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Particle diffusion and transport

Introduction

The trapping properties of the geomagnetic field were described in preced-
ing chapters. In particular, the guiding center equations and the adiabatic
invariants were obtained, and it was found that energetic ions and elec-
trons with appropriate initial position and velocity conditions were con-
fined by the Earth's magnetic field. If the invariants were rigorously
conserved, this confinement would be permanent; a trapped particle
would remain trapped forever. However, rigorous conservation of the
adiabatic invariants would also prevent other particles, such as those in the
solar wind, in cosmic rays or in the ionosphere from ever becoming
trapped. The radiation belts would then consist of only those particles
which were injected in place by decaying neutrons or other radioactive
particles.

There is a large body of experimental evidence showing that the
adiabatic invariants are not conserved absolutely. Low-altitude satellites
usually observe a flux of particles moving down the field lines and destined
to be absorbed in the atmosphere. Also, the drift loss cone usually
contains small but measurable fluxes of particles whose invariants must
have been altered during their last drift period and which will be lost into
the atmosphere during their current drift cycle. The observed time vari-
ations of both electron and ion fluxes also illustrate the frequent alteration
of particle orbits. Although some of these variations can be attributed to
reversible changes in the geomagnetic field and not to changes in the
adiabatic invariants of the particles, most of the variations demand sub-
stantial modifications to the particle trajectories along with the injection of
fresh particles and the loss of previously trapped ones.

The picture of the radiation belts is therefore one in which the magnetic
container is an imperfect trap. Some defects are expected since the
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Introduction 93

conditions required for the adiabatic invariants to hold rigorously are not
always present. In the discussion of adiabatic invariants in Chapter 4 it was
assumed that the magnetic and electric fields did not change appreciably
during the cyclic motion of the particle. Field changes more rapid than any
of the three cyclic motions associated with the three adiabatic invariants
will lead to a change in the value of that invariant. In the magnetosphere a
rich variety of electromagnetic and electrostatic waves are present with
frequencies comparable to the gyration and bounce frequencies of the
trapped particles. These waves will change the values of the corresponding
adiabatic invariants and may remove the particles from the trapping
regions. Magnetic activity, with its large-scale time variations in the
electric and magnetic fields, also leads to a breakdown in one or more of
the adiabatic invariants, usually the third invariant. The next three chap-
ters will deal with changes in adiabatic invariants resulting from time
variations in the fields and will show how field changes affect the particle
distributions.

The equations for particle motion developed in the preceding chapters
were deterministic in that the electric and magnetic fields were specified
and the particle trajectories were then calculated. In treating the motion of
charged particles in fluctuating fields a different approach is needed. In
general, the time-dependent fields are not known precisely. Only the
statistical properties, such as the power spectra and the geometrical
pattern of the distortions, are known. It is therefore not possible to predict
where an individual particle will be at some future time. One can only
calculate the probabilities of the particle's behavior. When dealing with a
large number of particles, these probabilities are quite adequate to de-
scribe the time evolution of the entire particle distribution.

Treatment of the time evolution of a distribution of particles whose
trajectories are disturbed by innumerable small, random changes is by
diffusion theory. However, this application of diffusion theory differs in
concept from most other uses. In the usual diffusion applications, such as
gases diffusing through porous media or neutrons diffusing through a
moderator, the particle motion itself constitutes the diffusion. Any move-
ment of the particles is tabulated as diffusion and is treated as such. If no
diffusion occurs, the particles will remain in place. Diffusion of trapped
particles is quite different. These particles may gyrate, bounce and drift
around the Earth without actually diffusing. Only when one or more of
their adiabatic invariants is altered can the particle be said to diffuse.
Thus, the major motion is not associated with the diffusion processes to be
studied, and one must remove this normal, adiabatic behavior from
consideration in describing the diffusion process.
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94 Particle diffusion and transport

Diffusion equation

To illustrate the standard treatment of diffusion consider the one-dimen-
sional case of particles diffusing through a porous column oriented along
the x axis, as in Figure 6.1. In this case the distribution function /(x, t) at
time t is the number of particles in unit dx. Assume that at time t = 0 the
distribution was f(x, t = 0) and that there are no sources or sinks in the
interval xx to x2. The container has free boundaries at xx and x2 where the
particles can escape, so the distribution must vanish at those positions.
The net current of particles diffusing across a position at x is proportional
to the negative of the gradient of /(x, t) at that point and is given by
Fick's law:

Current = -
dx

(6.1)

D being the diffusion coefficient. All the information on the physical
mechanisms governing the diffusion process is contained in D. It is always
positive and may of course be a function of x. The direction of net flow
will be in the positive x direction if df/dx is negative. The net number of
particles entering a section of length Ax in unit time by diffusing past x
and x + AJC is then

dt dx x+Ax dx
In the limit of Ax —> 0

M. = ±\D*L
dt dx I dx

(6.2)

(6.3)

f(x,t>

NET
CURRENT

Figure 6.1. Impact of diffusion on a distribution of particles. Diffusion smoothes
the distribution by decreasing the density at the peaks and increasing the density
in the valleys.

Cambridge Books Online © Cambridge University Press, 2009
Downloaded from Cambridge Books Online from within the IP domain of the University of California on Fri Dec 05 15:39:22 GMT 2014.

http://dx.doi.org/10.1017/CBO9780511524981.010
Cambridge Books Online © Cambridge University Press, 2014



Diffusion equation 95

Equation (6.3) is the diffusion equation which describes the time
evolution of the distribution function. If D is independent of x, the
instantaneous growth or decay of the particle density is proportional to the
local value of d2f/dx2. Where f(x, t) is concave upward (32f/dx2 > 0 ) ,
Sf/dt is positive and /(JC, t) will grow. Similarly, / will decrease at local
maxima where d2f/dx2 < 0. The diffusion process reduces peaks and
increases valleys, thereby smoothing the distribution function (see Figure
6.1).

If /(JC, t) is known at some time, say t = 0, the value of / at a later time
can be found by solving (6.3) as an initial value problem. In the general
case where D = D{x) the solution is obtained in the usual way by
separation of variables. Let /(JC, t) be represented as the product of a
function of x and a function of t:

f(x, t) = X(x)T(t) (6.4)

Substituting (6.4) into (6.3) and dividing by X(x)T(t) gives

1*L = 1 A[ DM] (6.5)
T dt Xdx[ dx \

Because the left-hand side is independent of x and the right-hand side is
independent of t, each term must be equal to a constant, which is
designated — An. Equation (6.4) can then be separated to give

The time dependence is obtained by integrating (6.6) to give

T(t) = anc~^ (6.8)

where an is a constant of integration. The x dependence of / is more
difficult to obtain Since equation (6.7) with f(xi) = f(x2) = 0 is an eigen-
function equation, having solutions for only specific values of Xn. The
function X(x) will be expressed as a sum of eigenfunctions gn{x), where
the gn satisfy

[ ^ | _Aii& (6.9)
dx L dx J

with boundary conditions

8n(xi) = gn(x2) = 0

and are ordered such that Xi<X1<X2> . . . . These boundary conditions
represent free escape or absorption at the boundaries where the particle
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96 Particle diffusion and transport

density must vanish. If particles are reflected at the boundaries, different
boundary conditions, such as dgn(xi)/dx = dgn(x2)/dx = 0 must be used.
There are an infinite number of gn, although in any practical problem n
will be limited. Although the detailed shape of gn{x) depends upon D(x),
the general character follows the pattern illustrated in Figure 6.2 for the
first three eigenf unctions. The lowest eigenfunction gx vanishes only at the
boundaries and is always positive between xx and x2. The next higher term
becomes zero once in the interval xx to x2, and subsequent gn cross the
horizontal axis n — 1 times between boundaries. Thus, higher n eigenfunc-
tions have higher spatial frequencies and show more structure.

