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Abstract
Presently, no single satellite provides cloud-free daily land surface temperature and normalized difference vegetation index 
at high spatial resolutions to assess heatwaves in cities. Heatwaves are ephemeral, and it is important to have data of 
adequate temporal and spatial resolution to study them. This research presents a two-part machine learning approach that 
yields seamless synthetic daily land surface temperature and normalized difference vegetation index at resolutions (500 and 
100 m) suitable for city-scale assessments. The first part involves creating a model to predict normalized difference vegeta-
tion index. The second predicts land surface temperature using a model created with the output of the first step and other 
features as predictors. The outputs were validated with Landsat products from two days. The predicted normalized differ-
ence vegetation index had a RMSE of 0.09 and 0.14 for the 500 m and 100 m products, respectively, when compared to the 
validation data. For the land surface temperature products, the RMSE was 4.28 and 4.33 for the 500 and 100 m products, 
respectively. Furthermore, a trend analysis reveals a good temporal correlation (500 m:0.66, and 100 m: 0.70) between the 
land surface temperature and surface-air temperature. The validations reveal that the generated cloud-free synthetic products 
are more suitable for intra-urban analysis because the models performed with a higher accuracy in built-up areas. Further 
investigations on how the models respond to changes in the predictors will provide useful for planners in making city-scale 
heat mitigation decisions.

Keywords Downscaling · Landsat 8 · Land surface temperature · MODIS · Normalized difference vegetation index · 
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Introduction

Remotely sensed land surface temperature (LST) and the 
normalized difference vegetation index (NDVI) are use-
ful parameters in studying the surface urban heat island 
(SUHI) phenomenon (Bechtel et al. 2012). The NDVI of 
a pixel informs on the quality of vegetation and its abun-
dance in the pixel. The vegetation abundance determines 
the LST of a pixel because it controls the process of 
evapotranspiration(Yuan and Bauer 2007). LST, which is 
the radiative “skin” temperature of the Earth's surface helps 
in understanding the relationship between surface materials 

and the surface thermal environment. Existing LST and 
NDVI data with high temporal resolution from the moderate 
resolution imaging spectroradiometer (MODIS) is available 
twice per day but have a poor spatial resolution of 1 km. This 
is inadequate for studying surface urban heat at neighbor-
hood scales. For SUHI and urban climate, it is important to 
have such data within the range of the block and neighbor-
hood scales (Bechtel et al. 2012; Oke et al. 2017). Further-
more, in studying the dynamics of surface urban heat during 
a heatwave period, it is essential to have seamless LST data 
for each day of the heatwave period, this can be challenging 
due to cloud contamination.

To address the spatial resolution limitations, thermal 
sharpening, statistical, and machine learning (ML) meth-
ods have been used to generate synthetic LST and NDVI 
at higher resolutions. Bechtel et al. (2012) and Yu et al. 
(2014) used linear regression to downscale coarse resolu-
tion LST to fine resolutions suitable for urban scale assess-
ment. Recently, several researchers employed various ML 
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algorithms to generate LST at high resolutions. ML algo-
rithms allow for modeling complex relationships between 
target variables and predictors—an advantage over statisti-
cal methods (Osborne and Alvares-Sanches 2019). Li et al. 
(2019) indicated that a machine learning approach provides 
an insight into the significance of predictors in estimat-
ing the LST of a pixel. This is a major advantage machine 
learning has over the traditional thermal sharpening algo-
rithms (Li et al. 2019). The random forest (RF) algorithm 
was used to downscale MODIS LST using surface reflec-
tance bands, elevation, solar incidence, and sky-view factor 
as predictors (Hutengs and Vohland 2016). RF and area-
to-point regression kriging was combined to downscale a 
90 m resolution Advanced Spaceborne Thermal Emission 
and Reflection Radiometer (ASTER) LST to 10 m using 
spectral indices from Sentinel-2 (Xu et al. 2020). Although 
these ML attempts were successful, they focused on down-
scaling products from a day or a few days to assess the per-
formance of their approach. It is important to extend the 
downscaling approach to generate daily products with which 
researchers and interested bodies can assess the spatial and 
temporal variability of the surface temperature during a 
heatwave. A downscaling approach of this nature addresses 
the temporal and spatial resolution limitations. Weng et al. 
(2014) addressed this by fusing MODIS and Landsat LST 
using a modification of the Spatial and Temporal Adaptive 
Reflectance Fusion Model (STARFM). In addition, most 
downscaling research limit the model assessments to per-
formance metrics like root mean squared error (RMSE) and 
mean absolute error (MAE). Furthermore, in most existing 
research, the response in ML model predictions due to a 
change in predictor values gets little to no attention. This 
shortcoming presents the models as black boxes.

