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Adiabatic invariants

Introduction

The guiding center equations of motion developed in Chapter 3 are an
enormous improvement over the Lorentz force equation for describing the
long-term behavior of particles in inhomogeneous magnetic and electric
fields. When applied to the Earth's field, they clarify the cause of
magnetic trapping. However, the drift and mirroring force equations do
not allow long-range prediction of particle location, particularly in fields
without axial symmetry. For example, without numerically integrating the
guiding center equations over many bounces and over many degrees of
longitudinal drift, a procedure likely to introduce errors, it is not possible
to predict where a particle launched on a field line over Africa will be
when it has drifted over the United States.

Missing in the theory described thus far are 'constants of motion'
analogous to the conservation of energy, momentum and angular momen-
tum in mechanical systems. Adiabatic invariants fill the role of the
required constants of motion, and their use is essential in research on
trapped radiation.

Fortunately, in mechanical systems undergoing periodic motion in which
the forces change very slightly over a period, approximate constants do
exist. These are called 'adiabatic invariants', implying that their values are
constant provided the forces directing the motion are altered infinitely
slowly. The concept of an adiabatic invariant is illustrated in the following
heuristic example of an frictionless particle confined in a potential well
whose shape undergoes slow variations with time. Let the one-dimensional
potential well be described by curve 1 in Figure 4.1, where V{x) is the
potential energy as a function of the spatial variable x. A particle with
total energy e = V(a) = V(b) will then oscillate between turning points a
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Introduction 37

Figure 4.1. Frictionless particle confined in a potential well in which the shape of
the potential changes slowly from curve 1 to curve 2.

and 6, its kinetic energy at any point in its periodic motion being
E = e-V(x).

The equation of motion of the particle is

d2x dV iA _
m = - — (4.1)

dt2 dx
The total energy s and velocity are

(4.2)
v(x) = y/(2E/m)

Suppose, now, that the shape of the potential well changes slowly with
time, the change being very small during a single period of the particle's
motion. However, the cumulative change can be large, eventually altering
the shape of the well to curve 2 in Figure 4.1. Since the moving walls of
the well can either add or subtract energy from the particle, the total
particle energy, kinetic plus potential, is not a constant. The issue is, then,
what will the energy of the particle be when the shape of the well is at
curve 2? Are there other quantities which remain almost constant during
the variations in V(x)7 It will be seen that the classical action integrals fill
this role.
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38 Adiabatic invariants

Let the potential function be parameterized with a time variation as
V(x, a(t)). As mentioned above, e will not be constant, but at any time t,
the average energy during a complete cycle can be defined as

( 4 - 3 )

The classical action variable is defined in terms of an integral of the
momentum p(x) over a complete cycle

= ip{x) dx = i\/[2m{e - V(x, a))] dx (4.4)

(4.5)

and its time derivative is
dJ __ 3 / de dJ da
dt de dt da dt

But
3/ r dx rdx
de J^/[2(e- V)/m] 7 v

and

= <Ldt (4.6)

m
d2x + 3 ^ \ dx_ dV da] If
dt2 dx I dt da dt lit

= Idf——/((df- using (4.1) (4.7)
J da dt 7

Also,
3 / r -dx

da 7\J[2{e- V)/m] da 7 v da

Therefore, substituting (4.6), (4.7) and (4.8) into (4.5) gives
dJ r, dV da rdxdVda= cbcu — (p
dt J da dt J v da dt

= 0 (4.9)
This example indicates that slow variations in the shape of the potential
well do not change the value of / . However, the proof is not rigorous and
several questions remain. For example, variations in the end points of the
integral as V(x,a) is changed have been ignored, and no estimate has
been made of the error introduced by using an average e for energy in
defining the action integral. Nevertheless, the example suggests that /
should remain nearly constant, even if large changes occur in V and £,
provided that a(t) is nearly constant during a complete period of the
motion. A more rigorous analysis confirms that / is an adiabatic invariant
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First adiabatic invariant 39

and remains nearly constant for large alterations in V(x) if these changes
are made infinitely slowly.

The more formal Hamilton-Jacobi theory defines action-angle variables
for periodic motion. If pt and qt are the momenta and its conjugate
coordinate, then Jt = ^ptdqh where the integral is taken over the periodic
orbit.

