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Diffusion in the L coordinate or radial diffusion

Particle diffusion through random increments in the L coordinate is
frequently termed radial diffusion because the process changes the radial
distances of trapped particles from the Earth. This type of diffusion is
crucial in forming the radiation belts as it provides a mechanism for
transporting particles from the outer boundary of the magnetosphere into
the inner belt. It also leads to the redistribution of particles injected or
accelerated during magnetic storms and substorms. While radial diffusion
may be overshadowed at times by the massive injections which occur
during large storms and substorms, its role in bringing particles inward, in
accelerating trapped particles and in redistributing newly injected particles
is of major importance.

Since the third invariant O is proportional to L"1, radial diffusion must
proceed by fluctuations in the third invariant. Variations in a trapped
particle's third invariant require changes in the electric or magnetic fields
that are more rapid than the particle drift frequency. Drift periods vary
from tens of seconds to about a day (see Appendix B), hence, perturba-
tions over a wide range of frequencies can alter the third invariant.
Because the gyration and bounce periods are much shorter than the drift
period, the first and second invariants are less likely to be affected by
many of these field perturbations.

The paths of the mirror points of particles undergoing third invariant
diffusion but with constant first and second invariant are shown in Figure
8.1. The trapped particles mirroring on the equatorial plane remain on
that plane, as demanded by the need to keep / = 0. The mirror points of
particles mirroring off the equatorial plane move along lines of almost
constant latitude, the latitude increasing slightly with increasing L. As
particles diffuse inward (outward) the momentum increases (decreases) in
order to maintain a constant value for the magnetic moment.
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Diffusion in the L coordinate or radial diffusion 133

Figure 8.1. Diffusion paths of the mirroring points of trapped particles undergoing
radial diffusion conserving the first and second adiabatic invariants.

In Chapter 6 a diffusion equation ((6.26)) for L shell diffusion was
derived for a distribution function in the variables /i, / and L:

J, L) = 8 [((AL)2) 1 8
dt 3LI 2 L2dL

(8.1)

where ((AL)2)/2 = DLL is the radial diffusion coefficient. In this chapter
the diffusion coefficient will be evaluated for magnetic and electric pertur-
bations, as both of these variations are common in the magnetosphere. To
make the computation for DLL easier, idealized models for the geometry
of the perturbations will be assumed. While these simplifications are not
completely justified, they illustrate the principals involved and are appro-
priate in view of present limited knowledge of the geometry of the
magnetic and electric field variations.

It is expected that DLL will depend on general statistical properties such
as the power spectrum of a multitude of disturbances rather than on
details of any single fluctuation. In each event particles will be moved
inward or outward depending on their location at the time of the field
changes. Summed over many events the cumulative motion of an indi-
vidual particle may be inward or outward. However, the overall flow of
particles will depend on the distribution in L of the particle populations as
described in Chapter 6. If the coordinates //, / and L are used, the flow
will be inward wherever 3(L2/)/3L is positive.

The partial derivatives with respect to L in (8.1) are taken with pi and /
constant. It is not possible to determine the overall direction of particle
flow by plotting j(E, aeq = (TT/2)) as a function of L. One must first
convert j(E, aeq) into / ( ^ 7 = 0, L) using equation (6.35) and selecting E
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134 Diffusion in the L coordinate or radial diffusion

at each L to keep \i constant. A plot of L2/(jU, / , L) as a function of L
with fx and / held constant will immediately reveal the direction of net
particle flow as in Figure 6.3.

Radial diffusion induced by magnetic fluctuations

Third invariant diffusion can be driven by asymmetric fluctuations in the
geomagnetic field. A simplified illustration of the effect of such a pertur-
bation is given in Figure 8.2, which represents the equatorial plane and the
response of a narrow band of equatorially trapped particles to a global
magnetic disturbance. The postulated disturbance is illustrated schematic-
ally at the bottom of the diagram and consists of a sudden compression of
the magnetosphere by an increase in solar wind pressure. After this
compressive impulse the solar wind pressure gradually decreases, allowing
the magnetosphere to relax to its original configuration. The compression
will be greatest on the sunward side of the Earth (right-hand side of Figure
8.2). During this initial compression, the trapped particles are carried
inward to the dashed line, this transport taking place before the particles
have an opportunity to drift appreciably in longitude. Particles on the
sunward side of the Earth are moved by the largest amount and are left in
more intense magnetic fields. The dashed line showing the post-compres-
sion particle positions is not a line of constant 5 , nor is it the path of
drifting particles. It is the instantaneous location of the particles which

