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ABSTRACT

Motivation: Experimental evidence has accumulated showing that
microRNA (miRNA) binding sites within protein coding sequences
(CDSs) are functional in controlling gene expression.

Results: Here we report a computational analysis of such miRNA
target sites, based on features extracted from existing mammalian
high-throughput immunoprecipitation and sequencing data. The
analysis is performed independently for the CDS and the 3'-
untranslated regions (3’-UTRs) and reveals different sets of features
and models for the two regions. The two models are combined
into a novel computational model for miRNA target genes, DIANA-
microT-CDS, which achieves higher sensitivity compared with other
popular programs and the model that uses only the 3'-UTR target
sites. Further analysis indicates that genes with shorter 3'-UTRs
are preferentially targeted in the CDS, suggesting that evolutionary
selection might favor additional sites on the CDS in cases where
there is restricted space on the 3'-UTR.

Availability: The results of DIANA-microT-CDS are available at
www.microrna.gr/microT-CDS
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1 INTRODUCTION

MicroRNAs (miRNAs) are small endogenous RNA molecules
that play a key role in development and diseases through post-
transcriptional regulation of gene expression. They are part of the
RNA-induced silencing complex (RISC) and guide it to specific
miRNA recognition elements (MREs) on the mRNA molecules of
target genes. This leads either to translational repression and/or
messenger RNA (mRNA) degradation (Bartel, 2009).

Although most of the MREs have been found in 3/-UTRs
of protein coding genes (Papadopoulos et al., 2009), there are
individual reports of MREs located in protein coding sequences
(CDSs) of target genes with evidence for their relation to biological
function (Tay et al., 2008). In Duursma er al. (2008), it is
shown that miR-148 represses specific splice variants of DNA
methyltransferase 3b (Dnmt3b) by targeting its coding sequence,
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and that this mechanism might play a role in determining the
relative abundance of different splice variants. Forman ez al. (2008)
demonstrate that four let-7 miRNA target sites within the CDS of
the miRNA-processing enzyme Dicer establish a mechanism for
a miRNA/Dicer autoregulatory feedback loop. In Elcheva et al.
(2009) it is shown that the coding region of B-transducin repeat
containing protein 1 is regulated by miR-183. Takagi et al. (2010)
show that Hepatocyte nuclear factor 4 «(HNF4«) is downregulated
by miR-24 targeting its CDS. The expression of miR-24 is regulated
by cellular stress, thus affecting metabolism and cellular biology.
Abdelmohsen et al. (2010) show that, based on miRNA targeting
in the CDS, miR-519 represses the translation of the RNA-binding
protein Hu antigen R (HuR), which in turn reduces HuR-regulated
gene expression and cell division. Wang et al. (2011) measure the
effect of four human miRNAs and find that miR-107 tends to target
the CDS, but not the 3’-UTR. Finally, Schnall-Levin et al. (2011)
show that miR-181 targets the repeat-rich CDS of the well-known
tumor suppressor retinoblastoma protein (RB1) and RB-associated,
Kruppel-associated-box zinc finger (RBAK).

