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Chapter 3

The Equation of Radiative Transfer.

3.1 Absorption only: Beer’s Law.

I!. _{! +dI,
& s+ds

Figure 3.1: Absorption of radiation.

!
Suppose that we have EM radiationof specific intensity I, incident on a
thin slab, thickness ds, of material. Experimentally it can be shown that
the change in specific intensity dI, is proportional to:

1. The amount of absorber in the path p,ds where p, is the absorber
density.

2. The intensity of the incident radiation I,

We get
dl, = —k,1,p.ds

Here k, is tl;e constant of proportionality, known as the absorption co-
efficient. It is often a very rapidly varying function of frequency.

16
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Question: Why do we have a negative sign in the equation above?

@:a d*rﬁwﬂ;w ;‘,;'AO. M-Jurl ?u.m—j.kh.-\. "’U-Ca.b\ %cm:-:-.
Yool “dare » o diercacs o oy b aaiuuhj,

If we integrate the equation from distance s = 0 to 5§ = S we have

s dl,
#=0 Iy

In (!IVT((:(SJL))-) = - f_ :D kypads

ol /.:o Frtuds

Integrating

This is usually written

1(S) = 1,(0) exp (- [ k.,p.ds) (3.1)
Th quastity
dpess (- 7, bupads)

is called the transmittance and is the fraction of the incident energy that
is transmitted through the medium.

In general we cannot simplify equation 3.1 because k, will not be con-
stant along the path taken by the radiation. For example, in the atmosphere
k. is a fanction of pressure and temperature and the integral can be eval-
uated only with some difficulty. However in the case in which the path is
homogeneous the integral can easily be evaluated because k, is constant

and may be taken outside the integral, along with p,. Thus equation 3.1
reduces to:

I,(S) = 1,(0) exp(—k,p,S) (3.2)
This result is known as Beer’s Law or Bouguer’s Law.
It can be shown (see problem set) that transmittances are multiplicative,
i.e. the transmittance through two layers is equal to the product of the
transmittances through the two separate layers. This does not depend on
the layers being identical or require either of them to be homogeneous.
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WARNING. This result holds for monochromatic radiation (single fre-

quency) and does NOT usually hold for the mean transmittance over a
finite frequency interval.

We introduce the term optical path u, defined by
du = p,ds

The transmittance may now be written as exp(— [ k,du). The units of k,
will be the inverse of the units used to describe u, i.e. cm? g~! or m? kg,
In practice we often use other units to describe the absorber amount u.
One commonly used unit is (atm. cm.) and another is molecules cm™? (or
more simply cm™?), which corresponds to P, being given as number density
in units of cm™. In this case the absorption coefficient has units cm? and
is refered to as a cross section.

As another example, consider a homogeneous path, e.g. ocean water,
the amount of absorber is proportional to the distance, and the transmit-
tance can be expressed as exp(—K,S) and K, has the units of inverse
length, em™? or m™!.

The transmittance may be written in yet another form as

ezp(—7)

where 7 is the optical thickness or optical depth defined through the
differential relationship

dr = k,du = k, p,ds

When the optical depth is unity the incident radiation has been reduced to
1/e of its original intensity.
The calculation of transmittance in an inhomogeneous atmosphere is a

major problem in applying radiative transfer theory to real situations and
will be taken up in some detail in Chapter 4.

3.2 The Radiative Transfer Equation with a
Source Term.

We now generalize the radiative transfer equation by adding a source term:

dl, = —k,I,p.ds + €,p,ds (3.3)
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The term ¢, is the emission coefficient. Two sources which contribute
to the emission coefficient will be important to us:

1. Thermal emission.

2. Scattering into the path of the radiation from a different direction.

We also generalize the concept of k,, which now includes the the effect of

scattering radiation out of the path of 1., as well as absorption. We often

refer to k, as an extinction coefficient under these circumstances.
Dividing equation 3.3 by k,p,ds we get

dI,
Fopuds ~ v —elfk) (3.4)

We define the source function J, by

gy = i
Kirchoff ’s Law, related to the earlier version, states that in local ther-
modynamic equilibrium (LTE) the source function for emission is given
by the Planck black-body function B(v,T). In cases in which scattering is
an important factor the source function is usually more difficult to deter-
mine and will be considered later in the course.

WARNING. The fact that the source function is the black-body func-
tion does not mean that the atmosphere looks like a black-body. This will
become clear when we integrate the equation of radiative transfer.

