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Charged particle motion in magnetic and electric
fields

Introduction

The fundamental equation describing the motion of a charged particle in
magnetic and electric fields is the Lorentz equation

F = - i = ?(vxB+E) (2.1)
dt

For rationalized MKS units the force F is in newtons, the charge q is in
coulombs, the electric field E is in volts m"1, the velocity v is in ms ' 1 and
the magnetic field B is in webers m"2 or tesla. A list of symbols used
throughout this book is given in the list of symbols (pp. xiii-xvi).

For some simple field geometries, equation (2.1) can be integrated
directly to give the trajectory of the particle. However, for the geomag-
netic field such an integration is not possible, and one must resort to
approximations. Fortunately, for radiation belt particles whose energy is
so low that the magnetic field appears almost uniform, an efficient
approximate theory has been developed. The results of this theory will be
presented in stages in the following chapters. First, the motion of a
charged particle in simplified magnetic and electric fields will be con-
sidered. This discussion will illuminate the fundamental reasons for part-
icle trapping. It will be seen that in general the particle executes a rapid
circular motion while at the same time the center of the circle moves
through the electric and magnetic fields. Equations for the motion of this
so-called 'guiding center' give a quantitative description of the motion of
the guiding center and confirm the trapping properties of the geomagnetic
field. In Chapter 4 the adiabatic invariance approximation is introduced.
This theory describes the long-term trajectory of the guiding center,
although it does not give the guiding center velocity or indicate where the
guiding center will be at a given time.
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Uniform magnetic field 11

In the first part of this chapter we will use equation (2.1) to obtain the
particle motion in fields with simple geometries. The extension of this
motion to the geomagnetic field will then be easy to understand. Equation
(2.1) can be separated into components parallel and perpendicular to the
magnetic field giving

(2.2)

and

E J (2.3)

Uniform magnetic field

Assume B is uniform and constant and that E is zero. For these conditions
equations (2.2) and (2.3) become

= 0 (2.2')

l -^- l = q(y X B) = q(Y± X B) (2.3')
I dt J±

Integrating (2.2') gives
Pll = constant

indicating that the particle moves parallel to B at a constant speed. The
momentum change in equation (2.3') is perpendicular to vx. Therefore,
Vj. is constant in magnitude, and the trajectory is a circle of radius p when
projected on to a plane perpendicular to B. The centrifugal force must
balance the Lorentz force giving

9
or

p = ir (2-4)

Bq
The radius p is an important parameter characterizing particle motion. It
is frequently called the gyroradius or cyclotron radius. The angular fre-
quency of the gyration motion, the gyrofrequency, is

Q = 2n-^- = 2l radians s"1 (2.5)
2 m

Note that in the non-relativistic case (m = constant), Q is independent of
particle energy. Thus, in a uniform magnetic field with no electric field the
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12 Charged particle motion

particle describes a helix, the circular motion in the plane perpendicular to
B being superimposed on a uniform motion parallel to B. The pitch angle
of the helix is the angle between the particle velocity and the magnetic
field and is given by a = tan"1 (v±/v\\). Particles with large pitch angles
near 90° move essentially in circles. If the pitch angle is near 0°, the helix is
more open and the particle motion is predominently parallel to B.

The helical motion described above is the primary motion of trapped
particles in the geomagnetic field because the non-uniformities in the field
are small over distances the length of the gyroradius. However, even weak
gradients in the geomagnetic field introduce deviations in the particle
motion, and these deviations lead to particle trapping.

Uniform magnetic and electric fields

If E|| is constant, the parallel equation (2.2) leads to uniform acceleration
along a field line

P|,(0 = p,|(f = 0) + qE\\t (2.6)

Such parallel fields are rarely found in the trapping region of the
magnetosphere, although they are important in accelerating particles in
the aurora.

Moderate electric fields perpendicular to a uniform B result in a drift
motion perpendicular to both B and E (Figure 2.1). This effect can be

B

E' = O

(a)

Figure 2.1. Motion of a charged particle in perpendicular electric and magnetic
fields, (a) Particle motion as observed in a frame of reference moving in the x
direction with velocity VE = E x B / 5 2 such that E' = 0 in the moving frame, (b)
Particle motion as observed in a stationary frame of reference in which an electric
field E is present.
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Uniform magnetic and electric fields 13

understood most easily by using a Lorentz coordinate transformation to
eliminate the electric field (see Appendix A).