The eigenf unctions of (6.9) are orthogonal and can be normalized to
give

f
gngm (6.10)

where 5nm is zero unless n = m, in which case 5nm = 1.
The general solution of (6.7) is a sum of the eigenf unctions, and the

solution of (6.3) in the form of (6.4) is therefore

f(x, t) = 5>ne-A-'gn(x) (6.11)
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Figure 6.2. First three eigenf unctions of equation (6.9).
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Particle diffusion in the radiation belts 97

The constants an must be chosen to fit the initial conditions. If f(x, t = 0)
is the distribution at t = 0, each am can be obtained by multiplying both
sides of equation (6.11) by gm and integrating over x from xx to x2.
Because of the orthonormality of the eigenfunctions only the term
containing gm on the right-hand side survives. The coefficient am is then
given by

am= f2f(x, t = 0)gm(x)dx (6.12)

The magnitude of the coefficient am depends on the complexity of the x
dependence of f(x, t = 0). If the initial distribution has a single maximum,
as does gu then ax will be large and coefficients for n > 1 will be smaller.
Values of an for large n will be appreciable only if f(x, t = 0) contains
high spatial frequencies. Computing the an is equivalent to decomposing
f(x,t = 0) into its eigenfunction modes. The solution to the diffusion
problem as represented by equation (6.11) is a sum of eigenfunctions with
initial amplitudes, each decaying exponentially on a time scale of A"1.
Since kn increases with n, the modes with high n decay more rapidly and
the distribution eventually consists largely of gl9 which then decays as
exp(—kit). The more rapid decay of higher modes leads to smoothing of
the distribution function described earlier.

Diffusion in more than one dimension can be treated in a similar
manner, although separation of the spatial variables is sometimes difficult.
If one can choose a coordinate system in which one or more coordinates
are constant on a boundary surface, the solution is obtained more easily.
For example, spherical polar coordinates are appropriate for treating
diffusion inside a ball. Cartesian coordinates are best for a rectangular
block, and cylindrical coordinates simplify the treatment of diffusion in a
right circular cylinder.

Particle diffusion in the radiation belts

As described previously, radiation belt particles undergo large-scale
motion even if no diffusion is taking place. It is therefore necessary to cast
the diffusion equation in a form which excludes normal adiabatic motion.
The obvious coordinates for such a description are the adiabatic invariants
themselves; a distribution function /(/i, / , O) would remain unchanged if
only adiabatic motion occurred. However, a distribution function in these
coordinates is difficult to visualize and setting up a diffusion equation in
these variables is not straightforward. One must resort to a general
approach to diffusion theory which is valid for arbitrary coordinate
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98 Particle diffusion and transport

systems. The Fokker-Planck equation provides such an approach as it is a
prescription for deriving a diffusion equation in terms of the time rate of
change in the coordinates of the particles.

A restricted form of the Fokker-Planck equation is derived as follows
where /(x, t) is the number of particles per unit x at time t. The quantity x
is a vector so that the following derivation is valid for diffusion in more
than one dimension. Let ^(x — Ax, Ax, At) be the probability that a
particle at x — Ax will have its coordinates increased by Ax in time At.
The characteristics of the mechanisms for producing the diffusion are
contained in the probability W. In the spirit of diffusion it is assumed that
the processes driving the diffusion will change x by only a small increment
during each elemental interaction. The probability W(Ax) will therefore
be large only for small Ax. In this concept the time interval At must be
long compared to the time interval between the individual perturbations,
yet short enough that major changes in the distribution function do not
take place in A t. At time t + At

/(x, t + At) = f d(Ax)/(x - Ax, t)W(x - Ax, Ax, At) (6.13)

where the integral is taken over all values of the increment Ax, although
contributions to the integral will be small for large Ax. Expand the
left-hand side in a Taylor series about t and the right-hand side in a Taylor
series about x:

/(x, 0 + *L±t +...= f d(Ax)(/(xmx, Ax, AO - (—0F/)W.
dt J { \dxi 1

where the xt are the components of x. In this and the following chapters
when an index is repeated within a single term, the term is to be summed
over that index. The first term on the right-hand side of equation (6.14) is
equal to /(x, t) since /(x) is not a function of Ax and the integral over W
is unity. In the remaining terms on the right the order of differentiation
and integration can be interchanged since Ax is not a function of xt or Xj.
With these changes equation (6.14) becomes

dt 3. .

