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7

Diffusion in pitch angle

Diffusion in the pitch angles of trapped particles is an important re-
distribution and loss mechanism. Observations of particles with pitch
angles inside the loss cone indicate that this process takes place at all L
values in which trapping occurs, although the process proceeds more
rapidly with increasing L value. At L =6, which is the magnetic shell
whose field lines connect to the auroral zone, rapid pitch-angle diffusion
of electrons is a common occurrence. Electrons are fed into the loss cone
by multiple deflections, and their subsequent motion into the atmosphere
in both the northern and southern hemispheres supplies energy to the
polar aurora.

Electron diffusion by collisions with atmospheric atoms

Collisions of electrons with atmospheric atoms is one cause of pitch-angle
diffusion. While collisions are the dominant loss for electrons at only very
low L values (L <1.3), they occur at all L for those electrons which
mirror at low altitudes. It is a well-understood process, and for this reason
it is instructive to derive the diffusion coefficient from the basic formula
describing the scattering of electrons by atoms. Because of their greater
mass, protons and heavier ions are not scattered appreciably in pitch angle
by collisions. The cumulative effect of collisions on ions is to reduce the
ion velocity to thermal values while leaving their direction largely un-
changed. The following treatment of electron collisions with the atmos-
phere is appropriate for regions in which the ambient atmosphere has only
a small effect during the electron drift period. The diffusion coefficients
will therefore be obtained by averaging over a complete drift cycle.
Convenient coordinates for pitch-angle diffusion calculations are E, L
and x = cos a.q. The value of L is not altered by a collision, as the guiding
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112 Diffusion in pitch angle

center can move at most only two gyroradii in a single collision, and the
change in L is usually much less. The electron energy will be almost
unchanged when the electron is deflected by the much heavier nucleus of
an atom. The loss of electron energy by collisions with bound or free
electrons is important and will be included later by adding a term to the
standard Fokker—Planck equation. Thus, for the pitch-angle diffusion
process x is the only coordinate involved and ((Ax)?)/2 is the only
diffusion coefficient to be evaluated. The equatorial pitch angle, or some
other function of @q, could equally well be used as the variable, but the
equations are somewhat simpler using the cosine of the pitch angle. The
local pitch angle, or some function of it, would not be a useful variable as
it is not constant during the unperturbed bounce motion of the electron.
The cross-section for scattering of electrons by the nucleus of a neutral
atom is
2264 1-— ﬁ2 1

7.1)
64megmict B

a(n) =
nt L

2

where z is the atomic number of the atom, &, is the electric permitivity of
free space and 7 is the scattering angle. Because of the sin*7)/2 term in the
denominator the cross-section is large for small deflections, and this
feature justifies the assumption inherent in the Fokker—Planck equation
that the deflection in an individual interaction is small. To calculate
((Ax)?) we will first find the average change per unit time in the local
pitch-angle cosine due to collisions. With this collision average we will
compute the equivalent change in the cosine of the equatorial pitch angle.
Then this change will be averaged over the bounce motion of the particle,
weighted at each portion of the path by the density of scattering centers at
that path increment and by the time the particle spends in that increment.
Finally, the average over longitude will be computed giving the diffusion
coefficient ((Ax)?)/2.

The geometry of an electron scattering event is illustrated in Figure 7.1,
where v and v’ are the electron velocities before and after the collision. If
the local pitch angles before and after the collision are a and o/,
respectively, and the angle through which the electron is scattered is 7, the
change in cos & produced by a particular collision is (see Figure 7.1)

si

Acosa =cosa’ — cosa
= cOs & cOs 7) + sin a/sin cos Y — COS &

= —2cos asin? —'27— + (1 — cos? @) sin ncos ¥ (7.2)
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Diffusion by collisions with atmospheric atoms 113

ts

Figure 7.1. Geometry of particle scattering through angle n which changes the
velocity from v to v’, and changes the pitch angle from o to a’.