Let B = Bez, E = Eey. If the primed quantities denote values
measured in a reference frame moving at some arbitrary velocity V
perpendicular to B, then the electric field in the moving system is

E ' = E + V x B (2.7)

To eliminate the electric field in the moving frame, V is chosen such that
E' = 0. The vector product of (2.7) and B (setting E' = 0) gives

0 = B x E + B x ( V x B )

= B x E + (B • B)V - (B • V)B

Because B • V = 0, the required frame velocity is
T? w T»

- VE (2.8)
B2

In a frame moving at velocity VE the electric field vanishes and the particle
executes the helical motion described earlier. In a stationary frame the
motion is a deformed gyromotion drifting at velocity VE in the x direction.
The reason for the drift can be traced to a distortion of the circular
gyromotion by the electric field.

In its gyromotion a positive particle has greatest energy and largest
gyroradius when it is at maximum excursion in the y direction (Figure
2.2). Viewed in the x-y plane the trajectory accumulates displacement in

©
B

©

Figure 2.2. Explanation of E x B/B2 drift mechanism. Radius of curvature in-
creases as particle kinetic energy is increased.

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online from within the IP domain of the University of California on Fri Dec 05 13:25:08 GMT 2014.

http://dx.doi.org/10.1017/CBO9780511524981.006
Cambridge Books Online © Cambridge University Press, 2014



14 Charged particle motion

the x direction. A negative particle circles in the opposite sense and has its
largest gyroradius while at minimum y, thus drifting in the positive x
direction also. As is apparent from equation (2.8), all charged particles
drift in the E x B direction with a velocity depending only on E and B and
independent of particle charge, mass or velocity. Note also that the drift is
perpendicular to E so that, on average, no energy is gained or lost during
the drift.

Equation (2.8) is valid as long as |VE|/c « 1. If the electric field is so
large that |VE|/c is appreciable, relativistic equations must be used to
calculate the particle motion and the description used here does not apply.
In the Earth's magnetosphere electric fields are never so large that (2.8)
cannot be used.

Inhomogeneous magnetic field

The most interesting effects from the standpoint of trapping occur when B
is not uniform. Even for electrons and protons of many Mev energy,
p« RE, and the geomagnetic field experienced by the particle during a
gyration is almost uniform. Nevertheless the slight deviations from helical
motion which are produced by VB accumulate over time and lead to
important perturbations in the otherwise helical motion of the particle.

One is generally not interested in the individual gyrations of the particle
but wishes to follow its path over an extended trajectory very much larger
than the gyroradius. This motivation leads to the concept of a 'guiding
center' in which one separates the particle behavior into the circular
motion about the 'guiding center' and the motion of the guiding center
itself. The derivation of the equations of motion for the guiding center is
sketched here for E = 0, dB/dt = 0 and for non-relativistic particles, as
this case will illustrate the approximations involved. For the more general
case and for more details see Northrop, 1963.

Express the position r of a particle in terms of its instantaneous
gyroradius p and the center of gyration R. Thus r = R + p. Expand the
magnetic field in the vicinity of R in a Taylor series about R

B(r) = B(R) + p • VB(R) + . . . (2.9)

where

\ dx dy d
Substitute (2.9) into (2.1), with E = 0 and denote the time derivatives by
dots above the quantity.

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online from within the IP domain of the University of California on Fri Dec 05 13:25:08 GMT 2014.

http://dx.doi.org/10.1017/CBO9780511524981.006
Cambridge Books Online © Cambridge University Press, 2014



Inhomogeneous magnetic field 15

m(R + p) = q(R + p) x [B(R) + p • VB(R) + . . .] (2.10)

The basic assumption that p(|VB|/B) « 1 allows one to neglect the higher-
order terms in the Taylor expansion. Let ei be a unit vector in the
direction of the magnetic field at R; the unit vectors e2 and e3 then form
an orthogonal coordinate system such that ex x e2 = e3 (see Figure 2.3).
The gyroradius p will be in the e2-e3 plane and can be expressed as

p = p(e2sinQf + e3cosQf) (2.11)

Repeated differentiations with respect to time give

p = Qp(e2cosQr - e3sinQr) + sinQr—(pe2) + cosQf—(pe3) (2.12)
dt At

p = Q2p(-e2sinQf - e3cosQf) + Qp(e2cosQ^ - e3sinQr)