To produce daily LST products, it is important to have 
predictors at the desired resolution and they must be avail-
able for each day. Whereas predictors like elevation and 
land use and land cover may not change daily within a lim-
ited period, other predictors like spectral indices and mete-
orological parameters tend to change. The NDVI is a good 
predictor of LST and this is corroborated by its utilization 
as a predictor in most studies (Pan et al. 2018; Bala et al. 
2020; Xu et al. 2020; Abdollahipour et al. 2021). Daily 
NDVI products are mostly at coarse spatial resolutions 
and are not suitable for generating daily LST at resolutions 
fit for urban scale analysis. Therefore, to use NDVI as a 
predictor of LST at such resolutions, it is imperative to 
first generate daily NDVI at those resolutions. Zhao et al. 
(2017) used daily NDVI products derived from remote 
sensing images to classify land use land cover (LULC) 
using several machine learning algorithms. The results of 
their work suggest there is a strong relationship between 
these variables. Therefore, this research assumes that with 
a ML algorithm, the NDVI of a grid cell is predictable 

given its LULC information. In this research, the fractions 
of the various LULCs present in a grid cell derived from 
high-resolution mapping databases are used instead of 
using one value of LULC per cell to predict a cell’s NDVI.

This research establishes an approach to generate syn-
thetic daily NDVI and LST at resolutions appropriate for 
urban scale studies using ML. The approach addresses 
the spatial and temporal limitations associated with these 
products in assessing SUHI and the spatial variability of 
surface temperatures in heatwaves. In addition, the syn-
thetic products generated are free of gaps that are present 
in actual products obtained from remote sensors because 
of cloud contamination. The possibility of using frac-
tions of LULCs in a grid cell and time as predictors of 
daily NDVI is explored. Furthermore, the usefulness of 
the resulting products as predictors in combination with 
other features to generate synthetic daily LST at the same 
resolutions was investigated. This research reveals how the 
models operate by identifying the importance of the pre-
dictors and how the models respond given specific values 
of the predictors. Finally, the performance of the models 
based on LULC was assessed in addition to commonly 
used metrics such as RMSE.

Study area

The research focuses on the city of Tallinn, the Estonian 
capital, and its neighboring settlements. Tallinn is located 
at 59.4370° N, 24.7536° E. The city of Tallinn is consid-
ered as the Central Urban District (CUD) and the entire 
area as the Tallinn Urban Agglomeration (TUA). To gen-
erate the synthetic products, the multi-level grids Statis-
tics Estonia (SE) used to map the country’s population 
was adopted. This informed the choice of the resolutions 
because it allows for the comparison of population dis-
tribution and LST to assess the impact of extreme heat. 
The 1 km grid is the basic mapping unit, additionally, the 
SE maps the CUD at 100 m grid cells and the TUA with 
a 500 m grid. The limits set for this research included 
settlements within the TUA and those that are within a 
5 km buffer. Half of Estonia’s population live in this area 
according to SE and therefore it is an important study area. 
Figure 1 shows the study area for this research and the land 
use and land cover distribution within the area.

According to the Estonian Weather Service (EWS), a 
period of three or more days with a maximum temperature 
of ≥ 27 °C or an average ≥ 20 °C is a dangerous Level 1 heat-
wave. The EWS classifies a period of three or more days 
with a maximum temperature of ≥ 30 °C or an average ≥ 25° 
C as a dangerous Level 2 heatwave. The summer period of 
2018 was the focus of this study because several heatwaves 
occurred in the study area (Buo et al. 2021).
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Materials and methods

Data and pre‑processing

The 1 km grid provided by Statistics Estonia was used as the 
framework for modeling the NDVI and LST. Additionally, 
500 m and 100 m grids were created for the study area which 
were used in predicting the LST and NDVI at the desired 
resolutions. The 1 km, 500 m, and 100 m resolution grids 
have 1374, 5262, and 125,301 cells, respectively. The Land 
Use and Land Cover (LULC) database of the Estonian Land 
Board was employed to compute the LULC fractions. The 
LULC database is highly detailed with 55 classes. For this 
research, the objects were reclassified into 15 broad classes 
(Fig. 1). In addition, the LULC database was categorized 
into surface types which comprised of pervious, impervious, 
building surfaces, and water. The LULC and surface type 
fractions were then determined for the three sets of grid cells 
by calculating the percentage of area that each LULC class 
or surface type covered in each of the cells following Geletič 
and Lehnert (2016) and Buo et al. (2021). A Digital Eleva-
tion Model (DEM) from the Estonian Land Board was used 
to sample the mean elevation per grid cell. In addition, the 
distance from each grid cell to the seacoast was calculated 
for all three grids. The hourly surface-air temperature (SAT) 
measured at the local weather station within the study period 
was obtained to validate the temporal trends of the predicted 
LST products.

The NDVI and LST products from Landsat 8 was uti-
lized in this research. The Landsat 8 images used in this 
study covered 19 days within the summer period of 2018 
after cloud-contaminated images were discarded. The days 
with images for each month and the total number of images 
per month are shown in Table 1. Landsat 8 data for 2 days 
(17-May and 2-June) were reserved to validate the mod-
els. The NDVI for the Landsat 8 images were calculated 
using Eq. 1 and the LST was calculated using the single-
channel algorithm in Eq. 2 (Cristóbal et al. 2018). Landsat 
8 has a resolution of 30 m; therefore, the LST and NDVI 
values were resampled to 1 km using spatial averaging. In 
addition, the Landsat 8 NDVI and LST images used for 
the validations were resampled to 500 m and 100 m using 
spatial averaging.