High-throughput CLIP data now allow for the direct identification
and localization of MREs on the target genes (Chi et al.,
2009; Hafner et al., 2010). Hafner et al. (2010) show through
immunoprecipitation of the miRNA containing ribonucleoprotein
complexes and sequencing of the associated RNA fragments
(PAR-CLIP) that miRNAs tend to bind in approximately equal
proportions on the 3’-UTR as well as on the protein coding
sequences (CDSs) of target mRNAs. Hafner et al. (2010) also
suggest that miRNA targeting in the CDS has a measurable effect
on miRNA-mediated mRNA degradation. The same observation
has been made by two more groups after computational analysis
of previously published high-throughput studies regarding miRNA
targets. Forman and Coller (2010) analyze the dataset derived
from the measurements of protein and mRNA level changes after
the transfection of five miRNAs in HeLa cells as provided by
(Selbach et al., 2008) and detect a functional role of miRNA
binding sites in the CDS. Fang and Rajewsky (2011) analyze
the same dataset and additionally the protein and mRNA level
measurements after over- and underexpression of five miRNAs
in mouse neutrophils provided by (Baek er al., 2008). They find
that genes containing target sites both in the CDS and the 3'-UTR
exhibit significantly stronger regulation than genes targeted in the
3/-UTR only and that this effect is stronger for conserved CDS sites
with longer binding sites. Schnall-Levin et al. (2010) developed an
algorithm to predict CDS target sites in Drosophila genes based
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Fig. 1. Flowchart of the analysis on the PAR-CLIP data. MRE:s specified by
the PAR-CLIP data are divided in two categories according to the genomic
region in which they lie (A). For these two datasets, several features are
extracted and the most informative of them are selected by comparing true
MREs with false MREs (B). The selection is performed through a three-fold
cross-validation (C). For each identified miRNA MRE, the selected features
(depending on the gene region it lies in) are combined into an MRE score
through generalized linear models (D). For each gene, the CDS score and
the 3/-UTR score is defined by summing the MRE scores that lie in CDSs
and 3/-UTRs, respectively. These two scores are linearly combined into a
final score (E). To test for the overall performance of this scoring approach,
an independent test on the high-throughput proteomics data of Selbach et al.
is performed (F).

only on conservation, and they validate five of their top seven
predictions. Most miRNA target prediction programs nevertheless
limit their search for MREs only within the 3’-UTR (Alexiou et al.,
2009).

Here we describe an algorithm for the prediction of miRNA targets
in both 3’-UTRs and CDSs that are trained on a positive and a
negative set of MREs defined by PAR-CLIP data of Hafner et al.
(2010).

The analysis is performed independently for MREs in CDSs
and 3/-UTRs, which enables the identification of miRNA:mRNA
binding features specific for CDS or UTRs (Fig. 1). For each of
these regions, a separate prediction model is built and the models
are combined for computing a final miRNA:gene interaction score.

This algorithm permits the identification of a large number of
protein-coding genes that are only targeted in their CDSs and
provides a model of the interaction between the CDS and the UTR
targeting mechanism.

2 METHODS

2.1 Datasets

PAR-CLIP data: the PAR-CLIP data (Fig. 1A) are downloaded from the
Supplementary Material of Hafner et al. (2010).

Microarray data: microarray data are downloaded from ArrayExpress (http://
www.ebi.ac.uk/microarray-as/ae) and from Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo). The datasets used are from Gennarino
et al. (2009): E-GEOD-12091 (mir-26b), E-GEOD-12092 (mir-98);
from Wang and Wang (2006): E-GEOD-6207 (miR-124), E-GEOD-
9586 (miR-335); from Linsley et al. (2007): GSM155604 (miR-106b);
from Grimson et al. (2007): GSM210897 (miR-7), GSM210898
(miR-9), GSM210901 (miR-122a), GSM210903 (miR-128a), GSM210904
(miR-132), GSM210909 (miR-142), GSM210911 (miR-148b), GSM210913
(miR-181a).

Proteomics data: changes in protein levels resulting from overexpressing
miRNAs hsa-mir-1, hsa-mirl6, hsa-mir30a, hsa-mirl155 and hsa-let-7b as
estimated in Selbach et al. (2008) are downloaded from http://psilac.mdc-
berlin.de. RefSeq protein IDs are converted to corresponding Ensembl
Gene IDs (Ensembl release 54). There are only 120 RefSeq protein IDs
that correspond to multiple Ensembl IDs, 20 of which correspond to
multiple Ensembl IDs with different 3’-UTR lengths. For these 20 cases, the
Ensembl ID corresponding to the longest 3’-UTR is used. In total, 16 164
measurements for potential miRNA:mRNA interactions are identified, of
which 2447 have a logarithmic protein downregulation exceeding 0.2 and
are considered true targets and 13 717 are considered false targets (see also
Supplementary Fig. S4).