In the case of a charged particle in a magnetic field, the canonical
momentum P is

p = m v + q \ = p + q\ (4.10)

where A is the vector potential of the magnetic field. The adiabatic
invariants of the particle motion are then given by integrals of P over the
appropriate periodic orbits. For charged particles in the geomagnetic field,
three periodicities are readily apparent. These cycles correspond to the
rapid gyration about the field lines, the north-south oscillation between
magnetic mirroring points and the slow longitudinal drift about the Earth.
Calculating the action integral associated with each of these periodicities
leads to the three adiabatic invariants of the particle motion.

First adiabatic invariant

The so-called first adiabatic invariant is obtained by integrating P from
equation (4.10) around the gyration orbit, where dl is an element of the
particle path around the orbit.

= p± • 2np + qix • dl

= pL • 2TT— + qiV x A • dS (4.11)
Bq

where dS is an element of the area enclosed by the path. Therefore,

Bq

Bq

Bq Bq qB
The second term in (4.12) is negative because dS as defined by the particle
orbit points in the opposite direction to B.
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40 Adiabatic invariants

Rather than the above expression for Jx the first invariant is taken to be
p]_/2m0B, which is equal to Jx except for constant factors. The quantity

M = / i - (4.13)
2m0B

is often called the magnetic moment since in the non-relativistic limit it is
equal to the current around the particle orbit times the area of the loop.

S (
\2TTP

vLmvL

= 1
2 mB

The constancy of pi or of p\jB can be shown directly for simple
geometries. For example, consider a particle in circular motion in a
uniform field which increases with time. (See Figure 4.2.) The magnetic
field is assumed to be symmetric about the center of the particle orbit so
that the induced E is equal at all points in the orbit. If B is uniform and
increases, the integral of Maxwell's equation over the area of the orbit
gives

x E • dS = <fe • dl = -<£— • dS = -Tip2— (4.14)

The energy change in one revolution or in one gyroperiod rg is therefore

A W = -qlE • dl = qnp1— (4.15)
7 dt

t i t - 1 t t

v dl

dB.

Figure 4.2. Charged particle with velocity v gyrating in a uniform magnetic field
which is increasing slowly with time. Magnetic moment of particle remains
constant.
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First adiabatic invariant 41

Hence

Also,

where

dW
dt

dW

dt

c

c

AW

h
_ pi

2mB

~ d (YT
dt{}

• r _ d [
it dt[

,dB
qirpr

dt
3B

dt

- ^ - ^

i , ' i 1
m 0 c 2 J

1 dp±

2?rm

2 d y

dr

I1"1

(4-

(4-

r4

16)

17)

df

Equate (4.16) and (4.17) using (4.18) for dy/dt to obtain

5 3f pi dt
Therefore

— = constant (4.19)
B

and it follows that p = p2j2m0B is also constant.
The adiabatic or slow change constraint enters with the assumption that

the orbit is circular. In fact, the gyration radius decreases as the accelera-
tion takes place so the circular radius is only an approximation, valid for
small changes in B during a single revolution.

The expression for the magnetic moment or first adiabatic invariant
occurs naturally in many of the equations for particle motion. The mirror
force equation (2.31) is given by

Ft = -kv±pV{lB = -JL™- (4.20)
y ds

This equation is familiar as it describes the force on a dipole magnet of
moment [ijy in an inhomogeneous magnetic field. When the dipole field
opposes the applied field, as is always the case when the magnetic moment
is produced by a particle circling in the applied field, the force is repulsive,
as given in equation (4.20).

Although the proof of the invariance of p2jB or p]_/2m0B was shown
for a time-dependent magnetic field, the invariance also applies if the
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42 Adiabatic invariants

particle moves into a region of different B, either by following a field line
or by drifting across field lines. The motion parallel to field lines is
particularly important, and it is in this case that the first invariant is most
useful. Let a be the angle between the particle velocity and the magnetic
field. This angle is customarily called the pitch angle:

tan a = — (4.21)
v\\

Therefore, from equation (4.19),

— = p S m a = constant (4.22)
B B

This equation is one of the most frequently used equations in radiation
belt physics. Consider a particle whose pitch angle is aeq at the equator
where B = Bcq (see Figure 4.3). As the particle moves along the magnetic
field line towards the Ear th , the field increases (see equation (3.21)). By
(4.22), p\ must also increase, and since p2 is constant (in the absence of
electric fields), sin2 a must increase. In the diagram a2 > oc\ > aeq. When
a reaches 90° the particle will be reflected, will return to the equator and
will then repeat the trajectory in the opposite hemisphere. Equat ion (4.22)
allows one to compute the pitch angle at any position of the trajectory,
provided B is known at that position. It also specifies the magnetic field at
the mirror point in terms of the field and the pitch angle at any other
position. For example, if a particle has pitch angle a at B it will mirror at
Bm where

p2 sin2 90° _ p2 sin2 a

Bm B
or Bm = B/sin2 a if E = 0 and therefore p = constant.

