T EAAHNIKH AHMOKPATIA

k, Edvikov kot Kanodietpiakov

gy, Movemoetuiov Adnveov
IAPY®EN TO 1837

2XOAH OETIKQN ENIZTHMQN

AMMZ Space Technologies, Applications and seRvices (STAR)
M806 Space Data Systems

2EIPIAKA MPAQTOKOAAA

Akadnuaiko Etoc 2023-2024
Nektaptloc Kpavitng



Serial Communication

Native word size is multi-bit (8, 16, 32, 64, etc.)
Often, it’s not feasible to support sending all the word’s bits
at the same time

Serial communication
— Transmits data one bit at a time, in a sequential fashion
— In contrast to parallel comm. where multiple bits are sent as a whole

Commonly used for long-haul communication, modems and
non-networked communication between devices

Examples: UART, I12C, CAN, USB, Ethernet, PCI Express etc.
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Serial communication Parallel communication



Serial vs. Parallel Communication

Cost and weight

— Less cost and weight, as less wires and smaller connectors are
needed compared with parallel communication

Better reliability

— Parallel communications may introduce more clock skews, as well as
crosstalk between different wires

Higher clock rate

— Due to the higher reliability, serial communication can be clocked in
a higher frequency, hence increase the throughput

On the other hand, the conversion between serial and
parallel data may consume extra overheads



Example: SpaceWire Interface for Space Systems

SpaceWire (SpW) protocol is a standard for
“high”-speed links and networks for use
onboard spacecraft, easing interconnection of:

— Sensors

— mass-memories

— processing units, and

— downlink telemetry sub-systems

SpW is being widely used on many space
missions by: ESA, NASA, JAXA, CNSA

SpW equipment is connected together using
SpW links which are:

— serial

— high-speed (2 Mbits/sec to 200 Mbits/sec)

— bi-directional

— full-duplex
Proba-3: Launch 2023
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Types of Serial Communication

* Synchronous Serial Transmission

— A common clock is shared by both the sender and the receiver

— More efficient transmission, since one wire is dedicatedly used for
data transferring

— More costly since an extra clock wire is required
* Asynchronous Serial Transmission

— The sender does not have to send a clock signal

— Both sender and receiver agree on timing parameters in advance
— Special bits are added to synchronize transmission



Example System

Peripheral
Wr Rd Data

Rd Wr

i — o
= 5 g
= MCU ot
@ g =
5 2 =
s
Data Rd Wr
Peripheral

* Dedicated point-to-point connections
— Parallel data lines, read and write lines between MCU and each peripheral

v" Fast, allows simultaneous transfers
% Requires many connections, PCB area, scales badly



Parallel Buses

MCU

Peripheral

Wr Rd

Select

Data

Peripheral

Wr Rd

Select

Data

Peripheral

Wr Rd

Select

Data

Select

Peripheral

Wr Rd

Data

All devices use buses to share data, read and write signals

MCU uses individual select lines to address each peripheral

MCU requires fewer pins for data, but still one per data bit

MCU can communicate with only one peripheral at a time




Synchronous Serial Data Transmission

Parallel Data In

L D Q‘\ED D Q‘\ED D QﬁED D Q Ditzriglut DS;Q&}L D Q D Q D Q D
Transmitting Device Receiving Device

Clock _l
Serial Data X7 XDe XD5X D4 XD3X D2 X D1 X DO

Data Sampling Time at Receiver

* Use shift registers and a clock signal to convert between serial and
parallel formats

* Synchronous: an explicit clock signal is along with the data signal



Synchronous Full-Duplex Serial Data Bus

i

|

Selict Se%ect Select Select
Peripheral Peripheral Peripheral Peripheral
Clk DIn DOut DIin DOut DIin DOut DIin DOut
MCU T A T A T A

']

* Use two serial data lines - one for reading, one for writing

— Allows simultaneous send and receive full-duplex communication
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Synchronous Half-Duplex Serial Data Bus

v

i

i

l

MCU

Select

Peripheral
Clk Data

Select

Peripheral
Clk Data

Select

Peripheral
Clk Data

Select

Peripheral
Clk Data

i A

T A

i A

il

e Share the serial data line

e Doesn’t allow simultaneous send and receive —

is half-duplex communication
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Asynchronous Serial Communication

EStart Data Parity Stop
. pit  Dits bit~ pit

oA D1 K D2 D3 D4xE

s A D7 K F

><

§ST

Data Sampling

' i = ~ >
Time at Receiver 3 N NN

o, =~ N &4 K o & N8 8003

% S TS ES (S IS EN S IS

Eliminate the clock line!
Transmitter and receiver must generate clock locally

Transmitter must add start bit (always same value) to indicate
start of each data frame

Receiver detects leading edge of start bit, then uses it as a timing
reference for sampling data line to extract each data bit N at
time Thit*(N+5)

Stop bit is also used to detect some timing errors

12



Serial Communication Specifics

e Data frame fields

— Start bit (one bit)

— Data (LSB first or
MSB, and size —

7, 8, 9 bits)

— Optional parity bit is _
used to make total ' Message '
number of ones in data even or odd

— Stop bit (one or two bits)

* All devices must use the same communications parameters
— E.g. comm. speed (300 baud, 600, 1200, 2400, 9600, 14400, 19200, etc.)

e Sophisticated network protocols have more information in each

data frame
— Medium access control — when multiple nodes are on bus, they must
arbitrate for permission to transmit
— Addressing information — for which node is this message intended?
— Larger data payload
— Stronger error detection or error correction information
— Request for immediate response (“in-frame”)

13



Error Detection

Can send additional information to verify data was received correctly
Need to specify which parity to expect: even, odd or none.