HITS-CLIP data: the HITS-CLIP data are downloaded from the
Supplementary Material of Chi ez al. (2009).

miRNA sequences: the miRNAs used are downloaded from miRBase build
13. CDSs and 3’-UTRs are downloaded from Ensembl build 54. In case
of multiple CDSs or 3'-UTRs per gene, the longest annotated transcript
is used.

Multiple alignments: multiple genome alignments are downloaded from
UCSC Genome Browser. Human (hg18) alignments to the following 16
vertebrate genomes are used: panTrol, rheMac2, rn4, mm8, oryCunl,
bosTau2, canFam2, dasNovl, loxAfrl, echTell, monDom4, galGal2,
xenTrol, tetNigl, frl and danRer3. Mouse (mm9) alignments to the
following 16 vertebrate genomes are used: rn4, oryCunl, hgl8, panTro2,
rheMac, canFam, bosTau3, dasNov1, loxAfrl, echTel, monDom4, galGal3,
xenTro2, tetNig, fr2 and danRer5.

miRNA target prediction of other programs: the predictions of all miRNA
target prediction programs are obtained as discussed in Alexiou et al.
(2009). Briefly, flat files of miRanda target prediction data are downloaded
(January 2008) from: http://www.microrna.org/microrna/getDownloads.do.
For Pictar, the target results are downloaded from the Pictar web
page (http://pictar.org/) following the link for ‘Predictions in vertebrates,
flies and nematodes’. The four species conservation is used. For
RNA22, the target prediction data are downloaded from a collection
of precompiled predictions dated November 11, 2006. Individual
predictions can be calculated at http://cbcsrv.watson.ibm.com/rna22.html.
For TargetScan 5.0, data are downloaded from http://www.targetscan.org/
cgi-bin/targetscan/data_download.cgi?db=vert_50. Finally, for AnTar, the
AnTar targets from http://servers.binf.ku.dk/antar/browse.php (miRNA
transfection) are used, which contains target sites with a false positive rate
< 0.25. The scores of multiple target sites on the same 3’-UTR are added to
produce a total miRNA:gene interaction score.

2.2 Feature extraction

Alignment for putative MRE identification: a dynamic programming
algorithm identifies the optimal alignment between the miRNA extended
seed sequence [nucleotides 1-9 from the 5’-end of the miRNA] and every
9 nt window on the 3’-UTR or CDS. The alignment is initially restricted
such that the pairing of the miRNA extended seed with the 9 nt window
begins at position 1 or 2 of the miRNA extended seed. A minimum of four
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consecutive Watson—Crick (WC) binding nucleotides is required starting at
position 1 or 2 of the miRNA extended seed. A single G:U wobble pair is
allowed for binding sites with more than six WC binding nucleotides. Either
a single bulge or a single mismatch is allowed for binding sites with eight
WC binding nucleotides.

Primary analysis of PAR-CLIP data and training set construction: the PAR-
CLIP data produced by Hafner et al. (2010) consist of genomic coordinates
specifying potential positions of MREs. Each putative MRE position is
further refined through the existence of a T to C mutation in the sequenced
tags as reported in Hafner et al. (2010). To identify the miRNA involved
in each MRE, sequences of all identified genomic locations of the PAR-
CLIP data are aligned against the miRNA sequence of the top 100 expressed
miRNAs (Supplementary List 1). These aligned locations are putative MREs
and are further filtered to keep only those located closer than 5 nt to the T
to C mutation. In case there is more than one putative miRNA binding in
the same region, only the MRE with the highest number of WC binding
nucleotides is retained. This set of MREs is defined as the true set. On the
other hand, the false set consists of all aligned locations that do not overlap
with the PAR-CLIP data. To take into account the possibility that part of
the false set corresponds to miRNAs or genes that are functional but not
expressed in the particular tissue of the PAR-CLIP experiment, only aligned
locations of the top 100 expressed miRNAs in the experiment and genes that
already contained at least one true MRE are retained. Overall, out of the
17 310 PAR-CLIP peaks throughout the genome, 5075 overlap with MREs
in 3’-UTRs and 6057 overlap with MREs in CDSs.