Fig. 1  Map of the study area showing LULC distribution. The insert map shows the location (red mark) of the study area relative to other parts 
of Europe

Table 1  Summary of Landsat 8 images used for summer 2018

The images covered rows: 018 and 019; paths: 187 and 188

Month Dates with images Number of 
days with 
images

May 8, 10,17, 24, 26 5
June 2, 9, 11, 18, 27 5
July 4, 11, 13, 20, 27, 29 6
August 5, 14, 21 3
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where ρnir is the surface reflectance in the near-infrared band, 
and �r is the surface reflectance in the red band.

where Lsen is at sensor radiance, � and � are parameters based 
on Planck’s functions. �1 , �2 , and �3 are atmospheric func-
tions which were calculated following Barsi et al. (2003) and 
� is the surface emissivity which was estimated using the 
NDVI threshold approach (Sobrino et al. 2008).

The MODIS NDVI (MODIS/006/MCD43A4_006_
NDVI) products were downloaded from Google Earth 
Engine (GEE). The NDVI images from MODIS are daily 
products covering the entire summer period (May–August) 
for the year 2018. Also, the mean daily composite MODIS 
LST (TERA-MOD11A1.006; AQUA-MYD11A1.006) were 
obtained from GEE. The MODIS LST for this research were 
limited to only daytime products. The computational capa-
bilities of the GEE platform were harnessed to compute the 
mean daily MODIS LST composite representing the mean 
surface temperature. Furthermore, combining both products 
allowed the reduction of missing data. A summary of all data 

(1)NDVI =

(

ρnir − �r
)

(�nir + �r)

(2)LST = �

[

1

�

(

�1Lsen + �2

)

+ �3

]

+ �

used and processing in this research is provided in Table 2. 
The native resolution of the MODIS products is 1 km.

Modeling

The approach adopted for this research is in two parts 
(Fig. 2a), in each, the data is fitted to an algorithm to create 
a model. The first part involved creating a model to predict 
NDVI at the desired resolutions. The second dealt with creat-
ing a model that takes the predicted NDVI and other features 
as predictors to determine the LST at the desired resolutions. 
The NDVI and LST modeling were executed using the sche-
matic in Fig. 2b. The process begins with using an algorithm 
to model the relationship between the target feature and the 
predictors at a coarse resolution (Fig. 2b). With an estab-
lished model in place, the target feature was predicted at a 
fine resolution using the predictors at the same resolution. 
The underpinning assumption is that relationships between 
the target and the predictors are similar both at coarse and 
high resolution (Bechtel et al. 2012). The main algorithm 
used at both stages was Random Forest (RF), which uses 
an ensemble of decision trees to make predictions (Breiman 
2001). In RF, the final prediction is made either by a majority 
vote for classification problems or averaging all predictions 
in regression problems (Moisen 2008; Shalev-Shwartz and 

Table 2  Summary of datasets 
used

The surface-air temperature station is located on 59.3981 N and 24.6029 E

Dataset Resolution Processing

Landsat 8 NDVI 30 m Resampled to 1000 m, 500 m, and 100 m
MODIS NDVI 1000 m Used as a target in MODIS-NDVI and a predictor in the LST model
Landsat 8 LST
MODIS LST

30 m
1000 m

Resampled to 500 m and 100 m
Target feature in LST models

DEM
Surface-air temperature
(Tallinn weather station)

25 m
Hourly

Resampled to 1000 m, 500 m, and 100 m
Mean daily temperature for daytime MODIS overpass window 

(10:00 am−2:00 pm)

Fig. 2  a Schematic of the 
adopted two-step approach to 
generate synthetic products. b 
General workflow adopted for 
modeling at each step of the 
approach in (a)
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Ben-David 2013). The partial dependence plots were utilized 
to identify what the models would predict given specific val-
ues of the predictors. The partial dependence plot is a model 
agnostic method that shows a predictor and the average pre-
dicted outcome in the form of curves (Molnar 2019).

Predicting NDVI

The detailed approach adopted in creating the NDVI models 
and predicting the NDVI at the desired resolutions is shown 
in Fig. 3a. The NDVI of a cell is expressed as a function of 
the LULC fractions and the Day of the Year (DOY) (Eq. 3).

where NDVIi is the NDVI of cell i , ∝ LULCi represents the 
fractions (shares in percentages) of LULCs present in cell 
i and DOY is the Day-of-the-year.

A data matrix was created from the 1 km grid in which 
each grid cell (instance) had 15 columns for the fractions of 
the LULC, DOY, and MODIS NDVI. This data matrix was 
replicated by substituting the MODIS NDVI and DOY for each 
grid cell with the resampled Landsat 8 NDVI for each grid cell 
and the corresponding DOY of their imaging. The preliminary 
analysis focused on how NDVI from both satellite missions cor-
related by performing a correlation analysis at 1 km resolution.

Following the outcome of the preliminary analysis, 
two models were created. One of the models predicted a 
MODIS-like NDVI and the other Landsat-8 NDVI. In each 
case, the datasets were split into two, 60% for training and 
40% for testing. Three baseline models were run using linear 
regression, ridge regression, and RF without tuning hyper-
parameters. From the assessment of all the baseline models, 
the RF model was found to outperform the rest; therefore, 
the main models were created using RF.

(3)NDVIi = f
(

∝ LULCi, DOY
)

In creating the models in each case, a grid search cross-
validation which is an iterative process on the training set to 
find the best combination of hyperparameters was performed 
(Siji George and Sumathi 2020). During this process, the 
training data set is divided into k-folds, for this research k 
was 5.