- . . . (6.15)
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Particle diffusion in the radiation belts 99

/(x) is not a function of Ax and can be brought outside the integrals. If
one denotes the averaged time rate of changes in the increments by
brackets, i r

<AJC,-> = — |Ax;W(x, Ax, Af)d(Ax)
At)

(AXiAxj) = — fA^.AJC7-V(X, AX, Af)d(Ax) (6.16)
At J

one obtains the Fokker-Planck equation as

i £ + . . . = —(**)/ + !_*_< A*A*y>/ + . . . (6.17)
3f 3JC,- 2 3jc/3jcy-

For this equation to be useful, the higher-order terms in the Taylor series
expansion must be negligible, a characteristic governed by the mechanisms
driving the diffusion. If the incremental steps in the diffusion process are
small, these higher-order terms are not important. The coefficients (Ax,)
and (AxiAxj) are sometimes called the first and second Fokker-Planck
coefficients. In six-dimensional phase space there will be 42 of these
coefficients. However, in the three-dimensional space of the adiabatic
invariants the number is reduced to 12. Furthermore, only nine of these
are independent since (AJC/AJC,) and {AxjAxi) are equal. In actual prac-
tice, some mechanisms affect only one variable; in that case the second
coefficient is zero unless i = j . In the discussion leading to equation (6.20)
it will be shown that the first Fokker-Planck coefficients can be expressed
in terms of the second Fokker-Planck coefficients. Also, by selecting the
coordinates cleverly, it is possible to further reduce the number of
coefficients needed and simplify equation (6.17).

The transformation from six-dimensional phase space to the three-
dimensional space of the adiabatic invariants represents a loss of informa-
tion. The adiabatic invariant representation contains no information on
the instantaneous phase of the particle, that is, its position in gyration,
latitude or longitude. Such information is not needed if the particles are
uniformly distributed in phase. In the remainder of this chapter it will be
assumed that there is an efficient phase mixing mechanism which quickly
restores phase uniformity after each elemental perturbation. The distribu-
tion function will therefore represent a value averaged over the phases of
the variables.

The Fokker-Planck equation as derived here is linear in that the
coefficients do not depend on /(x, i). This condition obtains if the
probability of changes *P is independent of /(x, i). If one were considering
mechanisms in which the particles act on themselves, for example by
scattering from each other, this linearity would be lost and a more
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100 Particle diffusion and transport

complex approach would be needed. The great virtue of the Fokker-
Planck equation in this application is that it provides a prescription for a
diffusion equation, even if the coordinates and geometry are difficult to
interpret. One only needs to calculate the coefficients by applying equa-
tion (6.16) to obtain a valid equation. Although it is sometimes difficult to
obtain < Ax,), this coefficient is not necessary, as will be seen next.

In Chapter 5 an equation for the evolution of the phase space distribu-
tion function F(p,q) was obtained in proving Liouville's theorem. This
equation, generalized to three spatial dimensions and three conjugate
momenta, is

+ qt + Pi = = 0 (6.18)
dt dqt dPi dt '

From (6.18) it can be seen that if dF/dqi and dF/dpt are zero for all qt and
Pi, then the time variation of F, namely dF/dt, must also be zero. Thus, if
the distribution is uniform in p{ and qh it will remain uniform and
constant.

If one uses phase space coordinates for the Fokker-Planck equation
(6.17) and postulates that the distribution F0(p, q) is uniform in p and q,
one obtains

^ r = ° = -j-{AXi)Fo + l
dt ax{ 2

+ ^(AxiAxj)] (6.19)
2 d J

The quantity in brackets must be a constant, independent of the mechan-
isms causing changes, and further considerations show that it is zero.
Thus, in phase space coordinates there is a relationship between the first
and second Fokker-Planck coefficients:

(Ax() = -—(AxiAxj) (6.20)

Although this relationship was derived for a uniform Fo, the Fokker-
Planck coefficients do not depend on the distribution function and the
result ((6.20)) is general. With equation (6.20) substituted for (Axi) in
equation (6.17) and neglecting the higher-order terms the Fokker-Planck
equation takes on the diffusion form

3F = _3_r (A^A*;) 3F]
dt dXil 2 dXj\

where \{AxiAXj) = Dtj is the diffusion matrix.
The simplicity of equation (6.21) is a direct result of working in phase
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Particle diffusion in the radiation belts 101

space variables. In any other set of variables, say yt where the distribution
Y(y) is the number of particles per unit Ay, the diffusion equation ((6.21))
would become

3Y(y, t) = a \(AyAyj) . Q 3 /r(y,0\] ( 6 2 2 )

3* dyX 2 3>>A Q ) \

where Q = 3{Xu *2? * s ) (6.23)
3( )

is the Jacobian for transforming from phase space variables x to any other
coordinates y. There must exist a one-to-one mapping between the two
coordinates systems, otherwise the Jacobian will be zero. Since Q- enters in
both the numerator and denominator of (6.22), the constant factors in Q
cancel and need not be considered in making this transformation.

