Δορυφορική τηλεπισκόπηση στο θερμικό υπέρυθρο

Learning Objectives

Τι αφορά η δορυφορική τηλεπισκόπηση στο θερμικό υπέρυθρο? Ποιοι νόμοι την περιγράφουν;

Ποιά η διαφορά μεταξύ της θερμοκρασίας λόγω της κινητικής ενέργειας (kinetic temperature) και της θερμοκρασίας ακτινοβολίας (radiant temperature);

Πως συνδέεται ο συντελεστής θερμικής εκπομπής με τη δορυφορική τηλεπισκόπηση στο θερμικό υπέρυθρο;

Ποιά τα αναγκαία βήματα για την επεξεργασία μίας δορυφορικής εικόνας στο θερμικό υπέρυθρο;

Πως υπολογίζεται η επιφανειακή θερμοκρασία εδάφους και ποια η φυσική της σημασίας;

Ποιες εφαρμογές υποστηρίζονται;

Spectal signature = $f(\lambda)$

Εισαγωγικά σημεία

1.Η εσωτερική ενέργεια (λόγω κινητικής ενέργειας) (internal kinetic heat) ενός αντικειμένου μετατρέπεται σε ενέργεια ακτινοβολίας (radiant energy ή external ή apparent energy).

2.Η ποσότητα ροής ακτινοβολίας που εκπέμπεται από ένα σώμα, συνδέεται με την θερμοκρασία ακτινοβολίας (T_{rad}).

3. Διαπιστώνεται ισχυρή συσχέτιση μεταξύ της πραγματικής (Kinetic) θερμοκρασίας του σώματος και της θερμοκρασίας ακτινοβολίας.

Αυτή είναι η βάση για τη δορυφορική τηλεπισκόπηση στο θερμικό υπέρυθρο.

Όμως η σχέση που διαμορφώνεται δεν είναι ακριβής, με τη θερμοκρασία ακτινοβολίας να είναι λίγο μικρότερη από την πραγματική θερμοκρασία του σώματος (true kinetic temperature).

Η διαφορά αυτή οφείλεται στην ιδιότητα της εκπομπής (emissivity

Radiation of real Materials

Emissivity depends on wavelength, surface temperature, and some physical properties of the surface, e.g. water content, or density.

Material	Average Emissivity over 8-14 μm	
Clear water	0.98 - 0.99	
Healthy green vegetation	0.96 - 0.99	
Dry vegetation	0.88 - 0.94	
Asphaltic concrete	0.94 - 0.97	2008)
Basaltic rock	0.92 - 0.96	etal
Granitic rock	0.83 - 0.87	pues
Dry mineral soil	0.92 - 0.96	e: Lille
Polished metals	0.06 - 0.21	Source

Wavelength ----

Source: Tang and Li, 2008 Remote Sensing of Environment Basic classes:

1.Continuous urban fabric: Housing. Mean impervious value> 80%.

2.Non continuous urban fabric:Housing over 20%, open space,private gardens, disperse vegetation.Mean impervious value: 10- 80%.

3.Industrial-Commerical-Public Buildings: artificial surfaces (cement, asphalt, etc.).

4. Urban green: mostly parks

Planck blackbody equation:

describes the EM radiation emitted from a blackbody at a certain wavelength as a function of its absolute temperature

http://tes.asu.edu/MARS_SURVEYOR/MGSTES/TES_emissivity.html

Planck equation for blackbody radiance

\rightarrow radiance temperature T_R = T_B (brightness temperature)

$$T_{B} = \frac{K_{2}}{\ln\left(\frac{K_{1}}{B_{\lambda}} + 1\right)}$$

T_K the kinetic temperature

•A fire at 500K will be sensed, as it grows

•first by 3.9µm(at ~100m)

by 2.2µm (250m)

•third by 10.8µm (400m)

•An RGB=(3.9;2.2;10.8) might be a good indicator for severity of a fire.

•For a hotter fire (1000K), typically gas flares, channels in the solar domain react faster than 3.9µm

Η έννοια του κυρίαρχου μήκους κύματος (dominant wavelength)

<u>Παρέχει πληροφορίες αναφορικά με το τμήμα εκείνο του θερμικού υπέρυθρου το</u> οποίο χρειάζεται να αξιοποιήσουμε.

Για παράδειγμα, αν εξετάζουμε μία δασική πυρκαγιά των 800 °K με κυρίαρχο μήκος κύματος περίπου 3.62 μm, τότε η φασματική περιοχή αναφοράς είναι 3-5 μm.

