells43. In this study we show that both 
these genes are probably potent miR-29 targets in a wide range of can-
cer types, suggesting that miR-29 dysregulation may have profound 
consequences for active DNA demethylation processes in cancer. 
Additionally, miR-29 miRNAs target genes encoding DNA methyl-
transferases (DNMT3A and DNMT3B) in cancer44,45 (as supported by 
our analysis, for example, miR-29a:DNMT3A, REC = −4.36), and in 
combination these data suggest a model in which miR-29 dysregula-
tion in cancer induces a phenotype of DNA methylation instability  
that could facilitate tumorigenesis. Our analysis also shows that  
miR-29 dysregulation in tumors cannot generally be attributed to 
changes in DNA copy number or promoter methylation at the two 
miR-29 loci. Instead, we found that the top recurring miRNA-mRNA 
association in our analysis, miR-29b:NREP, represents a novel double-
negative feedback loop that could impose a bistable system for miR-29 
regulatory activity and active DNA demethylation activity.

Finally, we present our predictions in an online resource,  
http://cancerminer.org. The resource will continuously evolve as the 
TCGA consortium profiles additional cancer types, and we think these  
in vivo miRNA target predictions will be important for future efforts 
to unravel the role of miRNAs in tumorigenesis and for the design of 
miRNA-targeted therapeutics in human cancers.

Methods
Methods and any associated references are available in the online 
version of the paper.

Accession codes. miRNA and mRNA expression data sets: TCGA 
open access data directory, https://tcga-data.nci.nih.gov/tcgafiles/
ftp_auth/distro_ftpusers/anonymous/tumor/. DNA copy number and 
DNA methylation data sets: The Broad Institute, Firehose, http://gdac.
broadinstitute.org/runs/analyses__2012_12_21/.
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Note: Any Supplementary Information and Source Data files are available in the online 
version of the paper.
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ONLINE METHODS
Statistical evaluation of miRNA-mRNA association. To avoid measuring  
associations related to cis regulation of neighboring miRNAs and mRNAs  
(for example through regional epigenetic regulation or DNA copy-number 
aberrations), we evaluated expression association only for pairs of miRNAs and 
mRNAs that were on different chromosomes or that were >10 Mb apart on the 
same chromosome. Alterations in gene DNA copy number and promoter DNA 
methylation often alter the mRNA expression of a given gene and may introduce 
noise into the evaluation of a possible post-transcriptional regulatory interaction 
between a given pair of miRNA µ and mRNA j. To account for such effects, we 
used a multivariate linear regression model in which mRNA j expression (log2) 
changes as a linear function of DNA copy number (log2 tumor/normal ratio), 
DNA methylation (beta value, [0,1]) and miRNA µ expression (log2) across tumor 
samples of a given cancer type (see Supplementary Note for details).

To evaluate the recurrence of a given miRNA-mRNA association across multi-
ple cancer types, we had to combine the associations measured in each individual 
cancer data set. The P value computed for individual cancer types using the linear 
regression model above might strongly bias associations found in single studies 
with large sample sizes. We also observed that the distribution of associations 
found for individual ubiquitously and highly expressed miRNAs varied notably 
among different cancer studies. This could, for example, be due to study-dependent  
confounding effects such as differences in tumor heterogeneity between cancer 
types or the purity of tumor samples used for a given study. To account for these 
types of bias, we used a rank-based statistic to evaluate the relative strength of 
associations in the context of a specific miRNA and cancer type, and we evaluated 
the null hypothesis that that no negative association exists between miRNA µ and 
mRNA j across all n cancer types (see Supplementary Note for details).