The average time rate of change in cos« is the value of Acosa from
equation (7.2) multiplied by the probability of that change occurring in
unit time and integrated over all possible Aa. The probability per unit
time of an electron scattering through angle 7 into unit solid angle is
Nva(n), where N is the density of scattering centers. If the sum over all
scattering possibilities is denoted by the use of curly brackets, the time
rate of change of any quantity g(n, y) by collisions is given by

&)= 2"dwf0 "e(1. ¥)Nvo(n)sinydy (7.3)

The collision average time rate of change in (A cos )’ is obtained by
squaring A cos a in (7.2) and substituting (A cos a)? for g(n, ) in (7.3).
The cross-term in the square of (7.2) contains cos iy and vanishes after
integrating over . The two remaining terms can be compared for relative
value by noting that sin ndn = 4sin (1/2) d (sin 1/2).

The square of the first term of (7.2) when inserted in (7.3) has a 7
dependence of f osin (/2) d (sin (/2), which is of order 1. The square of
the second term contains a divergent factor [5d (sin /2)/(sin 7/2) and will
therefore be the dominant term. The logarithmic divergence results from
the coulomb cross-section (7.1), which becomes infinite for = 0. The
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114 Diffusion in pitch angle

cross-section expression was derived for scattering of an electron by an
unshielded nucleus of charge ze. In reality, the charge is shielded by the
orbital electrons and there exists a minimum scattering angle 7y, corre-
sponding to a maximum impact parameter at the shielding boundary.
Therefore, the lower limit of the integral in (7.3) over 7 should not be zero
but should be some minimum value 7g,.

After converting v(1 — f*)B~* to an expression in kinetic energy the
collision average of the rate of change in (A cos a)? is

4 2
CAE M)  Nam 2 (1-cota) (7.4)
4 E¥2(E + 2moc?)*? Mmin
It is now necessary to convert the local collision average to the change
in x, the cosine of the equatorial pitch angle, and average these changes
over the gyration and bounce motion of the particle. The gyration phase
does not enter into equation (7.2) and need not be considered further.
However, {(A cos a)*} must be averaged over the bounce motion as & and
N depend on the electron’s location on the field line. The relation
between Acosa and Acosa,, = Ax is obtained from the fact that the
magnetic moment is constant along the bounce:
1-cos’a=(1- xz)(&) (7.5)
eq

{(Acos @)’} =

Differentiating (7.5) leads to
— o2
cosad(cosa) = x dx(_t_;g.)_) =x dx(l_ﬁ’_s_ﬁ‘_’l
B 1 -x?
and
{(Ax)*} = {(Acos a)*}(dx/d cos @)

_ ncosfa (1 —x?)? 76
{(A cos a)*} (o @y (7.6)

The bounce average is obtained by integrating (7.6) between mirror points
weighting each element of the path by the time a particle spends in that
increment:

((Axy?) = f“{(Ax)Z} ds / f"“ ds (1.7)
Sa veos af J,vcosa
((Ax)?) = e'c(E + myc?) s ds  cos’ &

Anel E¥X(E + 2moc?)*? s,vcos o x2
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Diffusion by collisions with atmospheric atoms 115

% _(_x)_zv(s)z21n 2 ! (7.8)
(1 - cos? @) Mmin su ds
J;,,,UCOSCV

If the atmosphere contains a mixture of elements, each with a different z;,
N; and 7);min, then N(s)z?In(2/nn,) in equation (7.8) is replaced by
3 iN:z2In (2/n; min). Because N(s) increases rapidly as s increases and the
electron samples the lower atmosphere, ((Ax)?) will be a strong function
of x. In general, equation (7.8) must be computed numerically using an
atmospheric model for N(s).

Finally, the value of ((Ax)?) must be averaged over the drift in
longitude. If the geomagnetic field were a centered dipole, this averaging
would not be necessary. However, there is considerable distortion of the
field at low altitudes where the atmosphere is important to trapped
particles. Therefore, in longitude or drift averaging, one must take ac-
count of the fact that the particle ‘sees’ a different atmosphere at each
longitude, and the northern and southern halves of its bounce trajectory
pass through different air densities. Furthermore, the angular drift velocity
varies with longitude. These factors are usually accounted for by con-
structing an ‘average’ atmosphere based on the atmospheric density along
traces of constant B, L about the Earth, the density at each point being
weighted inversely with drift rate. This average atmosphere is then used to
evaluate the integral of equation (7.8).