Detection of binding categories with significant PAR-CLIP reads enrichment:
the binding category of a putative MRE is determined through the alignment
procedures described above. All binding categories are then separated based
on whether the mRNA nucleotide opposite the first nucleotide of the miRNA
is an A or not and whether it is a matching nucleotide or not. This procedure
defines 64 different binding categories that are then compared between the
true and false set of MREs as defined in the PAR-CLIP dataset (Fig. 1B).
This comparison is performed through a logistic regression (Venables and
Ripley, 2002) between the binding categories and the presence or absence of
the corresponding MRE in the true or false set of the PAR-CLIP data. The
estimated regression coefficients (Supplementary Table S1) are then used as
a feature denoted as the ‘binding category weight’ feature in a generalized
linear model for characterizing the overall efficiency of each. An example
category is labeled ‘8mer+3’-pairing 1st:mismatch+NotA’ and corresponds
to eight matches between the miRNA extended seed and the mRNA plus
additional bindings in the 3’-end and the first nucleotide opposite the 5’-end
of the mRNA is not a match nor is an Adenine.

Conservation measure of the MRE sequence in CDS: the CDS conservation
scoring method is based on a recently proposed approach (Forman et al.,
2008) of calculating excess sequence conservation above the one required
for amino acid conservation. The underlying concept is that functional MREs
in CDSs are expected to preferentially conserve those nucleotides that would
have no effect on the amino acid outcome, but would interfere with miRNA
targeting. The length of each predicted MRE is spanned by triplets that map
fully or partially inside the MRE. For each of the triplets, the log of the
conditional probability that the triplet sequence is conserved, given that the
amino acid it codes for is conserved, is added to the ‘CDS conservation’
score of the MRE, using the 30 way genomic alignments (UCSC) for the
CDSs of all mRNAs. The score for the final ‘CDS conservation’ feature is
normalized by the maximum score that this MRE could have achieved had
it been perfectly conserved in all species.

Conservation measure of the MRE sequence in 3'-UTRs: the 3'-UTR
conservation score assesses the evolutionary conservation of a MRE based
on 16 species. To compensate for the overall degree of conservation in the
whole 3’-UTR, the conservation score for each MRE is defined as the ratio
of the number of species in which the binding positions of the extended seed
region are conserved and the respective number using the maximal number

of species having any conservation in the whole 3’-UTR region. This feature
is denoted as ‘conservation’.

Detection of significantly accessible locations within MREs: logistic
regression between the presence or absence of reads in the PAR-CLIP data
and the accessibility of the 3’-UTR sequence as calculated with the Sfold
algorithm (Ding et al., 2004) using each of the 40nt upstream and 10nt
downstream of the start of each MRE as a feature is performed to identify
any significant targeting feature related to accessibility. The largest region
with a P <0.1 (Wald test) and consistent direction of the contribution at all
positions extends across positions —1, 1 and 2. The sum of accessibilities in
this region, denoted as ‘MRE accessibility (—1 to 2)’, is used as a feature.

Other MRE features: two of the three features identified in Grimson et al.
(2007), the MRE flanking AU content denoted as ‘flanking AU content’ and
the distance of the MRE to the closest 3’-UTR end denoted as ‘distance to
closest 3’-UTR end’ are used. Additionally, the distance between adjacent
MREs denoted as ‘adjacent MRE distance’, the free energy of binding as
calculated with RNAhybrid (Rehmsmeier et al., 2004) denoted as ‘free
energy’ and the resulting binding pattern of the 29 nt of the 3’-UTR along the
MRE denoted as ‘bntl’ to ‘bnt29’, are also used as features. All second-order
interactions between all features are automatically generated and selected
using F-tests.