The most logical variables for radiation belt calculations are the adia-
batic invariants JX, J and <J>. Since it is possible to transform from phase
space variables to \i, J and O by a series of canonical transformations
whose Jacobians are constants, equation (6.21) can immediately be written
with the adiabatic invariants as independent variables. The transformed
equation is

3F(u , / , <E>) 3 (^ 3 _ , T ^ x \ ,s ~A\
^-2—-—- = Dij F^u, / , O) (6.24)

dt dXi\ dXj /
where xt with / = 1, 2 or 3 denotes the adiabatic invariants \i, J and O, and

i, / , O)d/id/dO is the number of particles in the elemental volume
>. Transformations to other variables can be made using equation

(6.22) and the appropriate Jacobian.
In treating diffusion in the radiation belts, a shrewd choice of coordi-

nates based on the mechanism causing diffusion can greatly simplify the
calculation. If an adiabatic invariant is not changed by the process con-
sidered, that invariant is a good one to use as a coordinate since the
diffusion terms containing it will vanish. Possible choices of the three
variables in addition to (/i, / and O) are (£ , aeq, L), (/i, 2?m, L) and many
others. In all cases it is essential that the Jacobian relating the adiabatic
invariants to these new variables does not vanish.

For example, if one is dealing with diffusion in O only, the adiabatic
invariants //, / and 4> are a reasonable choice since [i and J are constant
and the only diffusion coefficient required is ((AO)2)/2. On the other
hand, if only the pitch angles change in the diffusion process, then
(£ , areq, L) would be a good choice as the only term in (6.22) would be
the one containing ((A<*eq)

2). In each of these cases the equation to be
solved has only one term in the sum on the right-hand side.
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102 Particle diffusion and transport

Constructing the Jacobian for a given transformation is straightforward
but sometimes tedious. The procedure is to express the adiabatic in-
variants in terms of the desired variables and then carry out partial
differentiation and evaluate the Jacobian determinant. Each partial
derivative operation is done keeping the other two independent variables
constant. As an example, if one wishes to treat changes in O but prefers to
use the set of variables (//, / , L) (since L is more easily associated with
experiments than O), the Jacobian is

By By, By

By BJ BL

BJ BJ BJ

By BJ BL

By BJ BL

-

0 1

0

* - k 0 Z l
L2

= -V (6-25)

For diffusion in L the diffusion equation ((6.22)) then becomes
T>U = ±\DLL J_ A n

BL[ L2BL
(6.26)

Bt
\L = ((AL)2)/2.

A more complex example is the case of pitch-angle scattering in which
aeq is changed but the energy and L are kept constant. A good set of
independent variables is E = kinetic energy, L and x = cos areq. For these
variables, the adiabatic invariants can be written as

E(E + 2m0c
2)(l - x2)

2m0c
2Beq

T \/[E{E + 2m0c
2)] A fs* , _

/ = —— ^_^L4 cos a(x, s) ds
c Jo

H 2m0c
2)]

(6.27)

-LN.ix)

= L - l

(6.28)

(6.29)

In evaluating the Jacobian, note that fieq in (6.27) is a function of L.
Also, the derivative of N^x) is obtained by expressing cos a(x, s) in terms
of x and differentiating the integral, leading to

(1 - x2)
-{N2(x) - (6.30)
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Particle diffusion in the radiation belts 103

where

AWx) - A f - - * - - M (6.31)
LJo cos a L

is l/L times the distance along the helix between mirror points. The
resulting Jacobian, omitting constant terms, is

] (E + m0c
2)L2xN2(x) (6.32)

After canceling terms with no x dependence the diffusion equation for
changes in x = cos aeq becomes