(a) (b)

TIME

Figure 8.2(a-c) Effect of an asymmetric, sudden compression and slow relaxation
of the geomagnetic field on a narrow band of equatorially trapped particles. After
the recovery period the particles fill the shaded band.
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Radial diffusion induced by magnetic fluctuations 135

were previously drifting in the narrow band of Figure 8.2(fl). The sudden
compression will change the values of the third invariant but not the
values of \i and / . Particles on the sunward side will suffer the largest
change in <E> and the largest increase in energy. Following this compres-
sion, the geomagnetic field relaxes slowly, keeping all adiabatic invariants
constant. Meanwhile, each particle drifts about the Earth at constant /i, /
and <E> and, after a number of orbits, the natural dispersion in drift velocity
results in the broad band of particles depicted in Figure (8.2(c)). During
this field relaxation all particles are moved outward as the magnetic field
recovers. The overall effect of the sudden compression and slow relaxation
is to move some particles inward (those initially on the sunward side of the
Earth) and to transport some particles outward (those initially on the
nightside). Many events of this type, each small in overall effect, will lead
to a diffusion in the L coordinates of the particles.

The motion of the trapped particles under magnetic perturbation
depends both on the magnetic field change and on the induced electric
field. The induced electric field cannot be calculated directly from the
magnetic field change as only V x E is given by 9B/9*. However, if one
assumes that the cold plasma in the magnetosphere is a good electrical
conductor in the direction parallel to the magnetic field and that the Earth
itself, or the ionosphere, is a perfect conductor, then the induced electric
field is completely specified. Where these conditions apply, the apparent
velocity vf of the field line and the induced electric field are related by

v£ = (E x B)/52 (8.2)

The instantaneous position of an individual magnetic field line is ob-
tained by tracing its position through space, beginning with its fixed
position at the conducting Earth or ionosphere. The position of the field
line at subsequent time intervals permits a computation of vf and, by
equation (8.2), an evaluation of E. Since equation (8.2) also describes the
electric drift velocity of ions and electrons, these particles will be carried
with the moving field line. This simultaneous motion of particles and
magnetic field is called the frozen field condition. While the frozen field
condition obtains over much of the magnetosphere, it is not universally
valid. In the outer magnetosphere where the cold plasma density is low,
electric fields parallel to B occur, and the frozen field assumption is
invalid. However, in the present idealized calculation, this assumption will
be followed with the understanding that in the actual magnetosphere the
induced electric field may be quite different.

The general approach used to find DLL is to construct an idealized
model of the field disturbance and to compute the radial displacement of a
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136 Diffusion in the L coordinate or radial diffusion

trapped particle experiencing the disturbance. This displacement is then
squared and averaged over all possible initial longitudes of the particle and
over many disturbances occurring at random times. In this way a diffusion
coefficient is obtained as a function of the statistical characteristics of the
disturbances. The full derivation of DLL will be performed for equatorially
trapped particles and the work extended later to other pitch angles.

Equations for the guiding center drift velocity were derived in Chapter 2
(equation (2.32)). Because we are considering only equatorially trapped
particles, the curvature drift term is zero. In an electric field perpendicular
to an inhomogeneous magnetic field B the perpendicular drift velocity is

\± = —?—B x (qE - [iVB) (8.3)
B*

Let the magnetic field be composed of a dipole field Bd and a disturbance
field b where b « Bd. The fact that the disturbance is much smaller than
the dipole field will allow the disturbance field to be considered a
perturbation on the usual gradient B and electric field drifts. In this case it
is assumed that the magnetic changes are caused by magnetospheric
boundary currents, which then produce field changes interior to the
boundary. Equation (3.23) is therefore suitable to express the disturbance
field in terms of spherical harmonics:

n = l \ R E / m=0

For small perturbations near the Earth, only the leading terms with
n < 3 are important. A further simplification results from aligning the
dipole perpendicular to the solar wind and labeling the meridian contain-
ing the Sun 0 = 0. Thus h™ = 0 for all n, m and g™ = 0 when n + m is
even. The only terms remaining are g\ and g\ and the disturbance field
becomes