2.3 Feature selection

To determine an optimal feature set using cross-validation, the PAR-CLIP
dataset is split into three disjoint subsets, stratified for positive and negative
sites. Logistic regression using the features described above is performed
on each subset and a feature selection procedure minimizing the Akaike
information criterion (AIC) using the stepAIC implementation in the MASS
package (Venables and Ripley, 2002) for R determines an optimal set
of features. For this initial set of features, the capability of each single
feature to separate the complete PAR-CLIP data into sites with reads and
sites without reads is tested using the Wilcoxon’s test and only features
with significant (P <0.05) separation are retained. This feature selection
procedure is performed independently for sites in CDSs and sites in 3’-UTRs
(Fig. 1C). The full list of selected CDS and 3’-UTR features is provided in
Supplementary Table S2.

2.4 Training and scoring

Using the identified significant features, different machine learning methods
like support vector machines, neural networks, random forests and
generalized linear models (GLM) (Venables and Ripley, 2002) are compared
for the calculation of an MRE score. The best performance, quantified by
cross-validation is obtained using GLMs. Each gene region (CDS or 3’-UTR)
is represented by a separate model. The regression coefficients for all features
and their significances are presented in Supplementary Table S2. The scores
for all MRE:s identified in a region are summed into a region score (Fig. 1D).

Combining CDS and 3'-UTR targeting: for the optimal combination of the
two region scores that are obtained by summation of the respective MRE
scores, another generalized linear model is trained using data from the
13 different microarray experiments measuring mRNA expression changes
when a miRNA is either transfected or knocked out (defined in section 2.1,
Microarray data). While the PAR-CLIP data provides detailed data about
miRNA target binding sites, but not about the cooperative effect of multiple
target sites on a gene. Therefore, we used microarray gene expression data in
order to measure the effectiveness of these sites in suppressing the expression
of a gene. Genes in each dataset are sorted according to expression fold
change compared with control, and the top and bottom 100 genes from each
experiment are used as the true and false examples for training the generalized
linear model (Fig. 1E).
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Fig. 2. A precision receiver operating curve (pROC) analysis of the predictions for different target prediction methods (defined in Section 2). Using a
decreasing score cutoff, the prediction sensitivity and precision for each method is tested on the dataset from Selbach et al. (2008). The dashed line shows the
performance of the seed measure that counts the number of miRNA seed matches in the 3’-UTR of a gene. A distinct increase of both sensitivity and precision

for microT-CDS can be observed.

3 RESULTS

3.1 Addition of target sites in coding regions enables a
more sensitive target prediction

The developed algorithm is tested on a large independent test
dataset provided by Selbach et al. (2008). This set provides the
experimentally supported targets for five miRNAs identified through
a high-throughput method (Section 2.1.3). Approximately half of
the 2447 genes, that are considered as targets of these miRNAs,
do not carry a single miRNA seed (nucleotides 2—7 from the 5'-
end of the miRNA) match in their 3’-UTR sequences and are thus
not recognized by existing miRNA target prediction programs. The
combined (CDS and 3’-UTR) model presented here increases the
sensitivity in this dataset from 52% to 65% in comparison to the 3'-
UTR-only region model, keeping the specificity at the same level of
32%. This corresponds for the particular dataset of five miRNAs
to 293 additional correctly predicted targets (see Supplementary
Fig. S1).

To test the significance of the additional CDS model, the predicted
results are compared with a partly random predictor, where for each
miRNA, the scores of the two models are shuffled by combining
the 3’-UTR score of each gene with a randomly selected CDS score
from a target gene of the same miRNA. The performance of this

randomized predictor is significantly lower than the combined model
(Supplementary Fig. S1), demonstrating a significant and synergistic
contribution of targeting in the CDS.