—(pe2) - 2QsinQr—(pe3) + sinQf—(pe2)
dt dt dt2

—(pe3) (2.13)
dt2

Equations (2.11), (2.12) and (2.13) for p, p and p are now substituted into
equation (2.10) and the resulting equation is averaged over time, integrat-
ing over a complete cyclotron period with t going from 0 to 2n/Q. Because

Figure 2.3. Diagram defining vector coordinate system for particle gyration in an
inhomogeneous magnetic field.
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16 Charged particle motion

all terms in p, p and p contain either sinQf or cosQf as factors, the
averages of these quantities are zero:

After time averaging, equation (2.10) becomes

mR = q[R x B(R)] + q^-[e2 x (e3 • V)B - e3 x (e2 • V)B] + . . .

(2.14)

Additional, somewhat tedious, vector algebra reduces this expression to

mR = q[R X B(R)] - q^-VB + . . . (2.15)
2

where B is the magnitude of the magnetic field.
Equation (2.15) is the basic equation of motion for the guiding center.

The higher-order terms which have been neglected are generally not
important for radiation belt studies, and these additional terms will not be
indicated in subsequent equations. However, it is as well to recognize that
the equations derived here and on the pages immediately following
contain approximations which become less valid as the gyration radius
increases. The more useful forms of equation (2.15) are obtained by
separating the equation into perpendicular and parallel components. The
perpendicular component is obtained by taking the vector product of
(2.15) with ei:

m R x e V q(R x B) x ex - ^ - ^ V £ x
2

= q{(%l-R)%lB - BR} -

or

Bq{R - (ei • R)ex} = BqR± = m(e1 X R) + HtL^t^ x VB

Hence

R ± = UL^X x R) + ̂ -%1 x VB (2.16)
Bq 25

To the approximation required here,

*.i<*1+*l)-^l.t1^l + 1,|i!L (2.17)
d£ d^ d^ as

where s is the distance measured along the field line, which need not be
straight. With this expression for R inserted into (2.16) the perpendicular
velocity then becomes
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Inhomogeneous magnetic field 17

= ei X
2B Bq

m 23©i\
v\\ 1

Bq " ds )
= e, x (^VB + -™ 4** ) (2.18)

\2qB2 Bq ds J
For obvious reasons the first term in (2.18) is called the gradient drift and
the second term the curvature drift. A more transparent interpretation of
these quantities will be given shortly.

The parallel component of equation (2.15) is extracted by forming the
scalar product with e^

or

Equation (2.19) shows that for motion parallel to B the guiding center of a
particle is accelerated in a direction opposite to the gradient of the
magnetic field. If the particle is moving into a stronger field, it will be
repelled, regardless of the sign of the particle's charge or the direction of
the magnetic field.

Equations (2.8), (2.18) and (2.19) give the guiding center drifts of
primary interest to radiation belt physics. As mentioned before, they
contain approximations which may become important as the particle
energy and gyration radius increases. In particular, the equation for
parallel motion (2.19) is less exact than the equation for guiding center
motion perpendicular to the magnetic field (2.18). Whenever these equa-
tions are used together when numerically tracking a particle trajectory, it
is necessary to use a more accurate version of (2.19).

Additional terms neglected in equation (2.17) may be important if there
are large electric fields or if the magnetic field changes direction with time.

Simple, physical interpretations for the gradient and curvature drifts of
equation (2.18) and the 'mirroring' forces in (2.19) can be given. These
drifts are analogous to the electric field drift in that the gyroradius p varies
during the circular motion. This effect can be seen in Figure 2.4 where VB
is in the y direction and B is in the - e , x e^ direction. The trajectory of a
positive particle illustrates how the smaller gyroradius at larger y (and
larger B) leads to a drift in the B x VB direction. The magnitude of the
drift can be estimated directly as follows. Because the trajectory is
symmetric about a line parallel to the y axis and passing through the point
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18 Charged particle motion
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I VB B
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Figure 2.4. Drift motion perpendicular to B and to
magnetic field.

in an inhomogeneous

where the trajectory crosses itself, there is no net motion in the y
direction. Hence, averaging the force over a gyration period should result
in no net force in the y direction. The times tx and t2 denote minimum y
positioris (taken as y = 0) and therefore the start and end of a cycle. If Fy

is the force in the y direction,

= 0= [2q—B(y)dt (2.20)
it, dt

Because B(y) does not change appreciably in a gyroradius, B{y) can be
approximated by the first two terms of a Taylor series:

B{y) = B0 + y^- (2.21)
dy

where Bo is the value of the field at y = 0 and dB/By is a constant.
Equation (2.21) is substituted into equation (2.20), giving

dx 3B
dt dy

Therefore,

> 1 3B, - Adx = — y dx
Bod

(2.22)
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Inhomogeneous magnetic field 19

The right-hand integral is the negative of the area enclosed by the curve,
and if the drift in a gyroperiod is small, this area is equal to np1. The
distance traveled in the x -direction during one gyration is therefore

Ax = npr
Bo By

and the time At required for this cycle is 2irp/vL. Therefore, with
appropriate substitutions and setting Bo = B the gradient drift term is

VG = *± = ^ ( B x VB) (2.23)
Ar 2qB3

in agreement with the first term in equation (2.18).
Note that the gradient drift term is in a direction perpendicular to B and

to VB. Hence, this drift will carry particles along a line of constant B. This
characteristic will be useful later in tracing the drift paths of particles near
the Earth's equatorial plane. In contrast to the electric field drift, the
gradient drift velocity depends on the particle energy and charge. In the
non-relativistic case the gradient drift velocity is proportional to the
perpendicular energy. Negative particles and positive particles drift in
opposite directions. The drifts therefore produce electric currents, even in
neutral plasmas.

The curvature drift term (the second term in equation (2.18)) depends
on the magnetic field changing direction with distance s along the field
line. A heuristic derivation of this term follows from the assumptions that
the guiding center 'almost' follows a field line and the field line curvature
therefore exerts a centrifugal force on the particle. The force is perpen-
dicular to B and lies in the plane of curvature. The geometry is given in
Figure 2.5, where n is a unit vector in the direction of the radius of
curvature. The guiding center motion parallel to B exerts a centrifugal
force

F = ^ i n (2.24)
Rc

where Rc is the radius of curvature of the field line. The force on the
particle is equivalent to that from an electric field of magnitude
Ec = mv\n/qRc. Such an electric field results in a drift velocity

v = E C X B = \

B2 qRc B2

This result is the same as the last term in (2.18) because

35 30 •---•(-)
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20 Charged particle motion

B

Figure 2.5. Geometry for curvature drift calculation. Drift is perpendicular to B
and to the field line radius of curvature Rc.

If the region of space under consideration does not contain electric
currents, a more convenient expression for —n/Rc can be derived. With
the geometry shown in Figure 2.5 and utilizing dBjdy = 3By/dz obtained
from V x B = 0 (only valid if J = 0 and 3E/9r= 0),

(2.26)

c

i

By 3z Rc
The curvature drift term in (2.18) thus reduces to

Vc = ^ i ( B xVB) if V x B = 0 (2.27)
qB3

Note the similarity between equations (2.23) and (2.27) in that both drifts
are in the same direction and have the same dependence on B and q.
They differ, however, in their pitch-angle dependence. Particles with large
pitch angles respond primarily to the gradient drift, while the curvature
term is more important for particles with large v\\.

In the parallel motion equation ((2.19)) the effect of the gradient
parallel to B also has a simple interpretation. With the geometry of Figure
2.6 the magnetic field is in the z direction with a gradient in the —z
direction. A particle executing a circle about the z axis will experience a
small component of B parallel to its gyroradius. When the particle crosses
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Inhomogeneous magnetic field 21

Figure 2.6. Mirror effect produced by a converging magnetic field. Gyrating
particle senses a magnetic field component in the p-direction which deflects the
particle away from the VB direction.

the y = 0 plane, the component of B in the p or x direction is

dBr

At* = 0

dy
Since Bp must be constant around the particle orbit

2 L dx dy J 2 dz
where use is made of the Maxwell equation V • B = 0.

The force in the z direction will be given by

Fz = q(v X Bp) = -qv±-?-
2 dz

mv\

(2.28)

(2.29)

(2.30)

%z (2.31)
2B dz

and since dB/dz < 0 is negative, the force is in the positive z direction.
Because the force tends to reflect a particle out of a region with high
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22 Charged particle motion

magnetic field, it is called a mirroring force, and a region of high magnetic
field is called a magnetic mirror. The force is independent of charge; both
positive and negative particles will be reflected. Furthermore, the mag-
nitude of the electric charge does not enter the expression for ¥Z9 the
charge dependence of the Lorentz force being exactly canceled by the
charge dependence of p. Particles with smaller q will have larger p and
experience a larger Bp to compensate for the lower q in (2.31).