With the two well-performing models in place, the daily 
NDVI at 500 m and 100 m resolutions from the MODIS-
like and Landsat 8-like models were generated. The mean 
predicted NDVI from both models was calculated next. For 
the validations, the  R2 and RMSE between predictions and 
the validation Landsat 8 data were calculated. In addition, 
grid cells with underestimated and overestimated predictions 
and their predominant LULC were examined to assess the 
performance of the models for different LULC. If the dif-
ference between the predicted NDVI and the validation at a 
cell is ≥ + 0.3, it was classified as overestimated and under-
estimated if the difference is ≤ − 0.3.

Predicting LST

The approach used in modeling and predicting the LST 
at the desired resolutions in detail is shown in Fig. 3b. To 
model the LST, the MODIS LST was used as the target vari-
able. The instances for training the model were limited to 
MODIS LST pixels that had errors less than 3 °C based on 
the quality assurance data from the provider. This filtering 
process was done in GEE. The fractions of surface types for 
each grid cell (building; impervious; pervious; and water), 
NDVI, Day of the Year, and spatial predictors (X coordi-
nates, Y coordinates, elevation, and distance to coast) were 
used as the predictors. The LST of a grid cell is expressed 
as a function of the predictors in Eq. 4. The NDVI used here 
was the MODIS NDVI also at 1 km resolution like the LST.

Fig. 3  a Detailed approach to generate synthetic NDVI at desired 
resolutions. b Detailed approach to generate synthetic LST at desired 
resolutions. The NDVI used at the modeling stage is the MODIS 

NDVI also used in 3a. The predicted NDVIs at 500 m and 100 m are 
the mean predictions from 3a
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where, LSTi is the LST of cell i, NDVIi is the NDVI of cell 
i,∝ LSi represents the fractions (shares in percentages) of 
land surface types in celli , CCi are the centroid coordinates 
of celli , DCi is the distance to coast from celli,MEi, is the 
mean elevation in cell i, and DOY is the Day of the Year.

In creating the LST model, an approach like that employed in 
modeling the NDVI was adopted. The data was split into training 
(60%), and testing (40%). Baseline models were created using 
linear regression and RF with default hyperparameters. In this 
phase, RF stood out as well. Following this, a final model was 
created after hyperparameter tuning. With the LST model in 
place, the LST at the desired resolutions were generated using the 
predictors at those resolutions. The mean predicted NDVI from 
the previous section was used here. The predictions were vali-
dated by comparing the predicted LST with the Landsat 8 LST 
reserved for validation. Furthermore, the predominant LULC 
types in the grid cells in which the LST was over-or underes-
timated were identified using differences of + 3 °C and—3 °C 
as the thresholds respectively, following Malamiri et al. (2018). 
Furthermore, the relationships between the temporal trends of the 
predicted products and the trend from SAT measurements made 
at the local weather station were evaluated.

Results and discussion

Results

NDVI models

The assessment of the relationship between MODIS NDVI 
and Landsat 8 NDVI shows the existence of a higher cor-
relation  (R2 = 0.78; RMSE = 0.07). In the baseline modeling, 
it was noticed that the same features (built-up commercial, 
agricultural facilities, grasslands) were not important (had a 
feature importance of 0) in determining the NDVI of a cell 
by both models and hence they were excluded in the final 
models. The importance of the predictors for both models 
is shown in Table 3. The importance of each predictor can 
be any value between 0 and 1. The sum of all the feature 
importance values is 1. The fraction of forest per grid cell 
is the most important predictor in determining the NDVI of 
a grid cell followed by water for the MODIS NDVI model, 
while for the Landsat 8 model, it is water followed by forest 
(Table 3). Also, the DOY is significantly important in both 
models (Table 3). The other features are less than 0.1 for 
both models and in some cases have close values. However, 
in the MODIS model, croplands, reeds, and bushes were of 
higher importance compared to what they were in the Land-
sat 8 model. The feature importance reveals which predictors 
the models mostly rely on to make a split at the nodes of the 

(4)LSTi = f (NDVIi,∝ LSi, CCi, DCi,MEi,DOY)

decision trees. However, it does not provide information on 
what the models would predict given a specific predictor 
value. The partial dependence plots for the MODIS NDVI 
and Landsat 8 NDVI models are shown in Fig. 4a and b, 
respectively. From the figures, it is evident that both mod-
els seem to think along the same lines. The models predict 
lower NDVI as the fraction of water in a grid cell increases 
(Fig. 4a and b). Furthermore, as the fraction of reeds and 
bushes increases, both models predict higher NDVI. How-
ever, there are some notable differences. The MODIS model 
predictions are in the range of 0.4 and 0.8 irrespective of 
the predictor value. On the other hand, the Landsat 8 model 
seems to keep its predictions between about −0.25 and 0.75.

The models performed well both on their training and test 
data. From Table 3, the closeness of the metrics suggests neither 
of the two models overfits—a situation where the model per-
forms far better on the training data than the test (unseen) data.

