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4.2 Line Shapes

In the theoretical development we showed that spectral absorption occured
at discrete frequencies. In practice we observe a distribution of absorption
about a central frequency. We will consider two main mechanisms which
are important for pure rotational and vibrational-rotational bands.

4.2.1 Collision or Pressure Broadening
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The energies of molecules are slightly disturbed during collisions, en-
abling the molecule to absorb (emit) at frequencies close to the unpex‘tur_l:_e_:;d
frequency. This gives rise to a Lorentz line shape for which the absorption
coefficient k, is given by the expression
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where a; is the Lorentz half-width, i.e half the width at half the maximum
of k,, and S is the line intensity, or line strength.
Consider the total area under the curve:
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Question: Why did we integrate from —oo to +00?
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The line intensity S is not constant but varies with temperature in a
complicated manner. Many line intensities increase with increasing tem-
perature corresponding to an increase in the number of molecules in ex-
cited energy states, but some with small lower state energies may decrease
slightly in intensity as the gas becomes warmer.

ay is directly proportional to pressure and also varies with temperature
approximately proportional to J(U the pressure decreases the lines
become narrower and the maximum value of k, becomes greater. If we
took the limit as the pressure tended to zero we would get a delta function.
In fact this limit is never reached as other broadening mechanisms take
over.

Typical values of ay at STP are 0.05 cem~! to 0.1 cm™!. Pressure broad-
ening is the most important mechanism throughout the troposphere and

sometimes well above the tropopause. At higher altitudes the low pressure
makes it less important.

4.2.2 Doppler Broadening

The thermal motion of the molecules gives a Doppler shift in the frequency
of absorption (emission) of radiation. For example the emission from a
molecule moving towards an observer is shifted upwards in frequency, down-
wards for a molecule moving away. The result is a distribution of frequencies
about the central frequency vg, with the absorption coefficient given by:
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Unlike the collisional broadening we have an analytic expression for the
Doppler half-width ep: '
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Here T is the temperature in Kelvin and m is the mass of the molecule. It
is easy to verify that we again have
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In the troposphere we usually have a; 3> ap, but as we go up in the
atmosphere ay decreases and we eventually get to an altitude at which ap >
ay. When the two half-widths are comparable in size we must consider the
two broadening mechanisms simultaneously and the absorption coefficient
is given by the convolution of the two line shapes, an integral that can
be evaluated on a computer. The resulting line shape is called the Voigt
profile.

4.3 Mean Transmittances for a Homogeneous
Path

Our eventual aim is to be able to calculate fluxes of radiant energy, which,
we recall, involves integration of the specific intensity over frequency. In
this section we will consider the calculation of transmittance over a finite
frequency interval for a homogeneous path. Using a few hand-waving argu-
ments we will later show how to extend this to non-homogeneous paths by
defining an “equivalent” homogeneous path, i.e. we will be able to extend
our methods to to an atmosphere in which the temperature, pressure and
absorber concentration vary along the path of the radiation.

4.3.1 Isolated Lorentz line
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The simplest case that we can consider is that of an isolated Lorentz
line. The transmittance is exp(—k,u) Fo
The absorbtance = 1 - transmittance = 1 — exp(—k,u)
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The shaded area under the curve is defined to be the equivalent width
A of the spectral absorption line
+oo
A= f (1 — exp(—kyu))dv
For the Lorentz profile this can be shown to be

A = 2may zexp(—z)|Io(z) + L(z))
where z = Su/(27ay) is the optical thickness one half-width o, away from
the line center.

The expression z exp(—z)[lo(z) + I1(z)] is called the Ladenberg-Reiche
function. I and I, are Bessel functions of imaginary argument whose values
are given in tables or can be evaluated in computer routines. In one of your

problem sets you will use a computer program to calculate the values that
you need.

There are two important limiting cases in which the expression for the
equivalent width simplifies to more manageable forms:

Weak line approximation
If k,u is small for all v, even at the line center, we have
1 — exp(—k,u) = kyu
and we can integrate the expression for the equivalent width A
+oo
a= [ kudv=5u
-0

The error in A will be less than 10% for z < 0.2.

The same argument holds for any line shape, and we get A = Su,
although the error estimate given above will not be the same for non-
Lorentz lines.

Strong line approximation

For a very strong line the center becomes opaque and the absorption de-
pends only on the shape in the wings of the line. It can be shown that for

large z
A= 2\}5110:;,
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The error is less than 10% for z > 1.63. The region of validity is refered
to as the square root region. We must have 4 times the absorber amount
to double the absorption. Note that the result is valid only for Lorentz
lines, not for Doppler or other line shapes. However it can often be used
for the mixed Doppler-Lorentz line shape since the absorption in the wings
is determined largely by the Lorentz component.