Parity bit is set so that total number of “1” bits in data and parity is even
(for even parity) or odd (for odd parity)
— 01110111 has 6 “1” bits, so parity bit will be 1 for odd parity, O for even parity
— 01100111 has 5 “1” bits, so parity bit will be 0 for odd parity, 1 for even parity

Single parity bit detects if 1, 3, 5, 7 or 9 bits are corrupted,
but doesn’t detect an even number of corrupted bits

Stronger error detection codes (e.g. Cyclic Redundancy Check, CRC) exist
and use multiple bits (e.g. 8, 16), and can detect many more corruptions

— Used for CAN, USB, Ethernet, Bluetooth, etc.

14



Universal Asynchronous
Receiver Transmitter (UART)

UART (pronounced “you-art”) is a serial I/O peripheral that communicates
between two systems without sending a clock

Instead, the systems must agree in advance about what data rate to use and must
each locally generate its own clock

— Transmission is asynchronous because the clocks are not synchronized

— Although these system clocks may have a small frequency error and an unknown phase
relationship, the UART manages reliable asynchronous communication

UARTSs are used in protocols such as RS-232 and RS-485

— E.g. old computer serial ports use RS-232C standard (1969 by Electronics Industries Associations)

— The standard originally envisioned connecting Data Terminal Equipment (DTE) such as a mainframe
computer to Data Communication Equipment (DCE) such as a modem

Although UART is relatively slow and prone to misconfiguration issues, standards
have been around for so long that they remain important today

DTE DCE
TX | TX DTE sends data to DCE .over the TX line and receives
data back over the RX line
RX j«<— RX

15



UART Asynchronous Serial Link

1/9600 sec
[€—>

dle \Start / bit0 | bit1 | bit2 | bit3 | bit4 | bit5 | bit6 | bit7 /Stop

Sending a character at a data rate of 9600 baud

Line idles at a logic “1” when not in use

— Why do you think?

Each character is sent as a start bit (0), 7 or 8 data bits, an optional
parity bit, and one or more stop bits (1’s)

UART detects falling transition from Idle to Start to lock on to the
transmission at the appropriate time

16



UART Baud rate

Although 7 data bits is sufficient to send an ASCII character, 8 bits are normally
used because they can convey an arbitrary byte of data

Optional parity bit allows detection if a bit was corrupted during transmission

A common choice is 8 data bits, no parity, and 1 stop bit, making a total of 10
symbols to convey an 8-bit character of information

Signaling rates are referred to in units of baud rather than bits/sec
— abaud rate of 9600 indicates 9600 symbols/sec, or 960 characters/sec
— abaud rate of 9600 has a bit rate of (9600 symbols/second)x(8 bits/10 symbols)=7680 bits/second

Both systems must be configured for the appropriate baud rate and number of
data, parity, and stop bits or the data will be garbled

Typical baud rates: 1200, 2400, 9600, 14400, 19200, 38400, 57600,115200,230400

The lower rates were used in the 1970’s and 1980’s for modems that sent data
over the phone lines as a series of tones

In contemporary systems, 9600 and 115200 are two common baud rates
— 9600 is encountered where speed doesn’t matter
— 115200 is the fastest standard rate, though slow compared to other modern serial I/O standards

17



UART Transmitter

EStart Data Parity Stop
' pit  bits bt~ ibit

Data Sampling

Time at Receiver 4 A4 A4 A A4 A4 A4 A4 A A A

If no data to send, keep sending 1 (stop bit) —idle line

When there is a data word to send:
— Send a O (start bit) to indicate the start of a word
— Send each data bit in word (use shift register for transmit buffer)
— Send a 1 (stop bit) to indicate the end of the word

18



UART Receliver

EStart Data Parity Stop
' pit  bits bt~ ibit

Data Sampling
Time at Receiver

olez7 sl
G LM
621
gl
ol AT
GG
9.1
6L
681
6.1
G0L""1

* Wait for a falling edge (beginning of a Start bit)
— Then wait % bit time

— Do the following for as many data bits in the word
* Wait 1 bit time
* Read the data bit and shift it into a receive buffer (shift register)

e Wait 1 bit time

* Read the bit
— if 1 (Stop bit), then OK
— if 0, there’s a problem!