Equation 3.4 now becomes:

dl,
kypads

= _'(Iv el Jy) (3.5)
This is a differential equation of the form:

v+ f(z)y = g(z)
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and can be solved by the use of an integrating factor:

exp (Feodx)
giving:

oy ( g‘&x\dX) l:)’ + £ L%P (f(&)aJ:) '-a T Q00 vy (.(&*(d.q>

or

g,( ‘sur-(f.fmdxw = 90) o ( (£osrde )

In equation 3.5 we have the following:

= v=7, f@) =4k 0, 9(z) = L, ¢ 1
Substituting in equation 3.5 '

d L r}
= (I.,.exp ( fo k,p,ds)) = k,paJ, exp ( /(; k,p.ds)

Integrating along the path from s=0 to S we obtain

I

S s A
T, (8) 2 (§ Rumeda) - T, (0) - S;J’ﬂbfo T v (§hupedo)d,

Now divide both sides by exp ( I k.,p,.ds) to get:

1,(S) = 1,(0) exp (~ fo F kvp.ds) + A * bupad, exp (— j i k.,p.ds) ds (3.6)

This equation is not quite so complicated as it seems at first if we
examine it term by term. '
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1,(0) I,(S)
i) set+ds S

Figure 3.2: Path taken by radiation

The first term on the right side is exactly the same as we got in the
derivation of Beer’s Law, i.e. the amount of the incident radiation which
passes through the medium to emerge out the other side. It is the incident

specific intensity multiplied by the transmittance all the way through the
medium.
The second term involves an integral. Now

kvpaJ,ds = €,pds

which is the specific intensity of the radiation emitted by the element ds.

Note also that
s
€exp (-' /‘ k,p.dS)

is the transmittance along the path from the point s to S. Thus

S
kypeJ,ds €xp (" j kvpads)

represents the specific intensity of radiation emited by the element ds which

reaches the boundary S. The integration sums the contributions of all
elements ds from s =0 to S.

Equation 3.6 may also be written in terms of the optical thickness 7.
We defined

dr =k, p,ds = k,du
Integrating from s = 0 to s

A )
gdt = él'lvf’. da

Since 70 = 0 we may write this as

Ty = f' k,p.ds
0
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Equation 3.6 becomes

L(S) = LOexp(-1s) + [“ expl~(rs - ))ar  (3)

The integral form of the equation of radiative transfer is most commonly
written in this form.

Example.

Consider an isothermal atmosphere temperature T, bounded below by a
black-body surface whose temperature is also T,. Find the specific intensity
of long-wave radiation directed upward at any point in the atmosphere.
What is the long-wave radiative flux at top of the atmosphere? Is the
atmosphere being heated or cooled by long-wave radiation?

This an extdrmely important example, since many similar problems
may be solved using the same techniques, including those assigned to you
in problem sets.

/1,(8)

/' 1,(0)
Figure 3.3: Upward directed radiation.

Consider the point illustrated in the diagram and use equation 3.7 to
find the specific intensity I,(S).
Since the surface is a black-body at temperature T}, we have

I,(O) = B(P, TD)

[
S

We will assume that we are dealing with a case in which scattering is not ~¢'-

important, so that J, = B(v,Tp).
Equation 3.7 becomes:

i r
L(S)= 80y, 7)) oxp (- Ts) + { “0ia, ) enp (- xs-0) g

Lo
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Now B(v, Ty) is independent of position along the path and can be taken
outside the integral, giving

-
L(S)= 8v,T)e *+8O,T) ‘(;Cswr (1-1) dt
- T
= B(v,7,)e 'S + By,T.) ayn (T-Ty) ]6 ¥
RV,T)e s + BC,T) (-2 'ES)

R,T,)

We have shown that for upward directed radiation the specific intensity
remains the same at all points in the atmosphere and is equal to the Planck
black-body function.

At the top of the atmosphere the downward component of long-wave
flux is assumed to be zero. (This is not strictly true but is a very, very
good appraoximation.) So the net flux is just the upward component oTy.

At the surface the upward component of flux is still 6T4. The downward
component is no longer zero because of the emission by the atmosphere.
Net flux F = upward component F 1 - downward component F |

F=F1t-F |=0T{-F |<oT}

So the net flux F is larger at the top of the atmosphere than it is at the
surface, i.e. AF/Az > 0. Hence the atmosphere is being cooled by long-
wave radiative processes.

This result shows that the atmosphere as a whole is being cooled by the
long-wave radiative transfer of energy. It is in fact easy to show that every
point in this atmosphere is being cooled. To do this we will show that at

every point dF /dz > 0. We will start by finding the intensity of downward
directed radiation.

- -7 - =
LiB)= 0.8 To ¢l (-« T8)r BLgi(i-a )

Now 7, increases as we go down in the atmosphere. So 1—exp(—7,) increases
and hence I, increases as we go down. Integrating over all angles and
frequencies we see that F | increases as we go down. So at all levels

F=F1-F|=0oT}-F|
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N..(0)

JAS)

Figure 3.4: Downward directed radiation.
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increases as we go up in our atmosphere, i.e dF/dz > 0 at all levels, and

so the atmosphere is cooling at every level.