(4.23)

MAGNETIC FIELD LINE

Figure 4.3. Conservation of magnetic moment results in an increase in pitch angle
as the particle moves down the geomagnetic field line into the more intense field.
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First adiabatic invariant 43

Note that the mirror point field is independent of particle momentum or
charge and does not depend on the polarity of the magnetic field. The
pitch angle at any point along a field line is given in terms of the equatorial
values #eq, areq or the mirror values Bm, am:

. , , l\ B(s) 1 .
sin a(s) = <% — ^ - sin areq

V L Beq J

(4.24)

Equation (4.22) applies even when a parallel electric field E\\ accelerates
particles along a field line. Knowing a particle's energy, and therefore the
momentum, as a function of B is sufficient to calculate Bm. The details of
the helical trajectory through the electric field are not needed to find the
mirror field.

At any location with field intensity B there will be few particles with
# < #LC = si11"1 ̂ /(B/Ba), where Ba is the field intensity at the top of the
sensible atmosphere (~100km). Particles with a<aLC will strike the
atmosphere during each bounce and will be rapidly removed from the
trapping region. The quantity aLC is called the bounce loss cone angle.
Because of the north-south asymmetry in the geomagnetic field the value
of J8a on a given field line may be different at the two hemispheres. In
such cases aLC will be defined for the lower value of Ba and, therefore, for
the larger value of arLC.

Knowledge of the pitch angle as a function of position allows computa-
tion of such quantities as the time required to move between positions on
a field line. For example, the time for a complete cycle of motion between
mirror points sm and s^ is the bounce time rb where

(4.25)

By changing the variable of integration from s to A and using equations
(3.19) and (3.21) the bounce time integral for a particle in a dipole field
can be expressed in terms of the equatorial pitch angle <*eq, and the
equatorial crossing distance Ro:
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44 Adiabatic invariants

4R0 ^ VC1 + 3 sin2 ^ ) c o s * d^
v 1/2

(4.26)

jo L cos6 A

The helical distance traveled during a complete bounce is

Su = VTu = 2 (4.27)

Unfortunately, in a dipole field equation (4.26) cannot be integrated in
closed form. However, an approximate formula good to about 0.5% is

rb = 0.117J —)—[1 - 0.4635(sin oreq)
3/4] s (4.28)

where Ro is the distance from the center of the dipole to the equatorial
crossing of the field line and /? = v/c. Note the insensitivity of rb to the
equatorial pitch angle. A particle mirroring near the equator has a bounce
time of about half that of a particle which mirrors at the limiting distance
near the dipole.

The constancy of \i is also useful in tracing paths for equatorially
trapped particles (acq = 90°). In the absence of electric fields, \i = constant
requires the particle to drift along a contour of constant B, as expected
since the gradient drift is perpendicular to V5. In the geomagnetic field
which is more compressed on the sunward side the drift path will necessar-
ily bring the particle closer to the Earth on the night side.

Graphs of the bounce periods for electrons and protons in the dipole
approximation of the Earth's field are presented in Appendix B.

Second adiabatic invariant

The second mode of periodic motion of a geomagnetically trapped particle
is the bounce motion between mirror points. If the longitudinal drift is
small during a single bounce, the action variable associated with the
bounce motion would be expected to be an invariant.

Returning to equation (4.10) for the canonical momentum, the action
integral over a bounce is

h = <£(P + 4A) • ds (4.29)

where ds is the element of length along a field line. The second term can
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Second adiabatic invariant 45

be changed to a surface integral over the area S enclosed by the bounce
path

• ds = q fv x A • dS

J-dS

= 0 (4.30)

since the integration path along the field line encloses a negligible area
and no magnetic flux.