The combined model is also compared with other widely
used miRNA target prediction programs such as TargetScan 5.0
(Friedman et al., 2009), PicTar (Lall et al., 2006), RNA22 (Miranda
et al., 2006), miRanda (John et al., 2004), DIANA-microT-v3.0
(Maragkakis ef al., 2009a; b), AnTar (Wen et al., 2011) and a seed
measure, whose prediction score is defined through the number
of miRNA seed matches on the 3’-UTR of genes. The latter has
been shown in a comparison of (Alexiou er al., 2009) to be
more sensitive than many other published prediction programs
at that time (Section 2). The sensitivity and precision of all of
these programs is measured at different prediction score cutoffs,
yielding precision recall curves shown in Figure 2. The DIANA-
microT-CDS program exhibits the highest sensitivity at any level of
specificity in comparison with the other six programs. Interestingly,
a high increase in sensitivity is observed at lower specificity values,
outperforming also the seed measure.

The validity of using a specific prediction model for the additional
CDS sites is verified in a comparison with predictions of TargetScan
5.0 that also uses sites in the coding region. Obtaining the scores for
TargetScan 5.0 using the sequence covering both the CDS and the
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Fig. 3. Analysis of the overlap of different target prediction methods. The
number of correctly predicted targets is shown for targets predicted only
by DIANA-microT-CDS, predicted only by TargetScan 5.0 and predicted
by both programs, respectively. The comparison evaluates the 2447 known
targets in the (Selbach er al., 2008) dataset at specific score thresholds
corresponding to different prediction precision levels.

3’-UTR as input, predictions with >10% lower precision compared
with DIANA-microT-CDS are obtained (Supplementary Fig. S2).

In order to scrutinize the improvement of DIANA-microT-CDS
to the top-performing program TargetScan 5.0, the overlap between
the targets predicted by DIANA-microT-CDS and TargetScan on
the Selbach er al. dataset is measured ranging from 50 to 70%,
depending on the precision level. This indicates that a large fraction
of novel targets, as also shown in Figure 3, are predicted only
by DIANA-microT-CDS. Particularly, at lower precision levels the
number of correct predictions is almost doubled using DIANA-
microT-CDS.

The performance of DIANA-microT-CDS program in the
detection of CDS target sites is also evaluated on the high-throughput
sequencing of RNA isolated by cross-linking immunoprecipitation
(HITS-CLIP) dataset of Chi et al. (2009). In this dataset, the
Argonaute-mRNA binding sites corresponding to mouse miRNA
targets are measured and used here. Of the top 20 expressed miRNAs
in this experiment, seven are not in the set of miRNAs used for the
development of our algorithm and are used here as an independent
test set. Out of the genes targeted by these microRNAs, genes having
HITS-CLIP clusters only in the CDS and not in the 3/-UTR are
collected, resulting in 1210 CDS target sites. DIANA-microT-CDS
is capable of predicting the location of 286 of these sites correctly. In
order to estimate if this could also happen by chance, the locations of
the predicted sites is randomized 100 times. The randomized model
is able to locate only 10.3 out of the 1210 real binding sites, leading
to an estimated ratio of true over randomly predicted sites >27.

A test of the DIANA-microT-CDS algorithm on the five individual
cases of experimentally verified CDS targeting mentioned in the
introduction, recalls three positive cases (for the genes: Dnmt3b,
Dicer and HNF4a). This is in agreement with our estimated
sensitivity and is currently the only available computational
prediction for this type of sites. The contribution of target sites
located in the CDS is further verified in additional tests on
the microarray experiments measuring the effect of over- or
underexpression of six miRNAs not contained in the training set
used for constructing the MRE predictors (mir-98, miR-124, miR-
335, miR-122a, miR-132, miR-142). Comparing our algorithm when
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SO target scom
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W iageied genes
W non-agaled genas
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Fig. 4. Preferential occurrence of MREs in the CDS for short 3’-UTRs.
Comparing the sum of the predicted site scores in coding sequence (CDS
score) against various 3’-UTR sizes of targeted (green line) and non-targeted
(blue line) genes on an independent test set reveals a significantly higher
number of sites in CDS for genes with 3’-UTR lengths shorter than 500 nt
(red box, P <0.05, Wilcoxon’s test).

using only target sites in the 3’-UTR with the algorithm using
all sites on this data, the sensitivity of detecting verified targeted
genes when using the same score cut-off is increased from 42.7 to
46.8% by more than 4%, while the false positive predictions and
the precision of the predictions remains at the same level (see also
Supplementary Fig. S3). This corresponds to 25 correctly predicted
additional targets in the CDS in this set of 600 verified targets.