Αν ενδιαφερόμαστε για στερεό έδαφος με θερμοκρασία περίπου **300** °**K και** κυρίαρχο μήκος κύματος 9.66 μm, τότε ενδείκνυται η περιοχή 8-14 μm.

Kirchhoff's radiation law

Σύμφωνα με το νόμο του Kirchoff για ένα μέλαν σώμα: $\alpha_{\lambda} = \varepsilon_{\lambda}$

Apa 1 = $\mathbf{r}_{\lambda} + \alpha_{\lambda} + \tau_{\lambda}$

 $1 = \mathbf{r}_{\lambda} + \varepsilon_{\lambda} + \tau_{\lambda}$

Ομως για τα περισσότερα στερεά σώματα τ_λ = 0 Αρα: 1 = \mathbf{r}_{λ} + ε_{λ}

που σημαίνει ότι όσο μεγαλύτερη η τιμή της ανακλαστικότητας ενός αντικειμένου τόσο μικρότερη η τιμή του συντελεστή εκπομπής και αντίστροφα. Ο συντελεστής εκπομπής ενός σώματος εξαρτάται από τους εξής παράγοντες:

•χρώμα

• τραχύτητα επιφάνειας (τραχεία > λ εία)

•περιεχόμενη υγρασία (υγρό έδαφος > ξηρό έδαφος)

- •field-of-view/resolution
- μήκος κύματος

Vis & Near IR Spectral Signatures

NOAA/UW/CIMSS

Σύγκριση φασματικών περιοχών

Near infrared (1.6 µm)	More adequate for smoke detection than 3.9 µm Small fires not visible No CO2 absorption (higher fire temperature) High sub pixel sensitivity
Middle infrared (3.9 µm)	High temperature sensitivity - major sub pixel effects (hot spots are easily detected) Negligible absorption by atmospheric humidity Close to a CO2 absorption band, 4-7 Kelvin signal reduction Brightness is temperature of the CO2 layer above the fire
Thermal infrared (10.8 µm)	 1-2 Kelvin absorption by atmospheric humidity No signal reduction by CO2 Lower temperature sensitivity (small subpixel effects) No risk of sensor blinding by fires Low values compared with 3.9 μm due to semi transparent cloud or smoke

Υπολογισμός επιφανειακής θερμοκρασίας εδάφους (land surface temperature - LST)