[ 2

= [-S(t)cos d - A(t)rsm2dcos(p]er

+ [5(0sin0 - A(t)rcos29cos(f)\ee

+ A(t)r cos d sin (pe^ (8.5)

By expressing b in the form of (8.5) the Maxwell equation V • B = 0 is
automatically satisfied. The time-dependent coefficients 5(0 and A(t) are
parameters representing the parts of the disturbance field which are
symmetric and asymmetric respectively, about the polar axis.
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Radial diffusion induced by magnetic fluctuations 137

The induction electric field will be computed from the motion of the
field lines by

E = - V f x B (8.6)

where the field line velocity vf is obtained by tracing the equatorial
crossing of a field line whose feet are fixed at a lower altitude, taken for
convenience at the origin of the dipole.

The field line equations in polar coordinates are given by

dr _ rdd rs in#d0 __ rd6 f _.
— , (o. I)

Br Be B^ Bd

withB = Bd + b.
In the spirit of perturbation theory these equations can be integrated

from the origin to the equator by replacing r and 0 in the expressions for
BT, Be and B^ by their dipole values

r = /?osin20, 0 = 0 o (8.8)
This approximation sets the field Bd + b at each position of the undis-
torted path equal to the distorted magnetic field values. With the addi-
tional assumption that A{t) and S(t) are much smaller than B the
equations can be integrated analytically from 6 = 0 to TT/2 to give r and 0
in the equatorial plane in terms of A(t) and S(t) and the constants Ro and
0O. These constants are the radial distance and longitude of the equatorial
crossing of the undistorted field line. The changes in r and 0 as a function
of A(t) and S(t) can then be interpreted as motion of the field line, and
the resulting electric field can be calculated from equation (8.6). The
electric field in the equatorial plane obtained in this manner is

_, 1E = -
7 At

(ldS , 8 dA \^ , o m

i + — r cos0 e0 (8.9)
\2dt 21 dt *The magnetic symmetry assumed for b gives br = b^= Ed = 0 in the

equatorial plane. The radial component of the drift velocity of equatorial
particles from equation (8.3) reduces to

JL\
0 /dt \ B qBr 30

Substituting values for E<p and be from equations (8.9) and (8.5) and using
the dipole value for B in (8.10) results in

dr / 1 dS , 8 r dA \ /a A . . ,o i 1 N

= -rl + cos0 - —^—Asmcb (8.11)
dt \2Bd dt 21 Bd dt J qB6

In equation (8.11) the time-dependent quantities on the right-hand side
are the coefficients A and S and the particle coordinates r and 0. In
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138 Diffusion in the L coordinate or radial diffusion

keeping with the usual policy of perturbation theory we will use the
unperturbed values of these coordinates for the particle position. There-
fore, on the right-hand side of equation (8.11) set r = r0 and (j> = QDt + r\
where QD is the angular drift frequency of the particle and 77 is the particle
longitude at t = 0. The magnetic moment can be replaced by its value in
terms of the angular drift velocity fi= QDrlq/3. Integrating equation
(8.11) over time from zero to t gives the radial displacement at time t:

= Kt) -ro= - l l ^ ^ L 4 ( | ) s i n ( f l D i + rj)d£
7 Bd Jo

" —[S(t) - 5(0)] - ——{A(t)cos(QDt + rft- ,4(0) cos r;}
2Bd 21 Bd

(8.12)

With the exception of the first term on the right-hand side, all terms are
bounded and of order b/Bd. On the other hand, the integral term can
grow without limit as t increases, provided A(%) has frequencies in the
neighborhood of QD. This term is therefore the important one for radial
displacements.