Therefore

h = cpP - ds = (pp cos ads = <pp\\ ds = constant (4.31)

That J2 in (4.31) is an adiabatic invariant can be seen from the following
argument. From the equation of parallel motion for the non-relativistic
case (y = 1), equation (4.20) gives

F\\ = m—- = —\x— (4.32)
d* ds

This equation can be integrated to give

\mv\ + \iB = £' (4.33)

where £' is a constant of integration. Equation (4.33) is equivalent to (4.2)
with &' corresponding to total parallel energy and fiB corresponding to a
potential energy. The parallel velocity is then

uil = VP(<5' - fiB)/m] (4.34)

If B varies slowly with time, either by an explicit field change or by the
particle drifting on to different field lines, one can define an average value
&' by integrating equation (4.33) over a bounce period as was done in
equation (4.3). The value of J2 expressed in terms of £' is then

h = §P\\ d* = fr{2m[£' - pB(s, a(t))]} ds (4.35)

where a(t) denotes a parameter which allows B to change slowly with
time. That is,

^ « ^ (4.36)
dt rb

where rb is the bounce period. With [iB(s, a(t)) taking the role of the
potential V(x, a(t)) the argument for J2 = constant is the same as devel-
oped in equations (4.4)-(4.9).

The second adiabatic invariant is often called the integral invariant. It is
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46 Adiabatic invariants

usually designated by / rather than by J2 and this convention will be
followed in the remainder of the book. To remove the particle momentum
from the definition and express the invariant of a location entirely in terms
of the magnetic field geometry, a related quantity, / , is often used as the
integral invariant coordinate. For a point in space, / is defined in terms of
/ for a particle of momentum p mirroring at that point:

/ = J/2p

(4.37)

or

/ = r"J[ i-JK*)_ld5 (4.38)
•L * L Bm \

Again, sm and s^ are the locations of the mirroring points along a field
line.

The primary use of the second or integral invariant is to define drift
paths and the surfaces mapped out by the bouncing and drifting particle.
In an axisymmetric magnetic field where E = 0, this surface will also be
axisymmetric since the gradient and curvature drifts are everywhere
perpendicular to B and V±B. If the Earth possessed this idealized field, a
drifting particle would circle the Earth and return to the initial field line.
In a distorted field it is not clear from the drift equations that the guiding
center drift path is closed. However, the invariance of J2 or / ensures that
the particle will return to the original field line.

Figure 4.4 illustrates a drift path in an asymmetric field. A particle
initially on curve 1 on the right-hand side will drift to curve 2 on the
left-hand side and return to 1, mirroring at Bm in both northern and
southern hemispheres throughout the drift. At each longitude there is only
one curve between mirror values of Bm having the required J value,
because at a given longitude the value of / for given Bm increases
monotonically with distance from the Earth.

Although the magnetic field is more compressed on the sunward side,
the drift shell is closer to the Earth on the night side. For the same (r, 0)
B is smaller on the night side, and the particle will move closer to the
Earth to keep / constant. This result is similar to that for equatorial
particles discussed on page 44.

In a distorted field there is no requirement that particles initially on the
same field line but having different pitch angles will follow identical drift
paths. Consequently, in their longitudinal drift, particles which started on
the same field line may trace out different shells before returning to the
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Second adiabatic invariant 47

Figure 4.4. Trace of particle drifting and mirroring in the geomagnetic field. If the
field is static, the particle will be reflected at fixed Bm and at each longitude will
select the field line on which its motion between mirroring points conserves the
second invariant.

initial line. This condition, called L-shell splitting, becomes important for
field lines extending more than ~ 4RE from the Earth.

In the geomagnetic field distorted by anomalies and by the off-center
dipole the mirroring altitude of a drifting particle will change with longi-
tude, the altitude being lowest in the regions where the surface magnetic
field is low. On each drift shell, the smallest pitch angle that still allows
particles to drift completely round the Earth without striking the atmos-
phere defines a drift loss cone angle. At those longitudes where 5max is
well above the atmosphere, particles mirroring below 5max can exist
locally but are said to be in the drift loss cone. During their next drift orbit
around the Earth, they will strike the atmosphere. The drift loss cone
regions are in the 'magnetic shadow' of the Earth or its atmosphere and
will contain only those trapped particles which have been diverted into
that trajectory within their most recent drift period.