2(
The remaining task is to relate the distribution function in whatever

variables are chosen to the experimentally accessible quantities, namely
the particle fluxes. This relationship can often be found directly using
/(*i>*2>*3) to represent the number of particles in unit dxldx2dx?) and
calculating the number of particles in an energy interval which cross a unit
area in the equatorial plane at areq per unit time. This result can be used to
obtain flux. A more systematic method is to use the relation (equation
5.16) between flux and phase space density. Since phase space density is
equal (within constant factors) to the density of particles in the elemental
volume defined by the coordinates (^, / and <E>), the phase space density is
related to the chosen distribution function by the Jacobian transforming
that distribution to the space defined by the adiabatic invariants. Thus, the
flux j(E, a) is related to the phase space density by

, a) = p2F(p, q) oc

For example, in the L diffusion case the particle flux is obtained directly
from /(//, / , L) and can be expressed in several ways:

c2
j(E, a) = p2f(^ / , L)L2 = v ° J L2f(fi, / , L)

-/(p, /, L) (6.35)
- x2)

The Jacobians for several selections of coordinates are given in Table 6.1.
The last selection of variables is suitable for treating simultaneous

diffusion in pitch angle at constant energy and diffusion in L at constant
mirror latitude. The scattering process only changes x and the diffusion in
L only changes L. The variable z is fixed in both processes for equatorial
particles and is nearly constant for areq =£ 90°. The diffusion equation will
therefore have only two terms and two diffusion coefficients, DLL and Dxx.
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104 Particle diffusion and transport

Table 6.1. Frequently used coordinates and corresponding Jacobians

Variables Jacobian is proportioned to

\x, J, L L"2

L, E,x = cosafeq \/[E{E + 2m0c
2)](E + m0c

2)L2xN2(x)
pi, L , § = (1 — x2) = sin2 aeq \ill

(E + 2m0c2)£L3

x,
mlc*

As a generalization of Fick's law, the transformed equation (6.22) shows
that the particle current across any coordinate yt is given by

current across yt = - ^~"-"' QJLA x ^ ^ / ( 6 3 6 )

2 dyj\ Q }
When only the diagonal elements ((Ax,)2) of the diffusion matrix are not
zero, the direction of flow will be given by the signs of the derivative
factors. The value of this feature can be appreciated from the following
one-dimensional example.

Using (;U, / , L) coordinates and treating diffusion in L, the derivative
term in (6.36) for equatorial mirroring particles becomes (see equations
(6.26) and (6.35))

( / ) [ , eq ) (6.37)

where the last relation in equation (6.35) is used to express flux in terms of
/ ( / i , / , L). Because \i and x are constant for equatorial particles which
diffuse in L, keeping \i and / constant, only the L dependence of Q is
retained.

A plot of L3j(ae = TT/2) as a function of L, where / is evaluated at
constant \i (not constant energy), will immediately show whether particles
are diffusing inwards towards the Earth or outwards towards the magneto-
pause. This flow direction is determined entirely by the particle distribu-
tion and is independent of the mechanism causing the diffusion. The
magnitude of the diffusion is, of course, proportional to the diffusion
coefficient and is therefore influenced by the diffusion mechanism (see
Figure 6.3).

It was stated earlier that a careful choice of coordinates could greatly
reduce the difficulty of working with the general diffusion equation. Three
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Figure 6.3. Illustration of how the particle flow direction is related to the deriva-
tive of the distribution function.

coordinates are necessary to describe a particle's condition (after averag-
ing out the three cyclic phase variables) and the diffusion matrix therefore
contains nine elements. This number can usually be reduced by choosing
one, or at most two, variables which are not altered by the diffusion
process. If two of the variables are constants, the diffusion matrix has only
one non-zero element, and the diffusion equation is one-dimensional,
similar to equation (6.3). Even if two coordinates are active during the
diffusion, it may be possible to choose variables in which the changes are
uncorrelated, in which case the off-diagonal terms (AxtAXj)i =£ j vanish.

Finally, the choice of coordinates can be influenced by the ease of
calculation of the diffusion coefficients. The radial coordinate L is a
convenient variable for evaluating diffusion across magnetic shells as the
change in L by magnetic and electric field fluctuations is readily calculated
(see Chapter 8). Diffusion in the pitch angles of trapped electrons by
collisions with atmospheric atoms is simplified by using x = cos acq as the
basic variable, as will be shown in the next chapter.