The energy loss which electrons experience in collisions with free and
bound electrons can be included in equation (6.33) by adding an addi-
tional term to the Fokker—Planck equation

of

Ot |energy loss

N
SE (AE)f (7.9)

where (AE) is the time rate of energy loss by the electron as it collides
with free electrons and with the orbital electrons of neutral atoms. The
loss of energy as an electron penetrates material, the so-called dE/dx (in
this expression dx is the differential of length and not cos a,,) is well
known. The average time rate of energy loss is therefore

aEy=p- 9B & g EE/me + )

dx 47r30m0c B I;

(7.10)

where I; is the mean ionization potential for an atom of the ith species.
Again it is necessary to perform bounce and drift averages of the atmos-
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116 Diffusion in pitch angle

phere to obtain an ‘average’ atmosphere which the trapped electron will
experience. The trajectory average of {AE} is then

(aE) = 1[0 2 ({AEG. o) ds
3o ¢ TJs, vcosa(s)
where ¢ is the longitudinal drift rate (a function of ¢), and {AE} from
equation (7.10) is a function of longitude and latitude through the densi-
ties N,.
In the coordinates E, x and L the Fokker-Planck equation, including
the energy loss term, is (from 6.33)

3f(E,x, L)y _ _ 3
T T T3p AR

ot
+ _a_[«A_mez(x)_a_(_L__)] (7.12)
ox 2 3x \ xN,(x)

(7.11)

where N,(x) is defined by equation (6.31).

In equation (7.12) the pitch angle and energy variables cannot be
separated to allow an eigenfunction solution. The effect of energy loss is
to mix the normal modes of the pitch-angle distribution so that they do not
decay independently. Hence, an initial distribution in a single mode will
evolve into several pitch-angle modes as time passes. This behavior
prevents a simple solution by the separation of variables, although
approximate solutions by this method have been useful.

Equation (7.12) can be evaluated by finite difference techniques. A
straightforward application was the computation of the evolution over
time of electrons injected into the magnetosphere by the Starfish nuclear
weapon effects test in 1962. Intense fluxes of electrons produced by the
beta decay of fission fragments were distributed between L =1.12 and
L =7, although the major portion was confined below L = 2. Since these
electrons were of higher energy than most of the electrons of natural
origin, and the fluxes were more intense, it was possible to measure the
intensity and distribution of bomb produced electrons for many months.
This experiment thus offered a unique opportunity to compare the ob-
served loss rate of trapped electrons with the value expected from atmos-
pheric scattering. Some of the results are shown in Figure 7.2(a, b).
Figure 7.3 compares calculated and observed values of the decay time, the
time required for the flux to be reduced by the factor 1/e. In general,
agreement is excellent below L = 1.3, but above that limit electrons are
removed much more rapidly than the theory permits. This result indicates
that some other process, such as scattering by electromagnetic waves, is
responsible for the observed diffusion in pitch angle.
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Diffusion by collisions with atmospheric atoms 117
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Figure 7.2(a) Loss of Starfish electrons at L = 1.185 by scattering with the ambi-
ent atmosphere. Symbols show the experimental values of omnidirectional flux of
electrons (> 1 MeV), and lines are fluxes obtained from numerical integration of
equation (7.12). (b) Same as Figure 7.2(a) but for L = 1.25. (From J. Geophys.
Res. (1964) 69, 397.)
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118 Diffusion in pitch angle
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Figure 7.3. Comparison of trapped electron flux decay times from atmospheric
scattering theory and from experiment. Theory fails above L = 1.3, indicating
that other loss processes are present.

Diffusion in pitch angle by interactions with waves

It was pointed out in the preceding section that over most of the magneto-
sphere the observed losses from pitch-angle diffusion are much too large
to be accounted for by collisions with the ambient atmosphere. The pitch
angles must therefore be altered by electromagnetic fields which change
the first adiabatic invariant. Since the gyration frequency is of the order of
5 kHz-1 megahertz for electrons and 3-300 Hz for protons, electro-
magnetic field variations at these or higher frequencies are required to
alter the first adiabatic invariant and thereby change the pitch angle.

Many types of plasma waves occur in the magnetosphere. From the
standpoint of trapped radiation, circularly polarized whistler and ion
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Diffusion in pitch angle by interactions with waves 119

cyclotron waves appear to be the most important for their effects on
trapped electrons and ions respectively. Since electron interactions with
the whistler mode waves have received the most attention and are the
easiest to calculate, they will be described here. The case for protons and
ion cyclotron waves is similar except that the velocity of the protons is
comparable to the phase velocity of the waves, and some of the approxi-
mations introduced for the electron case are not valid.