The rate at which trapped particles drift in longitude in a dipole field
with V x B = 0 is obtained by using equation (2.33) for the instantaneous
drift velocity and averaging over a complete bounce period. From Figure
4.5 it is apparent that the instantaneous change in longitude <p is

(4.39)
dcp _ V±(r, 6)
dt rsind

The change in 0 during a complete bounce along a field line which crosses
the equator at /?0 is
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48 Adiabatic invariants

Figure 4.5. Coordinate system for calculating the longitudinal drift velocity of a
trapped particle.

v±(e) ds
'o R0sin3 d v\\

(4.40)

where ds is the element of arc length along a magnetic field line measured
from the equator and sm is the distance along the field line from the
equator to the mirror point. After changing the variable of integration
from s to 0 the time rate of change of longitude averaged over a bounce is

_d0\ = A0 = 4 r*ft V±(0) / d s \ d 0

dt I rb rb Jdm Ro sin
3 0 \ d0 / v\\

(4.41)

Factors in the integrand of equation (4.41) can easily be computed for a
dipole field. From equations (3.19) and (2.33):

ds _
dd '

(4.42)
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(4.43)

The parallel and perpendicular velocities can be expressed in terms of
the equatorial pitch angle aeq as

+ 3cos20)1/2

v±(6) = v2 sin2 ateq
sin60

= v2\l - sin2

sin60
(4.44)

Inserting these expressions into equation (4.41) results in an integral
expression for the angular drift velocity:

dt

4 3mvRr

qB0R
3

• 3*/i x. ^n\\^ i • 2 (1 + 3cos26y/2]in3 0(1 + cos2 0) 1 - 2sin2 afeq-̂  —
L sin6 0 J

/ F (\ 4- ^rns 2 f lW 2 l 1 / 2

(1 + 3 cos2 0)3/2 1 - sin2 a ( 1 + 3 C O S tf)

L s in 6 0 J

d0

(4.45)

This equation cannot be integrated analytically, and values of the angular
drift velocity and drift period rd = 2Tr/(d<j)/dt) must be obtained numeric-
ally. For most purposes it is adequate to use an empirical fit which
approximates the values of equation (4.45). An expression for the drift
period accurate to ~ 0.5% is

- 0.3333(sin*eqf
62] (4.46)

mv"-
This approximation can be simplified by collecting all constant factors to
give

= Cd • ( ^
y/32

- 0.3333(sin *eq)
0-62] (4.47)

where

and

Cd = 1.557 x 104 s for electrons

Cd = 8.481 s for protons

Note that as Ro increases, the drift period decreases in spite of the larger
drift path. Also as the particle velocity or energy increases, the drift
period decreases. For non-relativistic particles such as protons below
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50 Adiabatic invariants

50 MeV, the drift period is inversely proportional to energy. Equatorial
particles drift more rapidly than those mirroring at higher latitudes,
although this variation is not large.

Graphs of the drift periods of electrons and protons are plotted in
Appendix B. Figures B.2 and B.3 give the drift periods for electrons and
protons which mirror at the equatorial plane. The drift periods are plotted
as a function of particle energy and equatorial crossing distance given by
the parameter L, which is defined in the section on p. 53. For particles
with equatorial pitch angles other than 90°, one must use Figure B.5. In
Figure B.2 note the limiting value of rb as electron energy becomes
relativistic. This condition occurs because the bounce period is simply the
helical distance divided by the particle velocity. As the velocity ap-
proaches c, no further reduction in rb is possible.

Third adiabatic invariant

The third periodic motion of a geomagnetically trapped particle is the
longitudinal drift about the Earth. In a static field, conservation of the first
and second invariants will ensure that the particle returns to its original
field line and will specify the field line occupied by the particle at each
longitude. In a slowly changing magnetic field, \i and / are still conserved,
but p may change in a way which depends on the details of the trajectory
and the magnetic field changes. Hence, an additional constant of motion is
needed to define trajectories in slowly changing magnetic fields.

The third invariant is derived as before by integrating the canonical
momentum over the periodic trajectory:

dl (4.48)

where in this case dl is the increment of longitudinal drift path, usually
taken at the equator. The first term in (4.48) is neglected because the
average momentum p in the direction of dl is small, vd being orders of
magnitude less than the actual particle velocity. Again, using Stoke's
theorem,

| A)-dS (4.49)

where dS is an element of the surface enclosed by the equatorial drift
path. Since V x A = B the third invariant is

J3 = qfo • dS = q<$> (4.50)
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Third adiabatic invariant 51

The quantity <E> is the magnetic flux enclosed by the drift path. Since the
north-south oscillations are along field lines, the value of 4> does not
depend on the latitude of dl as long as the drift path encompasses the
Earth on the shell containing the guiding center trajectory. For this reason
the third invariant is often called the flux invariant and is usually denoted
as <£, omitting the charge q.