Because of the special advantages of phase space coordinates many
authors prefer to use a distribution function proportional to the density in
phase space even if the coordinates in the diffusion equation are not phase
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106 Particle diffusion and transport

space variables. In this case equation (6.22) would be

, 0 = l a \(*yAy,)^3F(y, pi
1 J3* 0 9*1 2 dyj

where F(y, f) is the number of particles per unit volume of phase space at
y and t. The diffusion equation for phase space density corresponding to
equation (6.26) for L diffusion at constant /z, / is

U ) | (6.39)
L

dt 3L[ L2 3L

Injection of protons by cosmic ray albedo neutrons

In this chapter the diffusion of particles through the Earth's magnetic
trapping region has been described. This diffusion, which will be treated in
greater detail in Chapters 7 and 8, must occur if the solar and ionospheric
plasmas supply particles to the radiation belts. However, one source of
radiation belt protons and electrons does not require non-adiabatic mo-
tion. This source is the spontaneous decay within the trapping region of
energetic neutrons produced by cosmic ray collisions with the Earth's
atmosphere.

When a cosmic ray strikes the nucleus of an atmospheric atom, the
products include high energy neutrons. Some of these neutrons escape the
atmosphere immediately; others escape after further collisions. Thus, in
the region around the Earth there is a flux of outward moving neutrons, a
small fraction of which will decay within the magnetosphere. A neutron
decays into a proton, an electron and a neutrino, the half life of the
neutron being about 630 s. Because the proton mass is much larger than
that of the electron or the neutrino, a proton from neutron decay will
move initially with almost the same velocity as the parent neutron. If the
decay takes place in the geomagnetic field and the newly born proton has
a pitch angle outside the loss cone, the proton will be trapped. Electrons
from the decay are emitted isotropically in the center of mass system and
will also be trapped if their pitch angles are outside the loss cone. The
method of calculating the proton source strength is sketched below for
equatorially trapped protons.

Figure 6.4 illustrates, on an exaggerated scale, the gyration of a trapped
proton in the equatorial plane at distance LRE from the center of the
Earth. Each differential element of its path may be described by a vector
dr whose sense is the same as the velocity of the proton. If dr extended
backward intersects the Earth's atmosphere, then a neutron originating at
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Figure 6.4. Geometry of the source of protons from decay of cosmic ray albedo
neutrons.

that intersection point can decay while traversing the element dr and thus
add a proton to the proton flux in dr. If the extension of dr does not
intersect the atmosphere, injection is not possible in that element.

If jn(E, a) is the differential, directional neutron flux in the direction
dr, then the source of trapped proton flux at that position and direction
due to neutron decays in a 1 cm2 column of length dr is given by

M^Lir-UE.^-L (6.40)
at v yrn

where rn is the mean life of the neutron and y is the relativistic time
dilatation factor. The factor dr/v is the time a neutron of velocity v spends
in an element of length dr.

The average flux increase over the gyration cycle of the proton is
obtained by integrating both sides of equation (6.38) over a complete
gyration, noting that jn(E9 a) vanishes when the backward extension of di-
does not intersect the Earth. In the equatorial plane with gyration radius
p « RE the geometry of Figure 6.4 shows that neutrons contribute to jp

only over the fraction (pm/n of the gyration, where sin</>m = l/L. Thus, if
jn is independent of the zenith angle, the growth in proton flux is given by

— T 9 = — M E> a^ = V s m T
dt 77 \ 2/vytn L

If ; n (£ , a) is not independent of the zenith angle, this dependence must
be included in the integration of equation (6.38). For the general case of
injection off the equator, where neutrons emitted at all latitudes may
contribute, the latitude dependence of the albedo neutron flux must also
be included.

Extensive numerical calculations of the neutron decay injection show
that the source of high-energy protons is extremely small. However,
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108 Particle diffusion and transport

within the inner zone (L « 1.5) the loss rates of high-energy protons are
very low, and the equilibrium flux which can be produced by this source is
comparable to the observed proton flux above 50 Mev. The observed
fluxes of low-energy protons (< 10 Mev) and electrons are too large to be
produced by this weak, but well understood, source.

Problems

1. A distribution of particles obeys the diffusion equation in one dimension

c, t) _ c

dt dx
At x = 0 a source injects particles so that the net current in the x direction is
So- At x\ a sink absorbs all particles reaching x\\
(a) If D(x) — Do = a constant, find the steady-state distribution f(x).
(b) If D(x) = Doe** find the steady-state distribution.