The mirroring force is also independent of the direction of B and
independent of v\\. The change in v\\ due to the mirroring force will also
affect v± since v2 = v\ + v\ is a constant of motion in the presence of
magnetic forces only.

Equations (2.8), (2.23) and (2.27) can be combined to give the drift
velocity perpendicular to the magnetic field.

( ) (
B2 2qB3 qB2 \ ds

(2.32)

When V x B = 0,

= E^B + jniv\_ + 2\ x VB

B2 qB*\2 7

The drift and mirror equations derived in this chapter are the essential
elements which lead to particle trapping in the Earth's magnetic field.
Although other effects are important, such as time variations of the
electric and magnetic fields, the three magnetic effects of gradient drift,
curvature drift and mirroring are the primary controlling factors leading to
long-term trapping. The electric field drift term, which applies equally to
all particles, is of most interest for low-energy particles, for which the
magnetic drift terms are smaller. Because the electric field drift is in a
direction perpendicular to E, the particle will move along an equipotential
surface and thus conserve energy. However, if magnetic curvature or
gradient drifts are also present these forces will in general carry the
particle across electric equipotentials and alter the particle energy.

The drift terms derived here allow one to understand geomagnetic
trapping. The scale size of the magnetosphere is so large compared to the
gyroradii of trapped particles that the magnetic field experienced by the
particle during a gyration is almost uniform. Thus, an energetic particle
introduced into the geomagnetic field circles about the field direction
while moving parallel to the field line. The parallel motion will take the
particle towards the poles of the Earth, where the increased magnetic field
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Problems 23

NORTH

TRAJECTORY OF
TRAPPED PARTICLE

MIRROR POINT

Figure 2.7. Trajectory of trapped electrons and protons experiencing magnetic
mirroring and gradient and curvature drifts in the geomagnetic field.

intensity causes the particle to be reflected. The bounce motion between
mirrors in the polar regions is superimposed on the much slower curvature
and gradient drifts, which are perpendicular to the magnetic field, and for
(V x B = 0) are perpendicular to the gradient of B in the plane perpen-
dicular to the magnetic field. If the Earth's field were symmetric about the
polar axis, these drifts would be entirely in the longitudinal direction.
However, distortion in the geomagnetic field alters this simple result, and
the drifts will have components in the latitude and altitude directions. For
the Earth, the gradient and curvature drifts are eastward for electrons and
westward for protons. The overall motion is sketched in Figure 2.7. Note,
however, that for clarity the size of the gyroradius is greatly exaggerated
in this diagram.

Problems

1. An electron of rest mass m0 moving at velocity v has a total energy
W = yraoc2, where y = l/V(l ~~ P2) and P = v/c. If T is the kinetic energy in
rest mass units, show that

T + 1
Find the velocity of a 5.1 keV electron, a 51 keV electron, a 510 keV electron
and a 94 MeV proton.

2. The guiding center expression for the gradient drift velocity is valid only if
p\VB\/B « 1. Assuming that the Earth's magnetic field in the equatorial plane
is B(r) = 3 x 10-5(RE/r)3 tesla, where RE = 6.37 x 103 km, find the value of r
at which p\VB\/B = 0.1 for a 94 MeV proton moving ± to B in the equatorial
plane.
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24 Charged particle motion

3. A magnetic field parallel to the z axis varies as B(z) — Botxp(az). A proton
of velocity v moving in the + z direction starts at t = 0 with a pitch angle of
45°. Using the equation for F|| find the time it takes for the particle to be
reflected. Express the answer in terms of v.

4. A low-energy proton with energy of 0.1 eV is above the atmosphere in the
equatorial plane of the Earth. Its velocity is entirely in the direction perpen-
dicular to the magnetic field. Neglecting the curvature and gradient B mag-
netic drifts, find the direction and magnitude of the drift caused by the Earth's
gravitational field. Assume a flat Earth, and neglect the variation of gravity
with altitude. The geomagnetic field points towards the north and has a
magnitude of 3 x 10"5 tesla.

5. A particle of mass m and charge q is at rest in a uniform magnetic field B. At
t = 0 a uniform electric field perpendicular to B is switched on. Transform to a
moving coordinate system to remove E and describe the motion of the particle
in the moving coordinate system. By transforming back to the original frame
show that the maximum energy that the particle can acquire is 2m(E/B)2.
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