Set of isolated Lorentz lines

Consider a set of isolated Lorentz lines of equal intensity S and hali-
width e, uniformly spaced frequency d apart.
The average transmittance T is: o g:é‘ﬁb A
(B
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For weak lines this becomes

T=1-(Su/d)

T =1-(2/d)\/Sua,

4.3.2 The Elsasser band model

So far we have considered isolated lines, i.e. lines for which the contribution
of neighboring lines is so small that it can be neglected. Under typical
conditions we find that individual lines overlap and at most frequencies the
contributions of several lines are important, in which case we must sum
the absorption coefficients of all the individual lines. We can generalize the

For strong lines
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result that we have just obtained above, to find the average transmittance
of equally spaced lines of equal intensity and equal Lorentz half-width with
the non-overlapping restriction removed.

Suppose that the center of one line is at frequency vp. The lines will
be centered at vo +nd, n =0,%+1,%2,.... The absorption coefficient at
frequency v is -

k, = Z f’ 3 —
= mal + (v — v — nd)?
To find the mean transmittance of the band we integrate over any frequency
interval of length d, since the transmittance is periodic with period d.

— 1 fvotd
T = -[ exp(—k,u)dv
d Juo

This can be shown to reduce to (believe it or not!)

T=if’ exp( —ﬁIE-lnhﬁ )dz

27 J-x cosh f — cosz

where
2may

B=—
This messy integral has been evaluated numerically and tabulated for se-
lected values of the parameters z and B.

The Elsasser or regular band model is a reasonably good approximation
for some bands of diatomic molecules and linear triatomic molecules. It
can be extended to line shapes other than the Lorentz, in which case the
expression for T is different and usually more complicated, but can still be
evaluated numerically.

4.3.3 The Random or Statistical model

In this model the lines are not equally spaced but are distributed at random

within a spectral interval. The lines may be of equal intensity or, more

generally, given by a probability function P(S) such that the probability of

finding a line with intensity in the interval (5,5 + dS) is P(S)dS. If the

lines are equally intense the probability function P(S) is a delta function.
For the statistical model the average transmittance T is given by

T=(1-4/D)"
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where n is the number of lines in the spectral interval
D is the width of the spectral interval
A= [* A(S)P(S)dS
and A(S) is the equivalent width of a line of intensity S.

We can interpret A as the “mean” equivalent width of the lines in the
interval, weighted by their intensity probability. If all of the lines have
equal intensity S then A = A(S), ie. A is just the equivalent width of
a single line, and the mean transmittance T is the product of the average
transmittances of each of the lines in the interval.

When n becomes large the expression for T tends to an exponential
expression:

T = (1 - A/D)" — exp(—n4/D) = exp(-4/d)

where d = D/n is the average spacing between the lines.

A frequently used probability distribution function is an exponential
form 1 S
P(S) = -SECIP(—S—O)
giving
T (1 +220)12
where
Ip = Sou/(21ra1,)

This corresponds to a situation in which there are very few strong lines
but many weak lines, often observed with such gases as water vapor. The
average transmittance for Lorentz lines is then

T B Bzo/n "
= (1 (1+20:co)1/2)

—  exp ————ﬂifi-— for large n
(1 + 230) 1/2

Other probability functions can be, and have been, used. We have to find
one that fits reasonably well our observed distribution of spectral lines and
which yields an expression for A that can be integrated easily. Values for A
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The transmittance T, at frequency v is

T, = exp (* [ k,du)
= exp (— [ ﬁdu)

Now if the temperature is constant we can write a; = oop, where ao is
constant, and we get

i.e., the transmittance is the same as that of a homogeneous path with
pressure P and optical path ¥, so that the result is exact in the strong line
limit.

The treatment for temperature variations along the path is not simple
since both the line intensity and the half-widths are temperature dependent,
the former in a complicated manner. The easiest recourse is to define the
equivalent temperature

“T:([Td::)/(j@):%fmu

Other more complicated expressions are sometimes used.

The reduction to an equivalent homogeneous path with pressure p, tem-
perature T and optical path ¥ is known as the Curtis-Godson Approx-
imation. It introduces some error into the transmittance calculations,
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may be obtained from tables, or the weak and strong line approximations
may be used if appropriate.

The random model works best for non-linear molecules like ozone and
water vapor. The spectral intervals chosen must be made large enough so
that the distribution of line intensities obeys the probability distribution for
the intensities and the lines are spectrally distributed in a random fashion.

The regular (Elsasser) and random models are in some senses opposite
extremes from complete orderliness to absolute chaos. There are many
models that attempt to bridge this gap but none will be considered in
these notes.

CAUTION. Mean transmittances cannot be multiplied in the same
way that monochromatic transmittances can. For example, consider the
case in which the mean transmittance is 0.5, illustrated on below. If the
radiation passes through second exactly similar path, the transmittance
for the two paths is exactly the same and the mean transmittance is still
0.5. If the radiation were passed a path which was similar except that the
frequency was shifted up or down by d/2, then the combined paths would
absorb all the radiation and the mean transmittance would be 0.0. The
result from multiplying mean transmittances is 0.25. In a real atmosphere
the conditions are more like the first case considered.