Βήμα 1. Δημιουργία βάσης δεδομένων

Feb 19.8 (67.6) 5.0 (41) -5.6 (21.9) -27.4 (-17.3)	Mar 29 5 (85.1) 11.6 (52.9) 0.4 (32.7) -15 (5)	Apr 33.0 (91.4) 20.3 (68.5) 7.9 (46.2) -3.2 (26.2)	May 38.3 (100.9) 25.0 (78.8) 13.6 (56.5) 2.5 (36.5)	Jun 42.6 (108.7) 30.2 (86.4) 18.8 (65.8) 9.8 (10.7)	Jul 41.9 (107.4) 30.9 (87.6) 22.0 (71.6) 15.3	Aug 38.3 (100.9) 29.7 (85.5) 20.8 (69.4) 11.4	Sep 35.0 (95) 25.8 (78.4) 14.8 (58.6) 3.7	Oct 310 (878) 19:1 (86.4) 7.9 (46.2) -35	Nov 23 3 (73 9) 10.1 (50 2) 0.0 (32) -12 5	Dec 19.5 (67.1) 3.7 (38.7) -5.8 (21.6) -18.5	Year 42.6 (108.7) 17.9 (64.1) 7.2 (45.0) -27.4	
19.8 (67.6) 5.0 (41) -5.6 (21.9) -27.4 (-17.3)	29 5 (85.1) 11.6 (52.9) 0.4 (32.7) -15 (5)	33.0 (91.4) 20.3 (68.5) 7.9 (46.2) -3.2 (26.2)	38 3 (100.9) 26.0 (78.8) 13.6 (56.5) 2.5 (36.5)	42.6 (108.7) 30.2 (86.4) 18.8 (65.8) 9.8 (10.6)	41.9 (107.4) 30.9 (87.6) 22.0 (71.6) 15.3	38.3 (100.9) 29.7 (85.5) 20.8 (69.4) 11.4	35 0 (95) 25 8 (78 4) 14.8 (58 6) 3.7	31.0 (87.8) 19.1 (66.4) 7.9 (46.2) -3.5	23.3 (73.9) 10.1 (50.2) 0.0 (32) -12.5	19.5 (67.1) 3.7 (38.7) -5.8 (21.6) -18.5	42.6 (108.7) 17.9 (64.1) 7.2 (45.0) -27.4	
5.0 (41) -5.6 (21.9) -27.4 (-17.3)	11.6 (52.9) 0.4 (32.7) -15 (5)	20,3 (68.5) 7.9 (46.2) -3.2 (26.2)	26.0 (78.8) 13.6 (56.5) 2.5 (36.5)	30.2 (86.4) 18.8 (65.8) 9.8	30.9 (87.6) 22.0 (71.6) 15.3	29.7 (85.5) 20.8 (69.4) 11.4	25.8 (78.4) 14.8 (58.6) 3.7	19.1 (66.4) 7.9 (46.2)	10.1 (50.2) 0.0 (32)	3.7 (38.7) -5.8 (21.6) -18.5	17.9 (64.1) 7.2 (45.0) -27.4	
-5.6 (21.9) -27.4 (-17.3)	0.4 (32.7) -15 (5)	7.9 (46.2) -3.2 (26.2)	13.6 (56.5) 2.5 (36.5)	18.8 (65.8) 9.8	22.0 (71.8) 15.3	20.8 (69.4) 11.4	14.8 (58.6) 3.7	7.9 (46.2)	0.0 (32)	-5.8 (21.6)	7.2 (45.0) -27.4	
-27.4 (-17.3)	-15 (5)	-3.2 (26.2)	2.5	9.8	15.3	11.4	3.7	-35	-12.5	-18.5	-27.4	
4.0			lanal	(49.0)	(59.5)	(52.5)	(38.7)	(25.7)	(9.5)	(-1.3)	(-17.3)	
4.9 (0.193)	8.3 (0.327)	21.2 (0.835)	34.2 (1.346)	78.1 (3.075)	185.2 (7.291)	159.7 (6.287)	45.5 (1.791)	21.8 (0.858)	7.4 (0.291)	2.8 (0.11)	571.8 (22.51)	
2.3	3.3	4.3	5.8	9.7	13.6	12.0	7.6	5.0	3.5	1.7	70.6	
44	46	46	53	61	75	π	68	61	57	49	56.8	
194.7	231.8	251.9	283,4	261.4	212.4	220.9	232.1	222.1	185.3	180.7	2,670.8	
65	63	64	64	59	47	52	63	64	62	62	60	
	2.3 44 194.7 65	2.3 3.3 44 46 194.7 231.8 65 63	2.3 3.3 4.3 44 46 46 194.7 231.8 251.9 65 63 64	2.3 3.3 4.3 5.8 44 46 46 53 194.7 231.8 251.9 283.4 65 63 64 64	2.3 3.3 4.3 5.8 9.7 44 46 46 53 61 194.7 231.8 251.9 283.4 261.4 65 63 64 64 59	2.3 3.3 4.3 5.8 9.7 13.6 44 46 46 53 61 75 194.7 231.8 251.9 283.4 261.4 212.4 65 63 64 64 59 47	2.3 3.3 4.3 5.8 9.7 13.6 12.0 44 48 46 53 61 75 77 194.7 231.8 251.9 283.4 261.4 212.4 220.9 65 63 64 64 59 47 52	2.3 3.3 4.3 5.8 9.7 13.6 12.0 7.6 44 46 46 53 61 75 77 68 194.7 231.8 251.9 283.4 261.4 212.4 220.9 232.1 65 63 64 64 59 47 52 63	2.3 3.3 4.3 5.8 9.7 13.6 12.0 7.6 5.0 44 46 46 53 61 75 77 68 61 194.7 231.8 251.9 283.4 261.4 212.4 220.9 232.1 222.1 65 63 64 69 47 52 63 64	2.3 3.3 4.3 5.8 9.7 13.6 12.0 7.6 5.0 3.5 44 46 46 53 61 75 77 68 61 57 194.7 231.8 251.9 283.4 261.4 212.4 220.9 232.1 222.1 185.3 65 63 64 64 59 47 52 63 64 62	2.3 3.3 4.3 5.8 9.7 13.6 12.0 7.6 5.0 3.5 1.7 44 46 46 53 61 75 77 68 61 57 49 1947 231.8 251.9 283.4 261.4 212.4 220.9 232.1 222.1 185.3 180.7 65 63 64 64 59 47 52 63 64 62 62	2.3 3.3 4.3 5.8 9.7 13.6 12.0 7.6 5.0 3.5 1.7 70.6 44 46 46 53 61 75 77 68 61 57 49 56.8 194.7 231.8 251.9 283.4 261.4 212.4 220.9 232.1 222.1 185.3 180.7 2.670.8 65 63 64 64 59 47 52 63 64 62 62 60

Βήμα 2. Προσδιορισμός LU/LC

The spatial distribution of urban land in Beijing during 1989–2010.