A whistler or right-hand circularly polarized wave propagating parallel
to the geomagnetic field will have E and b wave vectors perpendicular to
the magnetic field. The situation is depicted in Figure 7.4, which indicates
the sense of rotation of the vectors. For a wave of this type the phase
velocity is given by a dispersion relation which relates the phase velocity to

the frequency:
c[w(Q. — w)]V?
vph — [W( € W)] (7‘13)
Wp
where w, = (e2N/gom,)'? is the plasma frequency of the medium, w is the

wave frequency, Q. is the electron gyration frequency, N is the electron

SENSE OF EAND b
ROTATIONTO A
STATIONARY OBSERVER

SENSE OF
ELECTRON
GYRATION

Figure 7.4. Interaction of a gyrating electron with a right-hand circular polarized
wave propagating parallel to the magnetic field.
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120 Diffusion in pitch angle

number density and m, is the electron mass. For the phase velocity to be
real, w < Q.. The amplitudes of the b and E vectors are related by

Bl
bl
The phase velocity depends on the magnetic field intensity through Q. and
on the ambient electron density through w,. Phase velocities of whistler
waves are usually less than 0.1c. Therefore, for energetic electron inter-
actions vy,/v << 1.
In the stationary frame of reference the wave magnetic field is
b = b[€,cos(wt + kz) — €,sin(wt + kz)] (7.14)
for a wave moving in the negative z direction. For an electron whose
guiding center moves in the positive z direction at velocity v,:
Z=v,t+ 29 (7.15)
The electron will therefore experience the Doppler shifted wave as
b = b{€,cos[(w + kv,)t + kz,] — €,sin[(w + kv,)t + kzo]} (7.16)
where the Doppler shifted frequency is
wy = w+ kv,
The electron will see the E and b vectors rotate with angular frequency
o + kv,, and the phase of b is (see Figure 7.5).

AN

de

E

Figure 7.5. Definition of ¢, the phase angle between the wave b vector and v,
the electron perpendicular velocity.
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Diffusion in pitch angle by interactions with waves 121

Pa = fwddt = f(w + kv,)dt (7.17)

The perpendicular velocity vector of the electron, v, gyrates about the
field line with phase

¢ = [Qedt + ¢ = Qur + 9y
Thus, the angular difference between v, and b is
¢ = ¢e - ¢d = (Qe —w - kvz)t + ¢O (718)

where ¢, is the initial phase difference between ¢, and ¢4 at time ¢ = 0.
The electric and magnetic components of the wave exert forces on the

electron which, in the non-relativistic case, are, for g = —e,
v=—-L[E +v xb] (7.19)
m
The components of v perpendicular and parallel to z are
b, = —Zbv, sing (7.20)
m

) e
U_L = —
m
where use has been made of |E|/|b| = v;,. The change in v, and v, will
cause changes in the electron kinetic energy and pitch angle. The rate of
energy change is given by
d{im 2 2 )
—t—(; +v
dt( 2 ( z .L)

{(Esing + bv,sing} = Zb(vy + v,)sing  (7.21)
m

m(vzi)z +v,.0,)

= —v,ebv,sin¢ + v eb(vy, + v,)sin P

= ebvyyv, sin ¢ (7.22)
Only the electric field term from equation (7.21) contributes to (7.22), as
is expected since deflection by the magnetic field will not change the

particle energy.
The pitch angle «a changes at a rate

Y = _d_ tan_l (&)]
dt v,

- Uzbl - l)zvl
vf + vi
Using (7.20) and (7.21), equation (7.23) becomes

&= ib(1 + M) sin ¢ (7.24)
m 1%

(7.23)
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122 Diffusion in pitch angle

In general, ¢ is a rapidly changing function of time given by equation
(7.18). In this case & will display a rapid sinusoidal variation, and the
accumulated deflection will not be large. However, if the parallel velocity
v, of the particle has the resonant value
_ Q. -w

k
then ¢ from (7.18) and thus & from (7.24) will be constant, and appreci-
able changes in « can accumulate. From equation (7.22), changes in
energy will also take place if ¢ is constant over an appreciable time
interval. The electron is said to be in resonance with the wave. The
resonant frequency of the wave is given by w = Q — kv,.