Only the asymmetric part of the disturbance field survives in computing
radial displacements. This result is as expected since symmetric compres-
sions and relaxations will return particles to their original radial positions.
Also, electric and magnetic drifts contribute almost equally to the coeffi-
cient 5/7 of the dominant term. Therefore, the assumptions regarding the
induced electric field are quite important to the result.

The diffusion coefficient is constructed from the average value of the
square of the radial displacement. The technique is similar to the one used
to derive pitch-angle diffusion coefficients in Chapter 7. The square of
(8.12), keeping only the dominant term, can be manipulated to give

f'd|M(i")sin(QDi"+»7)
Jo

x sin (Q D | ' + rj) sin (QD£" + rj) (8.13)

Equation (8.13) can be modified to bring out the physical content.
Expand the sine terms using the trigonometric sums of angles formula and
multiply the two factors to give
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Radial diffusion induced by magnetic fluctuations 139

sin(QD§' + 77)sin(QD£" + 77) = sinQD§'sinQD§"cos277

+ sin QD£' cos £*D?" cos 77 sin 77

+ cos QD §' sin QD §" sin 77 cos 77

+ cos QD§' cos QD§"sin2 77 (8.14)

The quantity needed for the diffusion coefficient is (r(t) - ro)
2/t averaged

over initial particle positions in longitude and averaged over a representa-
tive sample of the magnetic fluctuations. Averaging (8.14) over 77 elimin-
ates the two terms containing sin 77 cos 77 and replaces the sin2 77 and cos2 77
factors by \. The result is

[r(0 - rof = ± ^ ^ ^ - | 0

(8.15)

In averaging over 77 it was assumed that the particles were evenly distri-
buted over 77 or drift phase. Since the magnetic disturbance is asymmetric,
the particle distribution after the compression will not be uniform. Any
subsequent disturbance would then act on a non-uniform phase distribu-
tion, and the sin 77cos 77 terms in (8.14) would not be zero. However,
because the angular drift velocity depends on particle energy and pitch
angle, in time the dispersion in QD will restore the uniform distribution in
77. This assumption of an efficient phase mixing is usually made in
derivations of DLL.

Now change the inner variable of integration to £ = §" - £' where £
varies from — £' to t — §' giving

[r{t) ~ r0]
2 = ̂ j 2 ( ^ J 2 | d r J f " r d U ( | 0 ^ ( r + OcosQD£ (8.16)

A(t-') is assumed to fluctuate randomly with zero mean. Over a suffici-
ently long period of time integrals such as

f (8.17)
th th

will be equal and will be independent of the time interval chosen. They
depend only on the 'lag', f, which is the difference in the arguments of the
two factors in the integrand. Now, reverse the order of integration in the
double integral of (8.16) and use (8.17) to simplify the result:

[r{t) - rof = ̂ ) ( ^ J | i C c o s Q D C | i r A{?)A(? + g) (8.18)

The inner integral is t times the auto-correlation function of A(%')9 which
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140 Diffusion in the L coordinate or radial diffusion

is written (A(t;')A(f;' + £)). It is a function of £, not of §', and its value
will be large when £ is small so that A(t=') and A(%' + £) are nearly equal.
For large £, A(%') and A(%' + £) are uncorrelated and are as likely as not
to have different signs. For £ greater than this correlation length, the
autocorrelation function will be zero. As long as the time interval t is
larger than the correlation period, the integration over £ can be extended
to infinity giving

[r(f) - r0]2 = - -2-2 . t d£(A(?)A(? + £)>cosQD£ (8.19)
\1) \ Bd I Jo

The diffusion coefficient in terms of (Ar)2 is for magnetic field fluctuations

_ ((AL)2) _ [r(t) - r0]2 _ „ „ . . , u-.u .

where

% (8.21)f
Jo

is the power spectral density of the field variation evaluated at the drift
frequency. Thus, the radial diffusion coefficient will be large when the
magnetic fluctuations occur at frequencies near the particle drift fre-
quency.