T,
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4.4 Extension to non-homogeneous paths

The results obtained for homogeneous paths are comparatively simple, but
the mathematics becomes much more complicated if we allow the pressure
and temperature to vary along the path. For this reason we usually attempt
to reduce the non-homogeneous case to an “equivalent” homogeneous path.
Consider first the special case in which temperature is constant, but pres-
sure is allowed to vary along the path. We define the equivalent optical
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path @ and equivalent pressure p by the expressions

T = fdu
J pdu
Jdu

Lo

The integrals are taken along the path of the radiation.

These expressions for ¥ and p were chosen to give exact results in two
limiting cases of absorption by isolated pressure broadened lines, the weak
line and strong line approximations. In practice we find that many atmo-
spheric absorption lines fit into one of the two categories and the approxi-
mation is not too bad in the intermediate region.

Consider first the weak line region. FaP ¢ L

{—e
A= [_:o (l —exp({u k,du)) dv

For the weak line we have [ k,du << 1 for all v and, as before, we expand
the exponential function in a series, dropping terms of order 2 or higher.

+oo
A=f /k,dudu

Changing the order of integration we get

'p':

A = :il ! ir‘,i‘]'u JU

i.e. the expression is exact for the weak line limit.
Now look at the strong line case. Here the absorption is complete near
the line center and it is only in the wings of the line that the line is partially
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generally a few percent or less, but enormously simplifies the computation.
This, or some other similar type of approximation, is nearly always used in
flux calculations and does not lead to serious errors in the evaluations of
fluxes and flux divergences. Uncertainties in spectral line parameters are
often a larger source of error than the Curtis-Godson approximation.

4.5 Angular Integration

Flux computations require integration over all angle or, with the assump-
tions that we made earlier, over zenith angle 8. For each angle the mass
path will be different and hence the transmittance will vary. To avoid
lengthy and repeated calculations a mean genith angle is often used. From
equation 2.2

= 2wfI,cosﬂsin8d8 =21rfI,pdu

The limits of integration depend on whether we are computing the upward
or downward hemispheric fluxes.

In this equation I, is a function of p, i.e. it depends on the zenith angle
0. What we would like to do is to replace the integral by something simpler,
to avoid angular integration. The mean value theorem tells us that there
exists some value T of u such that

2n [ 1 (wwdp = 27 [ L(R)udp = =1,(R)

We generally consider the upward and downward components of F, sep-
arately. When we do this we find that the “average” value p is not the
same under all conditions, but depends on the radiation field. However the
value 1/ = sec§ = 1.66 is generally a fairly good approximation to the
true value for upward directed radiation,while 1/m = sec§ = —1.66 works
well for the downward component. This approximation leads to errors of
a few percent, acceptable for many applications. Its use means that the
transmittance calculation does not have to be repeated for a large number
of zenith angles.

This approximation was designed to be used with long-wave radiation.
For solar radiation we do not have to go through the angular integration
since the solar radiation comes from only one angle, at least in the case in
which scattering is neglected.
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4.6 Line-by-line methods

The use of band models introduces errors because the models merely ap-
proximate the true spectrum since lines are never exactly evenly spaced
with equal intensities, nor are they ever randomly distributed, only ap-
proximately so. Q-branches are notorious, they are neither random nor
regular but have their own peculiar distribution. If highly accurate trans-
mittances are needed, band models are just not good enough. An example
of an application that requires high accuracy is the remote sounding of the
atmosphere to determine its temperature structure. A satellite measures
the specific intensity in selected spectral regions and the temperature of the
atmosphere may be deduced provided that the atmospheric transmittances
are known.

With a fast computer available a direct approach to determining av-
erage transmittances can be employed. The intergration of the transmit-
tance T, over frequency may be performed directly by numerical methods
(quadrature) using the Trapezoidal Rule, Simpson’s Rule or more compli-
cated schemes.

T= [T e wh

where T; is the transmittance at frequency v; within the interval of inte-
gration and the w; are weights of the quadrature formula. The individual
T; are found from the absorption coefficient at frequency v, which is the
sum of the absorption coefficients of each of the individual spectral lines.

Non-homogeneous paths may be treated as follows. The path followed
by the radiation may be approximated by a number of successive homo-
geneous layers. At frequency v; the transmittance is found by multiplying
the transmittances of each individual layer before averaging over frequency.
This largely removes the necessity of the Curtis-Godson approximation. In-
tegration over angle to give fluxes can also be done accurately, if fluxes are
required.

The numerical errors in the line-by-line method can be made as small as
we please. All we need is a fast computer of the sort commonly available in a
large installation today. At the present time it is extensively used for remote
soundings, but is too slow to be used directly in flux calculations. We
modestly add that the author of these notes was one of the first investigators
to use the line-by-line method for transmittances calculations.