The sign of & and d(3mv?)/dr is determined by the phase angle ¢. If
0< ¢ <7 both o and the energy increase. For these values of ¢,
v, *E <0 (see Figure 7.5), and the electron would be expected to gain
energy at the expense of energy in the wave. If v, ‘E >0 (7 < ¢ <27),
the electron will lose energy and decrease its pitch angle. In a flux of
electrons uniformly distributed in the azimuthal angle, ¢. of Figure 7.5,
some electrons will be deflected to smaller o and some to larger o during
encounters with waves of finite length. The overall effect of many such
encounters will be a diffusion in pitch angle.

A single frequency wave of infinite length will impart net deflections
only for particles in exact resonance. Waves even slightly off-resonance
will successively increase and decrease o as the phase angle ¢ rotates
through 27. If, however, the wave is of finite length, off-resonant frequen-
cies can change o permanently. In general, the shorter the duration of the
wave, the further off-resonance the wave can be and still contribute to the
deflection.

An estimate of the width Aw of the wave band contributing to & for a
wave of duration At is obtained as follows. If the change in ¢ is limited to
7 in time At:

(7.25)

v,

Ap=(Q.—w—kv)At=7 (7.26)

Consider the first factor on the right as a function of w and expand it in a
Taylor series about the resonant frequency w = Q. — kv,. The derivative
of k with respect to w is the reciprocal of the wave group velocity. Thus,

Agp = {(A¢)w=9e—kv2 + —a—(Ad)) ‘Aw+ .. } =7
dw

~ -(1 + &)Amt —n (7.27)
Ug
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Diffusion in pitch angle by interactions with waves 123

and

af|~—T" (7.28)

(1 + E)Aw
Vg

The diffusion coefficient can be estimated for a series of waves of duration
At interacting with the particle. With brackets denoting change per unit
time:

_ () _ 1( da? >
D.. ( dt) (Ary?

2 2
242 2
== %(i) b_(]_ + Uph COSCY) (sin2 ¢)ave ™
m) Aw v v,
1+ =
Ug
7fe) b2( vpeosa\? 1
~—|—) —(1+-E
4 (m) Aw v ) (7.29)

(1 + 2
Vg

since for particles uniformly distributed in ¢y, (sin? ¢),.. = 3. The factor

b?/Aw is interpreted as the power spectral density of the waves at the

resonant frequency. In situations where vy, < v and v, < v,, D,, can be

approximated as
2( 12
o= () 00

Other approximations, also based on heuristic arguments, give slightly
different results.

A more quantitative expression for the pitch-angle diffusion coefficient
can be derived by expressing the wave in general form and averaging over
the stochastic variations of the wave field. The magnetic field as experi-
enced by the electron is

b = b,(£)8, + b(£)8,
v, =v, cos(Qt + )€, + v, sin (Qt + )&, (7.31)

Returning to equation (7.24) and recognizing that sin¢ = v, X b|/v, b,
&= —e—(l 3 vphcosa)[vxby - vybx]

m v vy
K[cos (Rt + n) - by(¢) — sin(Qt + n)b,(t)] (7.32)

where K is equal to the first two factors of equation (7.32).
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124 Diffusion in pitch angle

To find A« equation (7.32) is integrated over a finite time interval
containing several gyrations. In fact, the integration time will be long
compared to the coherence time of the wave. Under these conditions the
two terms on the right-hand side will contribute equally to Aa and only
one need be calculated:

4 t
(M) = 4K? f cos (QE' + n)b(&") A&’ j cos (QE" + Mb(E)AE"  (7.33)
0 0
Expanding the cosine terms, averaging over the electron initial phase

angle 7, and rearranging the integrands gives

(Aa)? = 4K? j dg j dE"b(ENb(EYcos Q(E" — &) (7.34)
0 0
Let&" —-E& =1,

(Ao =2K7 ‘ag f_'jdrb(s')b(gf + 7)cos Q1 (7.35)

Now exchange the order of integration and modify the limits as needed:

(Aa)? = 2K2{ [ " drcos Qr [ " BEYB(E + 1) dE

-7

+ f ’drcosgtj ThE)bE + r)d&’} (7.36)
0

0
The integral 1/t[ob(5')b(&' + 7)d&’ is the auto-correlation function of a
component of the wave magnetic field. It is usually written as
(b(&)b(E + 1)). These correlation integrals are functions only of the
‘lag’ 7 and are small for lags larger than the correlation length or
coherence time of the wave.
Equation (7.36) then becomes, replacing 7 by — 7 in the first term,

(Aa)? = 2K2{ftdrcos Q1(t — ©){b(E)b(E — 1))
0

+ ftdrcos Qt(t — 1)(b(E)b(E — t))} (7.37)
0

Because (b(E)b(E' + 1)) = (b(&')b(E' — 1)) and the value is small unless
7 is less than the coherence time, (¢ — 7) = t. Also, because the integrand
is zero at large 7, the upper limit of the integrals can be increased to
infinity:
(Aa)? = 4Kt f “drcos Qr(b(E)b(E + 1)) = K2PYQ) (7.38)
0
where

PYQ) = 4 fo “dr(b(E)b(E + 7)) cos Qr (7.39)
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Diffusion in pitch angle by interactions with waves 125

is the power spectral density at the gyration frequency for a component of
the wave as measured in the moving frame of the particle guiding center.

This spectral density is related to the power spectral density in the rest
frame at the Doppler shifted frequency by

d(Q — kv,) _ Py (Q — kv,)

PH(Q) = P(Q ~ ko) = B g
The diffusion coefficient is then
D,, = (Aw) _ 1(1)2(1 _ UpyCOS a)2 Py(Q — kv,)
2t 2\m v [1+ Uz/Ug]
= 1(i)z(&)Pb(Q - kv,) (7.41)
2\m/ \v,

for v > vy, and v, >> v,.

Equation (7.41) is the local value of the diffusion coefficient describing
the change in the local pitch angle. To calculate the behavior of trapped
particles it is necessary to convert the pitch angle to some quantity which
is constant during the bounce and then average over the bounce motion. If
one chooses cos a. as the variable, the procedure to be followed is given in
equations (7.6) and (7.7).

The energy loss described in equation (7.22) indicates that the electrons
change energy as they diffuse in pitch angle. The magnitude of this energy
change for a given Aa can be estimated from equations (7.22) and (7.24):

AE _1dE, _ 1dEdt

E Eda E dr da

_ 2muypv, 0 Aa
2
mv*(v + vpy cOS @)

_ 2000
2

(7.42)
[

for vy, < v and for Aa = 1. If vy, < v, the fractional change in energy will
be small. Therefore, for electrons it is usually permissible to ignore the
energy change during pitch-angle diffusion and use a diffusion equation
with some function of the pitch angle as the independent variable. With
independent variables L, E and x the only diffusion term is the one
containing D,, and the equation to be used is (6.33).

A more graphic description of the diffusion in pitch angle can be
obtained by transforming to a frame of reference moving with the phase
velocity of the wave. Since v, = (E X b)/b?, the electric field of the wave
will be zero in that frame:
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126 Diffusion in pitch angle
E'=E+ vy, X(Bg+b)=E+ v, Xb=0 (7.43)

and the electron energy will be conserved. This condition expressed in
terms of v, and vy =v, is

3d[v} + (v) — vp)?] = vy dv, + (v) — vp)doy =0 (7.44)
This differential equation in velocity (v, v)) space describes an element of
a circle whose center is located at —v,, on the vy axis (see Figure 7.6).
This diffusion path differs from the constant energy path centered at the
origin, although the difference will be small if v, <. As the particle
moves along the diffusion path of equation (7.44) the parallel velocity will
change and the resonant frequency will also change. The motion along the
line will take place in a number of small steps, each increment being in a
random direction and resulting from interaction with a wave.

From equation (7.22) it is clear that an individual electron will either
lose or gain energy depending on the azimuthal phase angle ¢. However,
the overall flow of the diffusing electrons depends on the distribution of
the particles in velocity space. Figure 7.7 illustrates a hypothetical distribu-
tion function F(vj,v,), where F(vj,v,)2mv,dv, dvj is the number of
particles within the differential element of velocity space. In this diagram
more particles are at large pitch angles, and the net diffusion is towards
smaller « and lower energies.