TCGA data. All miRNA expression data sets were obtained from the TCGA open 
access data directory (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_
ftpusers/anonymous/tumor/, December 2012). miRNA expression was profiled 
by Agilent microarrays in the GBM and OVA studies, and by small RNA sequenc-
ing in the remaining studies. For microarray data sets, TCGA level 1 microarray 
expression data were processed and normalized using the AgiMicroRna R pack-
age (using between-array quantile normalization)46. For miRNA sequencing data 
sets, miRNA-mapped reads (level 3) were used to quantify miRNA expression 
by computing the ratio of mature miRNA reads (adding a pseudo count) rela-
tive to the total number of reads mapping to annotated miRNAs in the given 
sample. To filter miRNAs with very low expression across most samples in a 
cancer-type data set, we removed miRNAs that were detected in <5% of samples 
(using the ‘detected’ flag in the microarray data sets and a read count threshold 
of 10 in the sequencing data sets). The microarray and sequencing data expres-
sion values were log2 transformed for subsequent analysis. Mature and precur-
sor miRNA sequences, coordinates and relationships were obtained through 
miRMaid (http://170.mirmaid.org/)47. For global target interaction enrichment 
analysis (Fig. 1b,c), we defined a set of highly expressed miRNAs in each tumor 
type. This set was defined by miRNAs highly expressed (top 100) in ≥2% of the 
samples for a given tumor type. This threshold led to selection of ~150 (actual 
number depends on tumor type) mature miRNAs in each cancer type for the 
statistical evaluation.

All mRNA expression data sets were obtained from the TCGA open access  
data directory (https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/
anonymous/tumor/, December 2012). Normalized TCGA level 3 Agilent micro-
array mRNA expression profiles were used for GBM, OVA and COAD/READ 
studies. For the remaining tumor types, mapped and gene-level-summarized 
(level 3, RPKM) RNA-seq data sets were used. To filter mRNAs not expressed 
across most samples in RNA-seq data sets, we removed mRNAs with <20 reads 
in >95% of samples. To allow log transformation, mRNA RPKM expression  
values of 0 were set to the minimum nonzero RPKM in the given sample. The 
microarray and RNA-seq mRNA expression values were log2 transformed for 
all subsequent analysis.

DNA copy-number (aCGH) data sets were obtained from Firehose  
(http://gdac.broadinstitute.org/runs/analyses__2012_12_21/). We used level 4 

nondiscretized gene-summarized log2-transformed aCGH copy-number calls 
(tumor / normal ratio) computed by the Gistic2 algorithm31.

DNA methylation data sets profiled by either Illumina HumanMethylation27 
(for GBM, OVA and COAD/READ) or HumanMethylation450 (for the  
remaining cancer types) platforms were obtained from Firehose (http://gdac.
broadinstitute.org/runs/analyses__2012_12_21/). We used level 4 data with 
methylation probes mapped to gene promoters, and selected for each gene 
data corresponding to the methylation probe showing strongest negative  
correlation (Pearson correlation coefficient) of methylation beta-value and gene 
mRNA expression across all samples in a cancer type. We similarly analyzed  
methylation probes mapping to known miRNA promoters (±2 kb of annotated 
transcription start sites) using a manually curated database of miRNA gene  
transcription start sites48.

miRNA target predictions. miRanda-miRSVR (August 2010 release) human 
miRNA target predictions were obtained from http://microrna.org22. We used 
miRanda-miRSVR scores aggregated per gene and miRNA. TargetScan version 
5.2 human miRNA target predictions were obtained from http://targetscan.
org21. We used TargetScan context score and evolutionary conservation scores 
aggregated per gene and miRNA. Throughout the manuscript, predicted miRNA 
targets are defined by the intersection of miRanda (score < −0.5) and TargetScan 
(context-score < −0.2) unless otherwise stated. miRNA targets were also predicted 
by matching the miRNA seed (position 2−8) complement to the 5′ UTR, coding 
region and 3′ UTR sequences of individual mRNAs. Sequences were obtained 
from Ensembl (version 63), and the longest sequence was selected if a gene had 
multiple sequences defined for a given mRNA region.

Public miRNA perturbation data sets. We obtained public miRNA pertur-
bation data sets from the Gene Expression Omnibus: miR-106b and miR-16 
overexpression and inhibition in HeLa cervical cancer cells (GSE6838), miR-29c  
overexpression in MKN45 gastric cancer cells (GSE38581), miR-30d over
expression in 5B1 melanoma cells (GSE27718), miR-200b overexpression in A498  
kidney cancer cells (GSM911073) and miR-21 inhibition in MCF7 breast cancer 
cells (supplementary data in ref. 49).