3.2 Genes with shorter 3'-UTR have significantly more
targets in coding regions

To gain more insight into the mechanism underlying CDS targeting,
the relations between CDS and 3’-UTR targeting is investigated in
the dataset of Selbach et al. Comparing the CDS target scores with
the 3’- UTR length of the same target gene, it is found that genes
with 3’-UTRs <500 nt have a significantly higher CDS target score
(Wilcoxon’s test, P <0.05). The red region in Figure 4 indicates
all 3’-UTR lengths with significantly higher CDS sores, indicating
likely targeting in the CDS. Such preference could not be observed
for the group of genes that are measured as not targeted by miRNAs
in the same proteomics experiment.

The robustness of this observation is tested by randomly
combining the CDS scores with the 3’-UTR scores. In only 553
out of 10000 randomizations, a significantly higher CDS score
is tested for the 3’-UTR shorter than 500nt is detected (P <0.05,
Wilcoxon’s test). Similarly, when analyzing the miRNA target
genes as observed from 13 microarray experiments (Section 2), the
genes identified as targeted only in the CDS are observed to have
significantly shorter 3’-UTR sequences than genes targeted only on
the 3’-UTR (P <10~ 13, Wilcoxon’s test). These findings suggest that
evolutionary pressure might enforce the presence of additional sites
on the CDS in cases where there is restricted space on the 3’-UTR.

4 DISCUSSION

High-throughput proteomics experiments that measure changes for
thousands of genes both on the mRNA and the protein level
reveal that approximately half of the genes whose expression is
increased/decreased after miRNA transfection/knockout do not carry
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a single corresponding miRNA seed match in their 3’-UTR sequence
(Baek et al., 2008; Selbach et al., 2008). The program introduced
here enables the recognition of 12% of these downregulated genes
as additional targets of miRNAs, having their targets in coding
regions. A list of all genes predicted to be targeted only in the CDS is
contained in Supplementary Table S3. This list is predicted with an
expected precision of 50% and contains on average 64 such genes
per miRNA.

The analysis of the recent data for miRNA-associated protein
immunoprecipitation and the subsequent RNA sequencing results
in a program that uses several features that are different from
other programs. Generally, evolutionary conservation is a strong
indication for MRE functionality (Friedman et al., 2009; Kiriakidou
et al., 2004; Lewis et al., 2003). However, the coding sequences of
genes usually have a significantly higher background conservation
level than 3’-UTR sequences due to their underlying amino acid
content. Therefore, a specific feature for conservation of MREs in
coding regions is incorporated here, exploiting the conservation of
synonymous codons.

A feature analysis for MREs in 3’-UTRs reveals a number of
novel significant features, such as the requirement for increased
accessibility in the mRNA secondary structure at the start of an
MRE. In several cases, the synergistic effect of two features is more
informative than the two features used independently. For example,
the higher mRNA AU content in the region surrounding an MRE
(Grimson et al., 2007) when combined with the free energy of the
binding complex (P <10715, Wald test) gains higher significance
than any of these features alone. Interestingly, this gain suffices to
eliminate the AU content as an independent feature. The analysis
reveals also that functional MREs in the CDS preferentially require
a stronger binding than MREs in the 3/-UTR. MREs in coding
regions require a perfect binding along the miRNA seed region and
mismatches disrupt their functionality, which was also found by
Fang and Rajewsky (2011).

As the only resource to provide target predictions accounting also
for target sites in the CDS, and moreover specifying the predicted
binding locations of all sites, the results of DIANA-microT-CDS are
available through the DIANA web server (Maragkakis et al., 2009b)
at www.microrna.gr/microT-CDS.
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