Because of the magnetic singularity at the center of the Earth it is
inconvenient to calculate the flux enclosed by the drift path. However, in
the Earth's field the net flux inside the drift path is equal to the flux
outside the path. Thus, the flux outside the integration path is usually
computed to find O. In a dipole field the value of O for a particle at
equatorial distance Ro is

Bo( —-) 2irrdr

R3

= 2ITB0—- (4.51)
Ro

Note that, as Ro increases, the net flux enclosed decreases.
A non-relativistic proof of the invariance of 4> for a simple case is given

below (see Figure 4.6). Assume that the particle is in the equatorial plane
(P\\ = 0) a n d the magnetic field, which was initially Bl9 slowly changes to a
smaller value 52- AH vectors except B and dS, the element of area in the
surface enclosed by the drift path, lie in a plane. The particle will move

INITIAL DRIFT PATH

FINAL DRIFT PATH / ,? Bg = const

ExB

Figure 4.6. Conservation of the third adiabatic invariant. Magnetic flux enclosed
by a particle drifting perpendicular to B and to VB remains constant during slow
changes in the magnetic field.
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52 Adiabatic invariants

from curve Cx to C2, being driven by the E x B/B2 force of the electric
field induced by the changing magnetic field. Any increment to O result-
ing from dB/dt is produced by a change in the flux density B within the
original curve and by a change in the area enclosed by the drift path. Thus

A4> = AOB + AOA (4.52)

The change in O attributed to a change in B during a drift period rd is

AOB = rdf — -dS (4.53)
hdt

where the integral is over the entire surface inside the particle drift path.
The increase in 0 associated with the change in the area enclosed by the

drift path is

A<DA = B • AS = T J B • (VE x dl) (4.54)

where VE is the E x B/B2 drift velocity and dl is the element of drift path.
Therefore,

/ / ¥7 w T» \ \

(4.55)

Expanding the triple vector product and noting that B • dl = 0 results in

B • (E • dl)B

B2

•dl

(V x E) • dS

dB
= - r d f — -dS (4.56)

h dt
Thus

AO = A<DB = AOA = 0 (4.57)

The third or flux invariant is most useful in describing drift paths during
slow changes in the geomagnetic field. For example, slow compressions or
expansions of the geomagnetic field will cause trapped particles to move
inward or outward as required to conserve the magnetic flux exterior to
their orbits. Similarly, the very slow secular decay of the geomagnetic field
results in an imperceptible inward motion of the radiation belts. The
overall effect on trapped radiation of these slow changes is reversible;
restoration of the field will return the particles to their original condition.
Rapid changes in B, that is, dB/dt > B/rd9 will cause permanent changes
in O, as will be discussed in Chapter 6.
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The L-shell parameter 53

Geomagnetic coordinate system based on adiabatic invariants - the L-shell
parameter

The lack of symmetry in the irregular geomagnetic field greatly compli-
cates the tabulation of trapped radiation fluxes as a function of position,
and in geographic coordinates a three-dimensional grid would be required
for a complete description of flux values in space. Furthermore, a spatial
coordinate system based on geographic coordinates loses the simplicity of
the dipole formulas and does not lead to insights into the relationships of
fluxes at different locations. What is needed is a coordinate system based
on trapped particle motion which will have identical values for the
coordinates of magnetically equivalent positions. By utilizing the near
symmetry of the Earth's field to some extent the coordinate system would
also eliminate the need for a longitude coordinate to describe the long-
term trapped populations of particles.

The adiabatic invariants suggest such a system. The scalar value of the
magnetic field is a useful coordinate since particles mirroring at a given B
will mirror at the same value of B throughout their longitudinal drift. The
second invariant, or, rather, its related function / , could be used as the
second coordinate, since two positions in space with the same B and /
values are magnetically equivalent from the standpoint of a trapped
particle. Particles mirroring at a given value of 5 , / will drift around the
Earth, mirroring at identical values of B and / in both hemispheres.
Unfortunately, the quantity / is not an easy coordinate to interpret and
does not vary linearly with any familiar variable. A more serious limitation
is that it is not readily apparent from the values of B and / at several
positions whether these locations lie near the same magnetic drift shell.