Left to right: Land cover, satellite image in the visible, thermal image

Βήμα 3. Επιλογή των κατάλληλων Δ.Ι. (χώρος – χρόνος)120m resolution1.1 km resolution

Source: processing by C. Cartalis

Βήμα 4. Επιλογή του κατάλληλου δορυφόρου – Συνδυασμός δεδομένων

Βήμα 5. Ποια ώρα της ημέρας;

22:32 local time

Source: processing by C. Cartalis

10:30 local time

Βήμα 6. Ποια περίοδο του έτους;

Source: The Hong Kong Polytechnic University

Βήμα 7. Μετατροπή και ανάκτηση (convert and retrieve)

Overall LST accuracy: ±2 Kelvin

Ανάκτηση LST από Landsat TM

 $L = 0.0056322 \times DN + 0.1238$ $T_b = \frac{K_2}{ln((K_1/L) + 1)}$

where T_b is the brightness temperature in Kelvin, L is spectral radiance; K_1 and K_2 are the calibration constants in m·W·cm⁻²·sr·µm⁻¹ ($K_1 = 60.776$, $K_2 = 1260.5$).

$$LST = \frac{T_b}{1 + (\lambda \times T_b / \rho) ln\varepsilon}$$
$$\rho = \frac{h \times c}{\sigma}$$

where λ is the wavelength of emitted radiance ($\lambda = 11.5 \,\mu\text{m}$), σ is the Boltzmann constant (1.38 × 10⁻²³ J/K), and *h* is the Planck's constant (6.626 × 10⁻³⁴ Js), *C* is the velocity of light (2.998 × 10⁸ m/s).

Ανάκτηση LST από Moderate Resolution Imaging Spectroradiometer (MODIS) (Aqua-Terra)

MODIS has a 36 spectral band spectrometer; its thermal infrared (TIR) bands are used for LST retrieval. The methodology used for the calculation of the LST maps is based on the Split Window Technique (SWT). Using the SWT, LST is calculated as (Ts), (Jiménez-Muñoz et al., 2008):

Ts (land surface temperature) = Ti + c1 (Ti – Tj) + c2 (Ti – Tj) 2 + c0 + (c3 + c4*W) (1 – ε) + (c5 + c6*W) $\Delta \varepsilon$ where: *Ti and Tj* : *at-sensor brightness temperatures at the SW bands i and j (in Kelvin)* ε : the mean emissivity, $\varepsilon = 0.5(\varepsilon i + \varepsilon j)$, $\Delta \varepsilon$: the emissivity difference, $\Delta \varepsilon = (\varepsilon i - \varepsilon j)$, *W is the total atmospheric water vapor content (in grams per square centimeter)*, c0-c6: the SWT coefficients In the case of the MODIS sensors i and j are bands 31 and 32, at 10.780–11.280 µm and 11.770–12.270 µm respectively.

AATSR data

Source: Tangtang Zhang et al., 2008

DOWNSCALING

One of the techniques to be used in order to improve the spatial resolution of satellite images relates to the use of LSTs or emissivities (PBIM -pixel block intensity modulation, Guo and Moore, 1998; Stathopoulou and Cartalis, 2007):

$$T_{\text{sentinel}_{30}} = T_{\text{sentinel}_{300}} * T_{landsat,30}^{27/7/16} / T_{landsat,30 \to 1000}^{27/7/16}$$

 $T_{\text{Sentinel}_{330}} = T_{\text{Sentinel}_{3,1000}} * \varepsilon_{\text{landsat},30} / \varepsilon_{\text{landsat},30 \rightarrow 1000}$

T _{Sentinel330}	Corrected image high spatial resolution
T _{Sentinel} 3000	Initial image of low spatial resolution
$T_{landsat,30}^{27/7/16}$	Initial value of high spatial resolution (LANDSAT)
$T_{landsat,30 \to 1000}^{27/7/16}$	Mean LST for an area corresponding to the area of Sentinel – 3 (LANDSAT)
E _{landsat,30}	Emissivity for an image of high spatial resolution (LANDSAT)
E _{landsat,} 30→1000	Mean emissivity for an area corresponding to the area of Sentinel 3

Courtesy. National Observatory of Athens

ΕΦΑΡΜΟΓΕΣ

Link LST to air temperature

Important to simulate energy fluxes. But be careful: local applicability

Source: Agathangelidis and Cartalis, 2016

Information from Sentinel-3A's radiometer, which measures radiation emitted from Earth's surface, reveal how the temperature of Earth's land changes between July and November 2016. Measurements are in Kelvin.