LST model

The importance of the predictors and the performance of 
the LST model are highlighted in Table 4. The DOY stands 
out as the most important feature for the LST model, 

Table 3  Feature importance and performance summary for NDVI 
models

Features excluded from the final model were built-up commercial, 
agricultural facilities, and grasslands

Feature MODIS NDVI 
model

Landsat 
8 NDVI 
model

Water 0.156 0.413
Roads 0.081 0.058
Urban greenery 0.032 0.010
Other 0.036 0.021
Extraction sites 0.027 0.019
Open space-commercial use 0.028 0.035
Cropland 0.081 0.041
Reeds and bushes 0.075 0.019
Open space-mixed used 0.034 0.017
Forest 0.226 0.194
Wetlands 0.015 0.005
Built-up-mixed use 0.024 0.015
DOY 0.185 0.151
Performance metrics
Training size 80,795 4321
Test size 53,864 2882
RMSE on training data 0.01 0.03
RMSE on test data 0.02 0.05
R2 training data 0.99 0.97
R2 test data 0.99 0.89
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indicating the influence of time (Table 4). The NDVI of 
the cell came out as the next important feature for the 
model in estimating the LST of a cell. The spatial features, 
X coordinates, Y coordinates, elevation, and the distance 
to coast followed in that order. The shares of surface types 
were the least important features in predicting the LST of 
a cell according to the model. From the partial dependence 
plot in Fig. 5, it is noticeable that the model predicts lower 
temperatures as the fraction of water in the cell increases 
from zero percent until about 60%. The predicted LST 

does not go any lower even though the fraction of water 
increases. Looking at the behavior of the model concern-
ing the NDVI of a cell, it is evident that the model predicts 
the same LST for all negative NDVI values and positive 
values from 0 to + 0.5. The model predicts lower LST as 
the NDVI of a cell appreciates from + 0.5. The plots from 
spatial predictors give an idea of the variation in space 
while the DOY plot shows the temporal variations in LST.

Synthetic NDVI at 500 m and 100 m

The predictions from the MODIS and Landsat 8 NDVI mod-
els were similar. However, to get a single NDVI product, the 
mean of both predictions was used. The resampled Landsat 
8 NDVI at 500 m and 100 m for the validation days, the 
mean predicted NDVI from both models, and the difference 
between the (resampled) validation and predicted values are 
shown in Fig. 6a and b. Similar figures for the predicted 
NDVI from the MODIS model and Landsat 8 model are 
provided in the Supplementary materials (SI1 and SI2). The 
predicted NDVIs for distinctive water bodies (Fig. 1) are 
generally higher than the validation NDVI values (Fig. 6a 
and b). Therefore, for water bodies, the models overestimate 
the NDVI. From Fig. 6a and b, it can be noted that the differ-
ences are smaller at 500 m compared to 100 m. More than 
95% of the NDVI predictions (from both models) for the 
validation days had differences (Δ) that were greater than 
−0.3 or less than + 0.3 when compared to the NDVI values 
for the validation sets, as indicated in Table 5. The mean 
predicted products have more estimations within the range 
compared to the MODIS and Landsat 8 versions. The cor-
relations between the predicted values and validation values 

Fig. 4  a Partial dependence plots for MODIS NDVI model; b Partial dependence plots for Landsat 8 NDVI model. The horizontal axis for the 
LULC classes represents the possible percentages per grid cell based on the data

Table 4  Feature importance and performance summary for LST mod-
els

Feature LST model

Water 0.016
Building Surface 0.007
Impervious Surface 0.005
Pervious Surface 0.005
NDVI 0.064
X 0.061
Y 0.050
Elevation 0.022
Distance to coast 0.042
DOY 0.728
Performance metrics
Training size 2,006,836
Test size 1,337,892
RMSE on training data 0.90
RMSE on test data 1.32
R2 training data 0.96
R2 test data 0.91
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are shown in Table 6. The correlation is higher in the mean 
predicted product compared to the rest at 500 m. There was 
no improvement at the 100 m resolution.

Synthetic LST at 500 m and 100 m

The resampled Landsat 8 LST at 500 m and 100 m for 
the validation days, the predicted LST, and the difference 
between the (resampled) validation and prediction values 
are shown in Fig. 7a and 7b. From Fig. 7a and b, the predic-
tions are mostly higher than the validation values. This can 
be attributed to the difference in sensing times for MODIS 
and Landsat 8. However, there are evident similarities from 
Fig. 7a and b, especially in the CUD area when comparing 
the predictions to the validations. About 26% (500 m) and 
29% (100 m) of the predicted LST had a difference within 

the range of -3 °C and + 3 °C. The correlation and RMSE 
between the validation data and the predicted data were 
0.61(RMSE = 4.28) and 0.52 (RMSE = 4.33) at 500 m and 
100 m, respectively.

Assessment of synthetic NDVI and LST based 
on LULC

The mean predicted NDVI and LST product assessments 
considering predominant LULC types in a grid cell are 
shown in Fig. 8a and b. For NDVI, the overestimated or 
underestimated grid cells are dominated by water, crop-
land, and extraction sites. In the case of LST, it is the grid 
cells that have forest, cropland, reeds, and bushes as their 
predominant LULC. Interestingly, most of the predictions 
for built-up dominated cells are within range, therefore this 
approach produces promising results for urban areas.