The diffusion coefficient can be expressed in more familiar terms by
setting r0 = L/?E, QD = 27rvdrift, and Bd = Bo/L

3. With these substitutions

DM
LL = ^ ) 2 ^ v 2

d r i f t P A ( v d r i f t ) (8-22)

The variables in equation (8.22) are the L value and drift frequency
which is a function of L and iu. For non-relativistic particles vdrift oc ^/L2 so
that DLL is influenced by the v dependence of PA(V)- I n the special case
where PA(V) varies as v"2, D^L will have no vdrift dependence, and
particles of all energies will diffuse at the same rates. If the power
spectrum varies as v"n, D^L will be proportional to L6+2n[i2~n. Since the
magnitude of £>fL depends directly on PA(Vdrift) and the L variation
depends on the spectral content, it is to be expected that observed values
of DLL and their L dependence will change with global magnetic activity.

A similar calculation for off-equatorial particles is more complex but
follows the same principals. The curvature drift term must be included in
equation (8.3) and the projected change in r at the equator must be
averaged over the complete bounce motion, weighting the contribution at
each field line segment by the time the particle spends in that segment.
The result of this averaging is the mirroring latitude correction factor,
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Radial diffusion induced by electric potential fields 141

r(areq), shown in Figure 8.3. This factor is the ratio of the diffusion
coefficient at pitch angle aeq to the diffusion coefficient at aeq = n/2. The
magnetic perturbations are most effective in diffusing particles with large
equatorial pitch angles so that diffusion proceeds most rapidly for particles
confined to the equatorial plane.
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Figure 8.3. Latitude-dependent factor of the radial diffusion coefficient for mag-
netic fluctuations. The curve shows the more rapid diffusion of equatorially
trapped particles.

Radial diffusion induced by electric potential fields

Large-scale electric potential fields are imposed on the magnetosphere by
the solar wind and by plasma circulation within the magnetosphere.
However, the magnitude and geometry of these fields is uncertain at
present, and estimates of diffusion from this mechanism are somewhat
speculative. Nevertheless, it is important to estimate the magnitude and
character of diffusion from electric potential fields in order to assess the
importance of this mechanism.
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142 Diffusion in the L coordinate or radial diffusion

The calculation of electric field diffusion proceeds in much the same
way as diffusion by magnetic perturbations. Again, the development will
be restricted initially to equatorial particles with the results for off-equa-
torial particles considered at the end. The applied electric field will be
assumed perpendicular to Bd at all positions in the magnetosphere. The
starting point for the calculation is the radial component of the E x B/B2

drift velocity from equation (8.3)

- ^ = - ^ (8.23)
dt Bd

The time variations are assumed to be stochastic in the same sense as the
magnetic perturbations in the preceding section. Only the 0 component of
E is involved in radial displacements and its equatorial values can be
represented by a Fourier expansion in longitude 0:

N

E^ro, 0, 0 = E Ed>n(ro, t)cos[n(j) + yn(r0, 0 ] (8.24)
n = l

The number of terms in the sum of equation (8.24) will depend on the
complexity or spatial structure of the electric field. For example a uniform
dawn-to-dusk electric field would contain only the n = 1 term. A simplifi-
cation will be to let the phase constants yn be independent of t. This
assumption fixes the longitude of the nodes of the electric field compo-
nents, a reasonable assumption if the electric field has its origin in the
solar wind or in the magnetospheric tail.

The radial displacement of a particle whose initial coordinates are r0

and 0 = r] is obtained by integrating (8.23) from zero to t replacing 0 by
QDt + Y]\

r(t) -ro = —i - [^£ 0 n ( r o , £)cos[nQD£ + nr, + yn(r0)]d§ (8.25)

With this equation the expression for ((Ar)2) is obtained in the same
manner as for magnetic perturbations. Equation (8.25) is squared and
averaged over rj. The averaging over initial longitude t] will eliminate all
terms except the power spectrum expressions. Also, only the fluctuating
part of the electric field has an influence on the motion. This result is
expected. A steady electric field will distort the azimuthal drift path, but
the orbit will remain closed and no net displacement will occur. Squaring
equation (8.25), averaging over longitude, and rearranging the integrals as
in equation (8.12)-(8.22) results in the diffusion coefficient
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Radial diffusion induced by electric potential fields 143