Notice that in this example F { was independent of altitude and of atmo-
spheric transmittance. F | however depended on both of these parameters.
In the case of an atmosphere which is not isothermal, or is isothermal with
an underlying surface which is at a different temperature, then F 1 will

also depend on these two parameters.

Example: Determine if the surface of the earth in the Previous example

is being heated or cooled by long-wave radiation.

This type of problem is solved by considering the difference between the

radiant energy being emited and that being absorbed by the surface.

Flux of energy being emited = ¢ o 1;"‘ e s
Flux of energy being absorbed = o FY = ¢V

Now for downward directed radiation
IAS)= B 7y [res =d

£ B T,)

Integrating over angle and frequency we have the inequality:

F |<oT!

So more énergy is being emited than absorbed, and hence the surface js

being cooled by long-wave radiation.
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The two problems that we have worked are artificial in the sense that we
don't encounter isothermal atmospheres in nature. The reason for making
the isothermal assumption was to simplify the evaluation of the integrals to
determine the specific intensities. The processes of determining the heating
and cooling of the atmosphere and the underlying surface are the same in
more realistic cases, but the calculation of specific intensities and fluxes are
much more complicated, requiring the use of a computer. However the
results that we have obtained are qualitatively the same: the surface is just
about always being cooled by long-wave radiation and most parts of the
atmosphere are also being cooled.

The major exception to the latter is the very coldest regions of the
atmosphere, e.g. the mesopause.

3.3 The Transfer Equation in a Plane Par-
allel Atmosphere. " -

The transfer equation written in either of the forms 3.2:4 or 3.2:5 leads us
to some notation difficulties because the distance s which the beam travels
in the medium depends on the path taken and will vary with zenith angle
6. For atmospheric applications we would like to write it in terms of the
altitude z. We will assume that we have a plane parallel atmosphere (no
spherical effects) and that the zenith angle # remains constant over the
path taken by the photons (no refraction).

o)

/ ¥ ds=(-dz) /cosé”’
/ ds=dz/co0s@ 'Y =dz2/c0s6 N2

dz |6 )Y ds =dz/¥ -dz s = dz/B

Upward directed Downward directed
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For both upward and downward directed radiation we have

ds =dz[u where u = cosf

Define ”
= f kypadz

Physically 7, is the optical thickness for a vertical path from altitude z to the

top of the atmosphere. It does of course depend on frequency. The trans-

mittance from z to the top of the atmosphere is ezp(—7, /u). 1t is easy to

show that the transmittance between altitude 2, and z, is ezp(—(r; —73) /1)

a result that holds for both upward and downward directed radiation.
We now substitute in Equation 3.7 to get:

¥

Upward: 4 > 0

L(7) = L{rs) exp(~(ry = 7)/u+ [ () exp(ft — ) /)t

Downward: u <0

L(r) = LO) explr/u) + [ L expl~(t—1)/wdt/u  (3.5)

I,(7) is the specific intensity at optical depth 7. The subscript g refers to
the value at the ground. J, () is the source function at optical depth . We

have dropped the subscript z on 7, it being understood that 7 is a function
of z.

If we consider thermal radiation without scattering in an atmosphere
above a surface which is a black-body, equation 3.8 may be rewritten:

Upward: u > 0
Lr) = B(n,T) exp(~(r, = 1)/t [ B(v,T) exp(4 ~ ) /m)at
Downward: u <0
L(r) = [ B(v,T) exp(—(t - 1) /u)dt /u (3.9

We have also assumed that no long-wave radiation is incident on the top
of the atmosphere.
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We can also write F, and F in terms ofp
From equatzon 2.” 2 'we have

F,.= 21rjo I, cos 0 sin 0df

Now p = cosf and du = —sinfdf Changing the variable of integration

from 0 to u -

=1
F, = an STv/‘("d/U) s 2T1 eg}Jd/.(
) =

To obtain the net flux F we integrate over frequency

oo 1
F =
27 jv:O /” e Ipdudy (3.10)
For hemispheric fluxes the limits of integration of u should be changed to:

0 to 1 for upward directed radiation
-1 to 0 for downward directed radiation.

The evaluation of fluxes involves three separate integrations:
1. Along the path of the radiation (Equation 3.9)
2. Over all zenith angles (Equation 3.10)
3. Over all frequencies (Equation 3.10)

This would seem to be a relatively simple and easy task, but in fact it is
a major stumbling block in the quantitative solution of radiative transfer
problems. The difficulty lies in the nature of the transmittance functions,
which are usually very rapidly varying functions of frequency. Further-
more, the absorption coefficient is a function of temperature and often
pressure also, making the integration along the path of the radiation a
complicated task, particularly in an inhomogeneous atmosphere. The na-
ture of the transmittance functions and ways of simplifying the integrations
is the subject of the next chapter.