Fig. 5  Partial dependence plots for LST model
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Fig. 6  a Resampled Landsat 8 NDVI, mean predicted NDVI, and dif-
ference map for 17–05-2018. b Resampled Landsat 8 NDVI, mean 
predicted NDVI, and difference map for 02–06-2018. The difference 

maps are the results of subtracting the resampled  NDVI from the 
mean predicted Landsat NDVI

Table 5  NDVI estimations 
within range

Number of validation grid 
cells

Estimations within range 
(−0.3 < Δ < 0.3)

500 m 100 m 500 m 100 m

MODIS model products 9772 245,402 9623 (98.4%) 235,779 (97.0%)
Landsat 8 model products 9772 245,402 9684 (99.1%) 236,745 (96.4%)
Mean predictions 9772 245,402 9706 (99.3%) 239,168 (97.4%)
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Trend analysis on predicted LST

The predicted LSTs at both resolutions have temporal trends 
identical to the one observed from the local weather station 
(Fig. 9). At the beginning of the study period, there is a sig-
nificant difference between the LST and the measured sur-
face-air temperature because of the high amount of sunshine, 

Table 6  Performance metrics of predicted NDVI against validations

R2 RMSE

500 m 100 m 500 m 100 m

MODIS model products 0.73 0.63 0.09 0.13
Landsat 8 model products 0.72 0.59 0.11 0.15
Mean predictions 0.76 0.63 0.09 0.14

Fig. 7  a Resampled Landsat 8 LST, mean predicted LST, and difference map for 17–05-2018. b Resampled Landsat 8 LST, mean predicted 
LST, and difference map for 02–06-2018. The difference maps are the results of subtracting the resampled LST from the predicted Landsat LST
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which is the case in the beginning and middle of summer. 
However, at the end, both parameters become close as the 
summer period comes to an end the number of cloudy days 
increase. Having close values for both parameters were not 
expected because the SAT measurements represent a point 
(shaded) in space whereas the predicted LST represents an 
area which contains the point. Furthermore, both parameters 

are well-known to be correlated despite the potential dis-
parities in absolute values (Good et al. 2017). The Pearson's 
coefficients of correlation between the SAT trend and the 
predicted LST trends are 0.68 (500 m) and 0.70 (100 m). 
Both trends from the predicted LST had p values < 0.005 
when compared with the SAT trend indicating significance.

Fig. 8  a Predominant LULC in overestimated and underestimated 
grid cells for mean NDVI products for all validation days. b Predomi-
nant LULC in overestimated and underestimated grid cells for LST 

products for all validation days. Overestimated NDVI (Δ ≥ +0.3); 
underestimated NDVI (Δ ≤ −0.3) Overestimated LST (Δ ≥  +3  °C); 
underestimated LST (Δ ≤ −3 °C)

Fig. 9  SAT and predicted LST 
trends
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Discussion

NDVI

The results show that the NDVI from Landsat 8 and MODIS 
are highly correlated. This suggests that for vegetation qual-
ity assessment at an urban scale, products from both sensors 
are useful. The findings in this research are further corrobo-
rated by the results in Ke et al.(2015) where NDVIs from 
the two sensors were compared for four days at different 
sites. However, for certain land cover types, the NDVI from 
both sensors may be the same or different depending on the 
wavelength ranges in their red and near-infrared bands. In 
addition, differences in the processing algorithms for atmos-
pheric corrections and computation of surface reflectance 
can introduce some differences in the NDVI (Ju et al. 2012; 
Ke et al. 2015). Other instrument-specific attributes like 
sensing time and viewing angle can introduce differences in 
the measurements (Gastellu-Etchegorry et al. 2012).

The validations (Table 5) indicate the correlation between 
the synthetic NDVI, and the validation data is like what was 
found at 1 km resolution. This demonstrates the ability of the 
models to downscale and the robustness of the RF algorithm 
(Li et al. 2019). Hence, the products from the models are 
satisfactory on their own. However, the mean of predictions 
from both models is considered a better product. Generating 
the mean of predictions reduces some biases in the NDVI 
from both sensors, which are inherent in the model predic-
tions. This is evident from the partial dependence plots. 
Furthermore, although the NDVI from different sensors are 
highly correlated, they have notable differences, as inter-
calibration studies reveal (Steven et al. 2003). The mean 
predictions have more estimations within range (Table 4), 
and the performance metrics in Table 5 suggest that they are 
as reliable as the outputs from both models.

In comparing the output of the NDVI models and the 
mean predicted NDVI products with the validation sets 
based on predominant LULC per grid cell, the MODIS 
model overestimated the NDVI in grid cells predominantly 
covered by water (SI3). The reason for this overestimation 
is noticeable in Fig. 4a where it is evident that the MODIS 
model does not predict below + 0.4, however, water bodies 
typically have lower NDVI values. The Landsat-8 model 
overestimated and underestimated in grid cells predomi-
nantly covered by water, cropland, extraction sites, and reeds 
and bushes (SI3). However, in the mean predictions, there is 
a significant reduction in the count of over and underestima-
tions for these LULC types, signifying the advantage of the 
mean product (Fig. 6a and b). The predominant LULC in the 
over and underestimated grid cells at 500 m were the same 
at the 100 m resolution. Particularly, the count of predomi-
nantly cropland grid cells that were over or underestimated 

exceeded the count of water at 100 m. This suggests that 
at 100 m both models do not perform well in estimating 
the NDVI of croplands and this is also evident in the mean 
predictions. One reason for this is the differences in crop 
types and growing seasons. In the case of water bodies, flora 
and fauna activities in the water bodies can influence the 
surface properties which can affect the NDVI. Therefore, 
the proportion of water present in the grid cell may not be 
enough information to predict the NDVI of a cell in all cases. 
Hence, incorporating other features like water indices into 
a ML model in addition to the LULC fractions per grid cell 
can improve the NDVI predictions for water. Despite these 
limitations, the counts of predominantly built-up cells that 
were over and underestimated are significantly low in the 
MODIS-like, Landsat 8-like, and the mean products. This 
makes them useful for further analysis of vegetation quality 
in urban areas and particularly the Tallinn CUD area.