\ 2 / 2R\B2
d

(8.26)

where the fluctuating part of the electric field is denoted by coefficients
Efn-

For particles mirroring off the equatorial plane the diffusion coefficient
can be derived by starting with equation (8.23) with L replacing r as the
radial coordinate. If the electric field is always perpendicular to Bd, the
instantaneous change in L for a particle at latitude A is given by

R dL._£^(L,A) ^V(l + 3sinA)
Edt £(L,A) cos3 A

The first factor is the electric field drift velocity at A and the second is the
ratio of the field line separation at the equator to the field line separation
at A. This factor is needed because at A a smaller displacement perpendicu-
lar to Bd is needed to traverse a given AL. The disturbance electric field
and the dipole magnetic field map from A to the equator as

E,(L, A) = E+(L, 0)/cos3 A (8.28)
and

B(L, A) = B(L, O)V(1 + 3sin2A)/cos6A
Therefore the latitude factors in equation (8.27) cancel leaving

di _ _±Et(L,0)
dt RE 5(L,0)

which is the same as equation (8.23) which was written for the equatorial
plane. This surprising result indicates that radial diffusion by potential
electric fields proceeds at the same rate for off-equatorial particles as it
does for particles trapped on the equator if the field lines are equi-
potentials. Expressed in terms of the power spectra of the Fourier compo-
nents of the electric field, the diffusion coefficient for electric fields from
(8.26) is

DlL(L, vdrift) = — ^ S Pn(L, «v)v=vdrift (8.30)
oRj7.Bon=i

where Pn(L, nv) is the power spectral density of the nth harmonic of the
electric field fluctuations evaluated at the same harmonic of the drift
frequency. The need for harmonics stems from the fact that if the
disturbance field has n nodes, it must vary at n times the particle drift
frequency to maintain the resonance condition.
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144 Diffusion in the L coordinate or radial diffusion

Because vdrift for constant \i depends on L, the overall variation of DE
LL

with L will depend on the frequency dependence of Pn(L,v) as well as on
the L6 term. For example, if Pn oc L°v"m then DE

LL oc L6+2m//im. As in the
case of magnetically driven diffusion, the process is much more rapid at
larger L values.

Observed and derived values of DLL

Changes in the radial distribution of trapped particles have been inter-
preted as evidence for radial diffusion. Efforts to explain these observa-
tions by applying equation (8.1) have led to a number of experimental
determinations of DLL. Two general approaches are used. If the distribu-
tion in L is evolving with time, equation (8.1) is solved as an initial value
problem. The observed initial distribution is specified and numerical
integration of (8.1) predicts the distribution at latter times. DLL is adjusted
to cause the calculated distributions to match the observed ones. Values of
DLL have also been obtained with (8.1) by adding source and loss terms
and solving for the equilibrium distribution. The boundary conditions
needed are that /(^u, / , L) is equal to the experimental values at some
outer boundary and falls to zero at the inner boundary L = 1. Again DLL

is varied to give a best fit. In this latter technique it is necessary to know
the particle sources and losses. Except for the neutron decay source of
protons, the internal sources can usually be ignored, but the loss rates
from pitch-angle scattering are important.

In four instances narrow bands of electrons were injected into the
magnetosphere by high-altitude nuclear weapon detonations. The subse-
quent spreading of these sharp initial distributions allows a straightforward
extraction of DLL from experiment. The values of DLL are not sensitive to
the assumed loss processes, but are, of course, characteristic of diffusion
only during the time immediately following the injection.

Figure 8.4 is a compilation of theoretical (dashed lines) and experi-
mental (solid lines) values of the radial diffusion coefficient. As was
expected from the theoretical expressions derived earlier, DLL increases
with L, varying as L6 to L10. This general agreement confirms that radial
diffusion processes occur as described. However, improved precision in
the measurements is needed and it is necessary to understand how DLL

responds to changing magnetic activity. There are very large differences in
the coefficients obtained by these methods, indicating that the experi-
mental uncertainties are large or (more likely) that the observed diffusion
coefficient is time dependent. In view of the many approximations used in
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Observed and derived values of DLL

103

145

Figure 8.4. Experimental (solid lines) and theoretical (dashed lines) values of
DLL.

deriving theoretical values of DLL, it is not surprising that theory and
experiment differ somewhat. It is also expected that DLL would reflect the
intensity of magnetic disturbances, and these are known to vary greatly
with time.