Experimental assays. U251 glioma cells and HeLa cells were cultured under 5% 
CO2 at 37 °C in DMEM (ATCC: 30-2002) with 10% heat-inactivated calf serum 
(Colorado Serum Co.). miRIDIAN miRNA mimic negative control oligonucleo
tides (n = 2), miRIDIAN miRNA mimics (hsa-miR-29b), NREP targeting  
ON-TARGETplus siRNAs (n = 2) and controls (n = 2) were purchased from 
ThermoFisher Scientific. miRCURY LNA microRNA Power Inhibitors  
(hsa-miR-29b) and control LNA inhibitors (n = 2) were purchased from Exiqon. 
Oligonucleotides were transfected to a final concentration of 100 nM using 
Lipofectamine 2000 (Life Technologies) according to the manufacturer’s instruc-
tions. Total RNA was extracted using the miR-Vana RNA isolation system (Life 
Technologies). Expression of miR-29b and NREP was measured using TaqMan 
qPCR assays (Life Technologies) according to the manufacturer’s instruc-
tions, and RNU6B and ACTB were used as endogenous controls, respectively. 
All experimental assays were done with two biological replicates, and differ-
ent control compounds were also treated as control biological replicates in the  
statistical analysis.

46.	López-Romero, P. Pre-processing and differential expression analysis of Agilent 
microRNA arrays using the AgiMicroRna Bioconductor library. BMC Genomics 12, 
64 (2011).

47.	Jacobsen, A., Krogh, A., Kauppinen, S. & Lindow, M. miRMaid: a unified 
programming interface for microRNA data resources. BMC Bioinformatics 11, 29 
(2010).

48.	Bhattacharyya, M., Das, M. & Bandyopadhyay, S. miRT: a database of validated 
transcription start sites of human microRNAs. Genomics Proteomics Bioinformatics 
10, 310–316 (2012).

49.	Frankel, L.B. et al. Programmed cell death 4 (PDCD4) is an important  
functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 
283, 1026–1033 (2008).

np
g

©
 2

01
3 

N
at

ur
e 

A
m

er
ic

a,
 In

c.
 A

ll 
rig

ht
s 

re
se

rv
ed

.

https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
http://170.mirmaid.org/
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
https://tcga-data.nci.nih.gov/tcgafiles/ftp_auth/distro_ftpusers/anonymous/tumor/
http://gdac.broadinstitute.org/runs/analyses__2012_12_21/
http://gdac.broadinstitute.org/runs/analyses__2012_12_21/
http://gdac.broadinstitute.org/runs/analyses__2012_12_21/
http://microrna.org
http://targetscan.org
http://targetscan.org

	Analysis of microRNA-target interactions across diverse cancer types
	RESULTS
	Inferring miRNA targets in individual cancer types
	Recurrence of target associations across cancer types
	Global analysis of interactions using public data sets
	A pan-cancer network of recurring miRNA-target interactions
	Genetic and epigenetic alterations regulating miRNAs
	miR-106 family modulation of TGF-b signaling
	miR-29 regulates active DNA demethylation pathway
	miR-29b and NREP form a double-negative feedback loop

	DISCUSSION
	Methods
	ONLINE METHODS
	Statistical evaluation of miRNA-mRNA association.
	TCGA data.
	miRNA target predictions.
	Public miRNA perturbation data sets.
	Experimental assays.

	Acknowledgments
	AUTHOR CONTRIBUTIONS
	COMPETING FINANCIAL INTERESTS
	References
	Figure 1 Overview of statistical approach.
	Figure 2 Concordance with predicted miRNA-target interactions.
	Figure 3 Global analysis using public miRNA perturbation experiments.
	Figure 4 Pan-cancer network of miRNA-target interactions.
	Figure 5 miR-106 family regulation of TGF-β pathway components TGFBR2 and DAB2.
	Figure 6 miR-29 regulation of DNA-demethylation factors TET1 and TDG.
	Figure 7 Experimental validation of regulatory interaction between miR-29b and NREP.
	Table 1  Summary of analyzed TCGA cancer types and data sets


	Button 2: 
	Page 1: Off