Land Surface Temperature from Sentinel-3

Land surface temperature dynamics

ΤΑΣΕΙΣ ΣΤΗΝ ΕΠΙΦΑΝΕΙΑΚΗ ΘΕΡΜΟΚΡΑΣΙΑ ΕΔΑΦΟΥΣ

Support of Urban Resilience and Climate Adaptability Plans (Land surface emissivity (left) and Land Surface Temperature (right)

Long term trends in LST for land surface dynamics

CORINE LAND COVER

Extraction of ε and change of ε, depending on land cover

Area	Δε	E
Urban	-0.007	0.97
Semi-urban	-0.003	0.98
Rural	0	0.989

SPLIT WINDOW ALGORITHM

$$T = 0.51 + T_4 + (T_4 + T_5) + 0.58(T_4 - T_5)^2 + a(1 - \varepsilon) - b\Delta\varepsilon$$

 T_4 = brightness temperature channel 4 T_5 = brightness temperature channel 5 ϵ = mean spectral emissivity for channels 4 and 5

Center of Athens

Center of Athens

Mean value	325.763 K
Increase	10 К

Landscape change – from natural to built

Airport since 2001. Previously agricultural/rural areas

Landscape change - from natural to built

Mean value	328.320 K
Trend	2.1 %
Increase	6.8 K

Mountainous area

2006

- □ Forested from 1990 to 2007
- Devastating fire July 2007
- □ Reforestation > 2007

Mountainous area

Nature reserve (Natura 2000 network)

2006

□ Forested area throughout the study period

Nature reserve (Natura 2000 network)

Η σημασία της χωρικής διακριτικής ικανότητας (και του συνδυασμού φασματικών περιοχών)

CLASSIFICATION LANDSAT - 8 IMAGE

Υπόμνημα

Classification Landsat 8

Source for Slides 71-79, Remote Sensing and Image Processing Unit ,Univ. of Athens, 2017 (G. Giannakogiorgos)

CLASSIFICATION SENTINEL -2 IMAGE

Υπόμνημα

Classification Sentinel 2

ACCURACY ASSESSMENT

Accuracy = (sum of elements of principal diagonal / total number)

Landsat - 8 68.73%

Sentinel -2 73.82%

Landsat 8

Sentinel 2

NON HOMOGENEOUS AREAS

Υπόμνημα

Classification non homogeneous Sentinel 2

- Urban
- Kallimarmaro
- Roads
- Columns of the Temple of Olympian Zeus
- Vegetation

Συντελεστής εκπομπής με βάση το δορυφόρο LANDSAT -8 (αριστερά) και το δορυφόρο SENTINEL -2 (δεξιά) και την κάλυψη γης

Landsat 8

Sentinel 2

LSE: NON HOMOGENEOUS AREAS

Υπόμνημα

LSE non homogeneous Sentinel 2

	0.920
	0.924
	0.928
	0.933
	0.937
	0.942
	0.946
	0.951
	0.955
	0.959
	0.964
	0.968
	0.973
ä	0.977
	0.982

Επιφανειακή θερμοκρασία εδάφους από LANDSAT – 8 (αριστερά) και SENTINEL – 2 (δεξιά)

with land cover from Landsat 8

with land cover from Sentinel 2

LST: NON HOMOGENEOUS AREAS

Υπόμνημα

LST non homogeneous Landsat 8

Υπόμνημα

LST non homogeneous Sentinel 2

313.07

COMPARISON OF AIR TEMPERATURE AS EXTRACTED FROM LST

(Ta = 1.2104Ts - 17.676)

(Stathopoulou and Cartalis, 2005)

STATIONS	T _{air data} (C)	T _{air Sentinel} (C)	T _{airdata} -T _{Sent} C)	T _{air Landsat} (C)	T _{airdata} -T _{Landsat} (C)
1	25,3	24,6	0,7	26,1	-0,8
2	24,4	24,6	-0,2	24,7	-0,3
3	25	24,5	0,5	24,4	0,6
4	25,7	25,2	0,5	24,6	1,1
5	25	24,6	0,4	26,5	-1,5
6	22,7	21,2	1,5	19,9	2,8
7	24,4	24,7	-0,3	25,4	-1
8	24,3	24,4	-0,1	25,4	-1,1
9	24,9	23,9	1	23,9	1
10	25,2	24,8	0,4	24,5	0,7
11	23,8	23,5	0,3	25,2	-1,4
12	24,2	25,1	-0,9	25,6	-1,4