The general form of the diffusion equation for wave—particle inter-
actions can be derived by assuming that the current of particles flowing
along the diffusion path of equation (7.44) is proportional to the slope of
F along that path. The change in F along an increment dv is

OF 4v, + 2F gy, (7.45)
av_,_ aU“

dv-VF =

Vi

DIFFUSION PATH

\ /- E = constant

“Yph “I

Figure 7.6. Diffusion path of a particle interacting with waves compared to the
constant energy path. As the pitch angle decreases, the particle energy decreases.

Downloaded from Cambridge Books Online from within the IP domain of the University of California on Fri Dec 05 18:00:40 GMT 2014.
http://dx.doi.org/10.1017/CB09780511524981.011
Cambridge Books Online © Cambridge University Press, 2014




Diffusion in pitch angle by interactions with waves 127

Fvv)
4

Vi

PARTICLE DIFFUSION
PATH

CONSTANT ENERGY
PATH

Vil

Figure 7.7. Particle distribution in velocity space showing the diffusion path and
the constant energy path.

But dv, and dv| are related by (7.44), which, combined with (7.45), yields

current o —D(ufﬂ — (o — o) 2E ) = —DD,F  (1.46)
Ay v,

The proportionality constant D is recognized as the diffusion coefficient,

and the differential operator 70, computes the gradient of F along the

diffusion path. The rate of change in F is equal to the divergence of the

current and is given by

SF _ 15.10gD,F] (7.47)
ot g
where ¢/ is the Jacobian ((/ = v,), relating a volume element in velocity
space dv, dv, dv, to v, d,dv, dv|. More rigorous methods have confirmed
the validity of (7.47).

To reduce (7.47) to a more familiar form for a simplified case assume
that v) >> vy, so that only the pitch angle o changes during diffusion. The
change from (v, v)) to (v, @) coordinates is obtained by inserting

. 3 cosa 3
=sma— + —
v, v v d«a
3 _ d sina 3 (7.48)
—— = COS —— —

al)“ v D —8;
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128 Diffusion in pitch angle

into the differential operator giving (D, = —3/3a. With these substitutions
(7.47) becomes

oF _ '1 2 D,,sin aa—F (7.49)
ot sin o d« dar

Equation (7.49) is a local equation describing the pitch-angle diffusion
at a point. For trapped particles the variable o must be replaced by some
quantity which remains constant during the adiabatic bounce motion, and
the equation must be averaged over a bounce cycle. As described in the
preceding section, the equatorial pitch angle is a convenient variable for
this purpose. By changing « to a., in equation (7.49), multiplying by
ds/v cos & and integrating over a complete bounce trajectory, the bounce
averaged diffusion equation becomes

OF_ 1 3
Jt Ty, SIN 2Qeq Oeq

[l_)aeqaequ Sin 2, OF ] (7.50)
Ueq
where the averaged diffusion coefficient is
ds

= 1
Dozeqaeq = _§Da¢qaeq(s)
Ty DCOS v

This equation is entirely equivalent to (6.33). By changing the distribution
function f(x, E, L) in (6.33) to a velocity or phase space distribution
function using (6.32), and by replacing the independent variable
X = COS &eq bY acq, €quation (6.33) becomes (7.50).

(7.51)

Coupling of particle and wave energy

The diffusion in pitch angle by waves which are not produced by the
particles themselves is sometimes termed parasitic diffusion. If the power
spectrum of the waves is known, the change in the particle distribution can
be calculated using equation (7.50) for the diffusion equation and (7.51)
with (7.41) for the diffusion coefficient. This approach is satisfactory for
estimating the diffusion rates from waves which are not produced by the
particles themselves.

As described in the derivation of equation (7.22), particles can exchange
energy with the waves, either gaining or losing energy depending on the
phase angle between v, and b. The wave is augmented or reduced by the
electric and magnetic fields produced by the particle currents. The wave
response is characterized by a growth rate y where

%|b|2 = 29/bJ? (7.52)
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Coupling of particle and wave energy 129

A positive y denotes a growing wave. The form of y is given by

® QF 3F
Y(w) = -—g(w)j dvlvi[vl—— — (v) = vpn)
0 aU” av_j_ v=Q.~w/k

(7.53)

where g(w) is a slowly varying function of w. The integrand of (7.53)
contains the differential operator of (7.46) and represents the slope of the
distribution function along the diffusion path.