These difficulties are circumvented by a coordinate system devised by
Mcllwain. He recognized the convenience in a dipole field of the para-
meter, Ro, the distance from the dipole center to the equatorial crossing or
minimum B value of a field line. In a dipole, Ro defines a field line as well
as a drift shell and is readily visualized. During particle bounce and drift
motion the particle remains on field lines having the same Ro. In a dipole
field, if the B and / values of a location are known, the equatorial
crossing point of the field line passing through that point can be deter-
mined. Thus,

Ro = / ( / D , 5 D , MD) (4.58)

where / ( / D ? # D ? ^ D ) denotes a function of the dipole magnetic field
value 5 D , the integral invariant function /D and the magnetic moment of
the central dipole JfL^-

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online from within the IP domain of the University of California on Fri Dec 05 13:29:29 GMT 2014.

http://dx.doi.org/10.1017/CBO9780511524981.008
Cambridge Books Online © Cambridge University Press, 2014



54 Adiabatic invariants

For the Earth's field, one then defines a new variable, L, in terms of the
actual geomagnetic field. The L value of a location is based on values of B
and / at that location calculated from the true, distorted geomagnetic
field, but uses the same functional relationship relating the equatorial
crossing distance to B and / for a dipole field. Thus,

LRE = / ( / , 5 , JKE) (4.59)

where JHE is the value of the dipole term for the Earth's field.
The variable L will be used as the second spatial coordinate. The

distance LRE is roughly equal to the distance from the center of the
Earth's tilted, off-center, equivalent dipole to the equatorial crossing of
the field line. Positions around the world having the same B and / will, by
definition, have the same L values. Positions on the same field line in the
distorted Earth's field will have very nearly the same values of L. Thus, a
particle which bounces and drifts around the Earth will be very near to an
L = constant shell and can be assumed to follow an L = constant path. In
the distorted field L defines magnetic drift shells, and the value of L
denotes the distance in Earth radii from the center of the equivalent
dipole to the equatorial crossing for that drift shell.

It is frequently convenient to represent fluxes in the easily understood
r — A polar coordinate system based on the B, L values of positions in the
distorted Earth's field. For this purpose the coordinates r and A of a point
are defined implicitly by the B and L values of that point by

r = L cos2 A

B = —-| 4 - —
L

(4.60)

with r given in units of Earth radii. The values of B in terms of r and A
have the familiar dipole relationship of equation (3.15).

Computer programs which represent the Earth's distorted field usually
include features which will compute the value of L for any position in
space. Although the functional relationship of a position to its L coordin-
ate is quite involved, in practice the conversion is routine.

A convenient way to interpret the B, L coordinate system for trapped
particles is an follows. Imagine a dipole field with JK equal to the dipole
term in the Earth's field. If one removes trapped particles from the
Earth's distorted field and places them in the imaginary dipole field at
positions which preserve their mirroring B and / values, then one has a
description of the radiation belts in the B, L coordinate system.
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Problems

1. The one-dimensional, frictionless spring oscillator sketched below obeys the
differential equation.

i
i

m

§55555353555

m-
d2x

dt2 = -kx

(a) If the maximum amplitude of oscillation is A, find the expression for the x
coordinate as a function of time.

(b) Find the expression for the adiabatic invariant of the system.
(c) If, initially, the displacement is A and the springs are slowly strengthened

to increase the frequency, what is the new amplitude when the frequency
is double the initial value?

2. A satellite experiment is designed to produce artificial aurora by deflecting
trapped electrons so that they enter the atmosphere. The satellite is in the
equatorial plane at R$ — 3RE, and it generates electromagnetic fields which can
deflect electrons:
(a) Assuming that the Earth's field is a centered dipole and that electrons can

be trapped only if they mirror above 100 km, what is the smallest pitch
angle that a trapped electron can have at the satellite position?
To make sure that most of the electrons impact the atmosphere it is
desired that the pitch angles at the 100 km altitude be 45°. For these
electrons what must their pitch angle be at the equatorial plane? What is
the minimum deflection angle that the satellite must supply to the trapped
electrons to achieve this result?
If the satellite were crossing the Ro = 3RE field line at a latitude of 45°
what is the minimum required deflection?