LST

In the evaluation of the LST from both sensors at 1 km, it 
was noted that the MODIS LST is higher than that of Land-
sat 8, however, they are highly correlated.

While there is a good correlation between the predicted 
values and validation data, there is a high number of over-
estimations (Fig. 7a and b). This is primarily because of 
the difference in sensing time. The model was built with a 
MODIS product which is a composite of two observations 
made at two separate times of the day, while the validations 
were observed at a different time which does not coincide 
with any of the two MODIS observation times. The percent-
ages would have been higher if the predictions were vali-
dated with MODIS products upscaled from a higher reso-
lution to the desired resolution, however, no such product 
exists. Furthermore, LST is a parameter that varies diurnally 
(Weng and Fu 2014; Hu et al. 2020) and therefore, it was 
not expected that the predicted LST would be as close to 
the validations as they were for the NDVI. Despite these, it 
cannot be conclusively claimed that this is true for all cases 
as other researchers have achieved better RMSEs when they 
used products from different sensors (Hutengs et al. 2018; 
Xu et al. 2020). The synthetic products are considered suit-
able for any analysis in the CUD and TUA that would seek 
mean daytime LST at the desired resolutions. The synthetic 
LST products reflect the day-to-day variation of temperature 
in the study area for the period of interest (Fig. 9).

The validation of the predicted LST products based on 
LULC reveals that the model is more likely to overestimate. 
Predominantly forested grid cells seem to be the hardest to 
estimate as the model consistently overestimates the LST at 
both scales. In addition, cropland-dominated grid cells are 
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both overestimated and underestimated by the model. How-
ever, it mostly overestimates rather than underestimates for 
these kinds of grid cells. Furthermore, the model overesti-
mated LST for grid cells which are predominantly reeds and 
bushes. These limitations are attributed to differences in for-
est and crop types. Adding extra predictors that distinguish 
forest and cropland types in addition to NDVI-which also 
acts as a proxy distinguisher in terms of vegetation quality, 
can improve the performance. The model does not perform 
well for vegetated surfaces, because the vegetated surfaces 
were classified as impervious surfaces—a broad class that 
includes non-vegetated surfaces which are also impervious. 
This is the trade-off dealt with when a ‘simple’ ML model 
with fewer features (other features and surface type frac-
tions) is chosen over one with more features (other features 
and LULC fractions) with the same performance during 
baseline modeling. In a previous study validating sharpened 
products, different vegetated surfaces had varying RMSEs, 
indicating the variations of LST that different vegetated 
surfaces (Bartkowiak et al. 2019). In addition, the Estonian 
Topographic Database does not have records of clear-cut 
areas, this can affect the performance of the model. Areas 
like these remain vegetated in the database even though they 
are not in reality. In instances like this, the LST will not 
match the information fed into the model.

Despite these limitations, the model performs effectively 
for predominantly built-up grid cells and other LULC types 
like roads. This is of prime importance because generat-
ing LST useful for assessing heat islands and heatwaves in 
the CUD and TUA, where most people reside was the main 
aim. The predicted products from the validations are suitable 
for intra-urban SUHI assessment and spatial variability of 
heatwave within the CUD and the TUA. Furthermore, the 
results of the correlation of the surface-air temperature and 
predicted LST trends give credence to the usefulness of the 
synthetic products.

Assessment of the approach

Overall, the approach yields products useful in assessing 
urban thermal environments at suitable scales. In addition, 
the resulting products are free of gaps that are often pre-
sent in optically sensed products due to clouds and shad-
ows. More importantly, the models turn out products that 
are accurate within considerable ranges for the NDVI and 
to some extent, LST in the built-up areas. Although the 
metrics from the validations were like those obtained when 
NDVI and LST from both missions were compared at the 
coarse resolution, it cannot be conclusively claimed that the 
approach retains original relationships after downscaling. 
This will require further statistical analysis as suggested 
in Dong et al. (2020). In this research, the models were 

assessed on two levels, the first being feature importance, 
and the second, partial dependencies. Many researchers 
have used the RF algorithm and other similar ones to suc-
cessfully downscale or generate synthetic NDVI and LST. 
Most works do not further investigate the models beyond 
the feature importance, making the models seem like black 
boxes. By employing the partial dependence plots, how the 
model works based on changes in each feature is revealed 
in this research. This information is useful in explaining the 
model to non-technical audiences and in simulation studies.