With reference to Figure 7.8 the integrand is v> times the derivative of
F along the diffusion path. The integral over v, then includes the
contributions of these derivatives at all vj = (Q, — w)/k. The growth rate
will be large if the slope of F along the diffusion path is large and a net
flow of electrons occurs towards smaller « and lower energy.

The coupling of the particle distribution with wave growth rates changes
the dynamic behavior of the wave and particle systems. If the waves
propagate parallel to B, the conservation of wave energy is expressed by

3b? ab* PN

5, + v, 52 2(y = O)b (7.54)
where ¢ represents the internal loss rate of wave energy. Equations (7.41),
(7.47), (7.53) and (7.54) relate the wave and particle behavior. An initial

Flv.vD
[

L
SLOPE = @ F

INTEGRATION

PATH

S 7 7 s
V| = Vres / / /
/ ‘/\;_
PARTICLE DIFFUSION

¢ / PATH

v,
]

Figure 7.8. Effect of particle distribution on the growth rate of waves. The growth
rate for a resonant vy (equation (7.43)) contains the slope of the distribution along
the diffusion path integrated over v, . i
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130 Diffusion in pitch angle

distribution of particles with an empty loss cone will generally lead to
wave growth. The growing waves will increase D,, by equation (7.41),
leading to more rapid diffusion and loss of particles into the loss cone.
This process should provide a regulation mechanism for trapped radiation.
An increased source of electrons would lead to greater wave growth and
increased loss rates, thereby limiting the particle flux.

While the concepts of a flux limiting mechanism are valid, the complex
geometry and inhomogeneities in the magnetosphere make quantitative
calculations ambiguous. In particular, the propagation of wave energy out
of the particle interaction region reduces the effectiveness of the flux
limiting mechanism. Idealized calculations usually assume that the waves
travel only parallel to B and are reflected at each end of the field line with
reflectivity (2. These assumptions lead to a steady-state situation in which

1/R = exp (yAs/vy) (7.55)

where As is the length of the wave—particle interaction region. Equation
(7.55) simply states that the loss of wave energy at each reflection is
balanced by the growth during passage through As.

Discussion

This chapter has presented a basic description of pitch-angle scattering.
However, in the interests of clarity this treatment was simplified, and
many factors of importance to wave—particle interactions were ignored. In
particular, only one type of wave was considered, a parallel propagating
electromagnetic, whistler-mode wave. Other important approximations
were that the wave had a broad frequency spectrum, the wave amplitude
was small and the particles were uniformly distributed in gyrophase.

In fact, whistler-mode waves usually propagate at some angle to the
magnetic field. This condition causes the wave to be elliptically polarized
and extends the wave-particle interaction to harmonics of the particle
gyrofrequency. The diffusion coefficient produced by such waves is sub-
stantially different from the one expressed in equation (7.41). The as-
sumption that the waves are of small amplitude allowed the forces on the
particle to be evaluted at positions given by the unperturbed motion of the
particle through the wave. Larger wave aimplitudes will alter the trajec-
tories so that the particle motion must be computed throughout the
encounter. In extreme cases, the particle can become trapped in the fields
of the wave and the resonance time is thus greatly extended.
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Problems

. Using equation (7.12), but neglecting the energy loss term, show that an
isotropic flux will remain isotropic regardless of the form of the atmospheric
collision coefficient ((Ax)?).

. D, is the diffusion coefficient in terms of x = cos a,q, but we wish to use By,
the magnetic field at the mirroring point, as the independent variable. Find the
expression for ((ABy)?) in terms of D,,, Beq and By,

. Starting with equation (7.2) and retaining only terms of order 1n 2/, show
that the first and second Fokker—Planck coefficients for atmospheric scattering
(before bounce averaging) satisfy the relationship (6.20).

. Derive the bounce averaged pitch-angle diffusion equation (7.50) from the
local equation (7.49).

. If the reflectivity of the ionosphere for electromagnetic wave energy is 0.2 and
the equatorial interaction region at L = 2 is 10° km in length, what must be the
growth rate in the interaction region to sustain a 5 kHz parallel propagating
wave? Assume that the cold plasma is hydrogen with a density of 2 X 10° m™3
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