100 km-j

(b)

(c)
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56 Adiabatic invariants

3. An electron of total momentum p is traveling along a field line between mirror
points of strength Bm. In the northern hemisphere a weak D.C. electric field
occurs, accelerating the electron downward to a new total momentum p\.
What is the magnetic field value at the new mirroring point? Assuming that the
electron does not strike the atmosphere and that the electric field is main-
tained, what will be the mirroring field value in the southern hemisphere?

4. In a dipole field a charged particle of momentum p starts at R$ = 2RE with
second invariant / = 0. As it drifts to the other side of the Earth it encounters
a weak electric field in the 0 direction which slowly increases its momentum to
1.2p. On what RQ value will the particle now be? What will be its new / value?

5. Assume the particle in Problem 4 has an equatorial pitch angle of 45°. After
being accelerated by the azimuthal electric field to 1.2p, will the mirroring
latitude be increased or decreased? Explain why.

6. A proton of momentum p is drifting around the Earth at L = 2 with an
equatorial pitch angle of 90°. If the magnitude of the Earth's dipole moment
slowly increases by 50%, at what distance from the dipole will the proton
guiding center be at the end of this increase? What will its new momentum be?

7. An advanced civilization wishes to remove the radiation belts around its planet
by constructing an electrostatic grid of wires in meridian planes extending
several planet radii. As protons drift between these wires the E x B drift
moves the protons outward. Repeated passages are intended to remove the
protons to the region beyond the grids. Why won't this work using constant
voltages on the grids? Would it work using time-dependent voltages? (Assume
that the potential differences are much less than the energy of the protons.)

NEGATIVE GRID

8. A trapped proton at L = 4 mirrors at a value of # = 4 x 10~5 T, while the
equatorial field value is 5 x 10~7 T. At the mirroring point the proton collides
with an oxygen atom and has its pitch angle changed by 5° with no loss in
energy.
(a) Find the B value of the new mirroring point.
(b) Find the new value of the equatorial pitch angle.
(c) How much was the equatorial pitch angle altered by the collision?
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A non-relativistic proton with 90° pitch angle is drifting in crossed electric and
magnetic fields starting at x = y = 0. The electric field E is in the x direction
and is uniform. The magnetic field is directed into the paper and has a flux
density which varies with y as B = Boeay. The guiding center will move under
combined E x B/B2 and gradient B drifts.

x

si
Will the energy of the proton increase or decrease? If the initial momentum

is po, what is the x, y position when the momentum has changed to p. (Note
how readily the answer is obtained using conservation of the first adiabatic
invariant.)

10. At L = 4, stably trapped electrons of 5 keV fill all pitch angles except for the
loss cone (assume a dipole).
(a) What is the value of the loss cone angle if there are no electric fields?
(b) If an electric field directed upward from the Earth has an overall voltage

drop of 1 keV between the equator at L = 4 and the atmosphere, what
will be the equatorial loss cone angle for the 5 keV electrons?

11. A 5 MeV proton with second adiabatic invariant / = 0 is drifting on the L = 2
shell:
(a) What must the energy be of a He++ ion (doubly charged He ion) so that

it will drift at the same velocity on the same L shell? (Neglect relativistic
effects.)

(b) If the proton and helium ion are not confined to the equatorial plane but
have the same pitch angle and the energies established in part (a), will
they still drift at the same velocity?

(c) Given the conditions in part (b), do the proton and He ion have the same
/ value?

12. A synchronous satellite in orbit at L = 6.6 is monitoring the loss cone while a
TV camera on the ground is observing the atmosphere at the end of the field
line passing through the satellite. (Assume a dipole field and neglect the
thickness of the atmosphere.)
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58 Adiabatic invariants

(a) At what magnetic latitude does the auroral observer locate his equipment
in order to observe the light produced by particles intersecting the
atmosphere?

(b) What is the angle of the loss cone as measured by the satellite at the
equator?

(c) The satellite measures a sudden burst of electrons with energies ranging
from 10 keV to 100 keV moving parallel to the field line. If the 100 keV
electrons arrive at the top of the atmosphere 0.308 s after being detected
by the satellite, how much later will the 10 keV electrons arrive?

13. A non-relativistic proton is trapped in the equatorial plane of a centered
dipole field, and a uniform electric field E extends in the dawn to dusk
direction. If the proton has velocity vo when crossing the noon-midnight
meridian, show that the equation of its guiding center is

-r3 + qEr4sind> = constant
2

where r is the distance from the dipole and 0 is longitude.
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