From the standpoint of theory, the assumption of small disturbance
fields is quite restrictive. The phase or longitude averaging is also suspect
if disturbances occur so frequently that the distribution is unable to relax
to a uniform distribution in longitude before the next impulse occurs.
Estimates of the particle diffusion in larger field changes and arbitrary
time variations is best done by simulation, tracking a number of particles
through the time-dependent electric and magnetic fields and tabulating
their behavior. Again, the applicability of such results to the magneto-
sphere is dependent on the accuracy of the assumed field variations.
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146 Diffusion in the L coordinate or radial diffusion

The magnitude of DLL implies that diffusive changes in the L distribu-
tion could take place in a day at L « 5 but would require many days to be
noticeable at L = 2. The strong L dependence implies that particles
diffusing inward from the outer boundary spend most of their time at low
L values.

Dilution of phase space density

It is apparent from the results of Chapter 6 that the phase space density of
particles becomes smaller as the particles diffuse along a radial path to
smaller L. This decrease might seem to contradict Liouville's theorem
discussed in Chapter 4 which predicts that the phase space density along a
dynamic path is preserved. However, a closer examination of the details of
the diffusion shows that no inconsistency occurs. The evolution of a band
of particles of equal \i responding to an electric field disturbance is

(b)

Figure 8.5. Phase space mixing after radial perturbation. Differential drift rates
mix regions containing particles and voids, thereby diluting the phase space
density.
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illustrated in Figure 8.5. For simplicity, only equatorial particles (/ = 0)
are considered, and the disturbance is taken to be an azimuthal electric
potential field in the midnight sector which acts momentarily and displaces
particles in that sector outward. (The fringing field will displace particles
inward at other longitudes, but this smaller motion will be ignored.) The
distribution after this impulse is shown in Figure 8.5(<z); all particles
initially have the same \x and / which are preserved. Section (b) of the
diagram illustrates the evolution of the distribution with time after the
electric field is removed. The lower drift rate of particles at larger L
produces a spiral in particle density, and, as time increases, the spiral
becomes more tightly wound, the resulting distribution is then a fine-
grained mixture of regions containing particles at densities given by
Liouville's theorem and of voids containing no particles.

Eventually, the structure will become too detailed to observe, and the
dispersion in drift rates for particles with slightly different energies or
pitch angles will effectively mix the two regions. The overall effect is to
produce a distribution in which the phase space density appears to
decrease.

Problems

1. If two closely spaced field lines lie in the same meridian but are separated
by Areq at the equator and by ArA at latitude A, show that Areq/Arx =
V 3sin2A)/cos3A.

2. An electric field is perpendicular to B and is in the <j> direction throughout the
magnetosphere. Show that if E^{L, A) is its value at latitude A, it will map to
an intensity E^L, A = 0) = E^L, A) cos3 A at the equator.

3. It is sometimes convenient to use a distribution function proportional to the
phase space density of particles, but it is also desirable to work with the radial
diffusion equation in the L coordinate. Show that the diffusion equation in
these terms is

SF/dt = L23/3L(DLLL-2BF/dL)
where the partial derivatives are performed with fi and / constant.

4. Assume that a flux of equatorially trapped protons has an exponential energy
spectrum j(E) = Cexp(—E/E0) and is trapped at L\. A large-scale electric
field carries the group of protons to L2 while conserving the first and second
adiabatic invariants and the phase space density. Show that the new flux also
has an exponential energy spectrum with an e-folding constant of Eo(Li/L2)

3.
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148 Diffusion in the L coordinate or radial diffusion

5. Equation (8.11) expresses dr/dt with the first term giving the contribution to
dr/dt from the induction electric field and the second term giving the contribu-
tion from the magnetic field changes. Starting with (8.11) derive (8.12). What
fraction of the only important term (the first) in (8.12) comes from the
induction electric field and what fraction is derived from magnetic field
variations?

6. Show that the angular drift frequency of an equatorially trapped particle at r0

is given by QD = 3p/qrl.
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