Comparing the results of the NDVI validations to the 
work of Filgueiras et al. (2020), it was noted that the RMSEs 
although low, were not as low as theirs (< 0.09). This is 
attributed to differences in the features used. Surface reflec-
tance were employed in their work while LULC was used 
in this research. To get NDVI for each day like this research 
aimed at, it is important to use features that are available at 
the same temporal and spatial resolutions. Therefore, it may 
be challenging to use surface reflectance, especially when 
satellite missions are the main sources. With the prolifera-
tion of drones, this challenge may be overcome as seen in 
the case of Bonafoni et al. (2016) but it might require a good 
deal of fieldwork and planning. Another alternative will be 
using radiative models to obtain the spectral reflectance as 
the sensors would (Gastellu-Etchegorry et al. 2012). This 
approach uses the proportions of land use types in a cell as 
well as time to predict the NDVI with considerable accu-
racy and is replicable using any land use database given its 
simplicity.

This approach used one spectral index to predict LST, 
but other spectral indices like normalized difference sand 
index (Pan et al. 2018) and normalized difference built-
up index (Xu et al. 2020) are also useful. However, some 
surface materials like roofs are not properly represented 
by spectral indices as indicated in Bonafoni et al.(2016). 
Hence this approach of using a good spectral index in addi-
tion to information on fractions of land surface types and 
spatiotemporal features improves prediction quality. This is 
evident in the works of Hutengs and Vohland (2016) and Li 
et al. (2019) where spectral indices and other spatial fea-
tures were combined. Furthermore, some spectral indices 
may be correlated and would be redundant features in the 
model. Other parameters that are available daily, like solar 
radiation and wind speed could be considered as potential 
features to improve the LST predictions. The sky-view fac-
tor is a good parameter and could also be used to estimate 
solar radiation and model LST (Hutengs and Vohland 2016; 
Scarano and Mancini 2017). Even though the desired LST 
was achieved in two steps, the intermediary output-NDVI is 
a useful parameter for assessing UHI and other phenomena 
making it worthwhile. A limitation of this approach lies in 
the number of over and underestimations. Unfortunately, 
forest and cropland patches massively cover the study area; 
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patches where the model fails to perform well accounting 
for the high number of overestimations. Therefore, the syn-
thetic LST will not be suitable for studies that will focus on 
forested areas. Regardless, this does not affect the usability 
of the data for assessing UHI and the spatio temporal vari-
ability of surface temperature within the built-up areas.

Furthermore, while using a grid cell as the spatial unit for 
analysis in this approach is more convenient, spatial objects 
do not exist in space as regular grids, but rather patches 
(Blaschke 2010). Hence adopting an object-based approach 
at the desired resolutions could yield products that better 
capture the NDVI and LST of certain LULC types. The Esto-
nian LULC database was used because of its level of detail 
and extent of the study area. However, to scale this approach 
to cover urban areas from different geographic regions, it 
will be convenient to explore LULC data from Open Street 
Map or Local Climate Zone (LCZ) data from the World 
Urban Database and Access Portal Tools (WUDAPT). The 
LCZ from WUDAPT is based on a land use classification 
scheme that incorporates the physical and thermal proper-
ties of surface features (Stewart and Oke 2012; Bechtel et al. 
2019; Dutta et al. 2021). Furthermore, this approach focuses 
on the 2D urban space; however, Zhang et al. (2019) point 
the relevance of vertical urban forms for explaining daytime 
LST. Hence replacing 2D information with 3D information 
will be appropriate if the influence of vertical urban form is 
of interest (Middel et al. 2017; Zhang et al. 2019).

Conclusion

This study presents a two-part approach to generate daily 
synthetic NDVI and LST at suitable resolutions to assess 
SUHI and heatwaves at an urban scale. The target resolu-
tions were selected based on how the SE maps the popula-
tion in the study area.

The first part focused on generating Landsat 8-like NDVI 
and MODIS-like NDVI at the desired resolutions using the 
RF algorithm with LULC fractions and DOY as the pre-
dictors. The modeling of the NDVI reveals that while the 
NDVIs from both sensors are highly correlated, they have 
differences for certain land cover types, especially water. 
To proceed, the mean NDVI predictions of the Landsat 
8-like NDVI and MODIS-like NDVI were used. The mean 
was considered a better product because it compensates for 
biases from both models. The second part deals with mod-
eling MODIS LST with RF using NDVI and other spatial 
and temporal features. The final outputs were daily LST sim-
ilar to daily mean LST from MODIS Terra and Aqua satel-
lites. The synthetic LSTs are useful for assessing the spatial 
and temporal variability of surface temperatures during the 

heatwave. Furthermore, the vulnerability of citizens to heat-
waves in the study area can be studied using the synthetic 
products. This is because they were generated to match the 
spatial units in which the authorities map the population dis-
tribution. Despite these advantages, the synthetic LST prod-
ucts are most suitable for built-up areas and not for forest or 
cropland areas per the assessments. To make better predic-
tions of LST for forests and croplands, other inputs like solar 
radiation and longwave radiations could be included.

RF is further established as a robust algorithm for mod-
eling complex spatial relationships and for generating syn-
thetic products of this nature by this approach (Li et al. 2019; 
Filgueiras et al. 2020). Furthermore, the partial depend-
ency assessments performed on the models reveal how the 
models operate and could be informative for policymakers 
and researchers. Overall, the approach is simple to imple-
ment given the availability of open-source data. While the 
approach is considered a success, incorporating other use-
ful features mentioned in the discussions and using spa-
tial objects instead of regular grid cells could improve the 
accuracy of the estimations. Future works would consider 
other useful features to improve the model in areas where it 
performs poorly.
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