2. (a) The radial diffusion equation for equatorially trapped particles is

9/fo J, L) = 3 \DLL 3 (L2f)

dt 3L{ L2

Let DLL = DoL10 and assume that there is a source of particles at L = 7.
All particles are absorbed by the atmosphere at L = 1. If f(L = 7) = /0,
find the steady-state L dependence of the distribution function. Show that
the net current is diffusing inward.

(b) With the same conditions as above, except that DLL = D0L
n, find the L

dependence of/(L).
(c) If n = 1 for the conditions given in part (b) find f(L). Sketch f(L).

3. The diffusion equation in a two-dimensional cartesian coordinate system is

dt dx dx dy dy
Let / = X(x)Y(y)T(t), separate the variables and write the general solution
for the equation where D = Do = constant and

/ = 0 at x = 0 and at y = 0

/ = 0 on the lines x = x\ and y = yi

4. Consider the diffusion of particles in an infinite cylindrical medium. Assume
that there is no z or (p dependence of the distribution. The diffusion equation
is

3/
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Assume D = Do = constant. Write the diffusion equation in cylindrical co-
ordinates. Separate the time and spatial variables and find the lowest-order
eigenfunction and eigenvalue. Assume that all particles are absorbed at the
surface r = r0.

5. A group of 5 kev protons with aeq — 90° is injected at L = 7 in a dipole field. If
they diffuse with \i — constant and / = constant, find the energy of the protons
when they reach L = 5, L = 3 and L = 1.5.

6. The radial diffusion equation is given below where / is the number of particles
per unit L, per unit /i = magnetic moment, and per unit / = integral invariant:

3/ = 3 \DLL C

3t 3L[ L2 3L
Assume that the plasma sheet is injecting a steady net electron source So
(electrons per unit A// per unit A/) into the radiation belt at L = 7 and assume
that there are no pitch-angle scattering losses. Also assume that DLL is
constant (DLL = Do) everywhere except in the interval 3 < L < 4 where DLL is
infinite:

(a) Find the expression for / in the interval 1 < L < 3.
(b) Find the expression for / in the interval 3 < L < 4.
(c) What is the value of / at L = 11

Answers should be in terms of Z)o, So a nd L.

7. One source of high-energy protons in the radiation belt is the decay of
neutrons which are produced in the atmosphere by collisions of cosmic rays
with oxygen and nitrogen nuclei. Each neutron then decays into a proton, an
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110 Particle diffusion and transport

electron, and a neutrino, and if this decay occurs while the neutron is moving
through the trapping region, the electron and proton may become trapped. In
the decay process momentum is conserved so the proton moves with approxi-
mately the velocity of the parent neutron. The electron is emitted with an
energy of several hundred kilo volts in a random direction:

(a) The half-life of a neutron (which is the time interval in which half the
neutrons in an initial group decay) is approximately 10 minutes. There-
fore, the probability that a neutron will not have decayed by time t is
given by

Show that A = 1.16 x 10"3 s"1.
(b) If a 98 MeV neutron is emitted from the top of the atmosphere on the

equator in the zenith direction, what is the probability that the neutron
will decay inside the L = 5 shell? What will be the J value of the trapped
proton? (Neglect the relativistic time dilation factor.)

(c) If the neutron decay occurs at L = 2, what is the probability that the
resulting electron will be in a trapped orbit? (Assume a dipole field and
neglect the atmosphere.)

8. Neglecting the phase coordinates, three independent coordinates are needed to
specify a trapped particle's trajectory, the most fundamental being the three
adiabatic invariants \i, / , and O. Which of the following sets are suitable to
completely define a trapped particle's trajectory in a dipole field? Assume that
you know the particle species:

(costfeq, E, L), (£e q , Bm, <veq)

(Beq, costfeq, p), (Beq/Bm, E, L)

( £ , / ? , L ) , ( L , / , / > ) , ( £ , <!>,/*)

(aeq, Bm, O), (L, / , rb), (E, p, O)

where

#eq = equatorial pitch angle
2?eq = equatorial magnetic field of guiding center path
Bm = magnetic field at mirror point

p = scalar momentum
E = kinetic energy
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