UART Receiver Oversampling

 When receiving, UART oversamples incoming data line
— Extra samples allow voting, improving noise immunity
— Better synchronization to incoming data, improving noise immunity
— Common oversampling rate: 8 or 16 times the baud rate clock
— Two voting methods: a) single sample in the center or
b) majority vote of the three samples in the center
 Example:
— Serial input data period 1/BaudRate
— Receiver uses clock falling-edge to start mod-16 internal counter

— When internal counter points to Start bit center, resets and repeats pointing
to 1%t data bit (dO) written in Serial-Input Parallel-Output (SIPO) register

— Repeat for all data bits, (parity) and stop bits

&
NV Start do d1

._

&
Leererrrrerrerrrrrrrrrr et e
- - o

8 16 16
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UART Baud rate generator

Consider a UART that has an internal system clock that must be
divided down to produce a clock that is 16x the desired baud rate

The appropriate divisor, BRD, is BRD = sys clock/(16xbaud rate)

Baud rates do not all evenly divide system clock, so some divisors
produce a frequency error

— UART accommodates this error so long as it is small enough..

Example:

— Baud rate required: 38400

— System clock: 100MHz

— BRD:100,000,000/(16*38400)=162.76=163
— Error 0.145%, acceptable if <1%

— Baud-rate generator: pulse generator producing an enable pulse
(en_x16_baud) used for oversampling every 163 clock cycles

21



Example UART Architecture

Rx_Read

Rx Data[7:0]

-

Rx_Valid

-

Rx_PError

-+

User Data/Control side

Clk 100MHz

Reset

=
L

Tx_Write

Tx_Data

Tx_Ready

UART

UART Receiver

‘ Baud-rate Serial Transmission Side

generator

UART Transmitter

| Transmit
FIFO
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GRLIB IP Core

18 APBUART - AMBA APB UART Serial Interface

PIONEERING
ADVANCED
ELECTRONICS

UART ClearToSend

Serial port
Controller

<+«—K CTSN
——»K] RTSN

UART RequestToSend

Baud-rate Lo
generator 8'bitclk
RXD K}—»| Receiver shift register [€—

\ 4

Receiver FIFO or
holding register

APB

—» Transmitter shift register ——»KJ TXD

T

Transmitter FIFO or
holding register

23



RS-232 Standard

RS-232 standard defines several additional signals
Request-to-Send (RTS) and Clear-to-Send (CTS) signals can be used
for hardware handshaking

They can be operated in either of two modes:

— Flow control mode: DTE clears RTS to O when it is ready to accept data from
DCE. Likewise, DCE clears CTS to O when it is ready to receive data from DTE

— (older) simplex mode, DTE clears RTS to O when it is ready to transmit. DCE
replies by clearing CTS when it is ready to receive the transmission

ElA
232

(PC)

DTE , >

DCE
{(Modem)

Telefonnetz

@

DCE
{(Modem)

ElA
232

DTE
(PC)
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RS-232 pinout and wiring

Original standard recommended a massive 25-pin DB-25 \Dczo oo™ o GND/
connector, but PCs streamlined to a male 9-pin DE-9

DSR RTS CTS RI

(a)

connector with the pinout shown in figure (a) ore b
Cable wires normally connect straight across as shown o -
in figure (b) o > TX
However, when directly connecting two DTEs, a null ;’;S ’2:;
modem cable shown in figure (c) may be needed to o < -
swap RX and TX and complete the handshaking RTS > RTS
As a final insult, some connectors are male and some . -
are female Q

In summary, it can take a large box of cables and a b00 <. s oo
certain amount of guess-work to connect two systems Ry e
over RS-232, again explaining the shift to USB o -
Fortunately, embedded systems typically use a GND\ /GND
simplified 3- or 5-wire setup consisting of GND, TX, RX, bsR 47 oS
and possibly RTS and CTS i



RS-232 levels

RS-232 represents:
— Logic O, electrically with 3 to 15V
— Logic 1, electrically with -3 to =15V
— This is called bipolar signaling
Transceiver
— converts UART logic levels to positive and negative levels expected by RS-232
— provides electrostatic discharge protection when the user plugs in a cable
MAX3232E: popular transceiver compatible with 3.3 and 5V logic

— It contains a charge pump that, in conjunction with external capacitors, generates
+5 V outputs from a single low-voltage power supply

Some serial peripherals intended for embedded systems omit the

. .
transceiver and just use:
* a3 A
| T
PAss T - w45 7 -
= ., Voo -k = iy Vee e
- OV ora O oL “eL o | ‘e
[ATSSRINE] P T o1 LRSS ] P Lo
- MAX322 L= . MAX3Z3, 3 -
02 e v Lo B v Lo
owF T 6fp, TE oF owF T s)e, TE o
— a n . O r 5V O r a i e Tl —ufmm ™~ 0T f1e
TILCKOS I =] 0s o S
fCMOS RS-232 TTLCMOS RS-232
IHPUTS § . £ OUTPUTS INPUTS ou
] L [\1 u e wofron P~ Teourf7
~ [
~ ] mour 1 R g 1 A
4 Pu LI L
Seal| (R
< INPUTS
10 reout A= o & A =kai]s
. Sy ] o —
- L j_ £
?ﬁ 18 =
SN [ G
I T
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+15V

+3V

-3V

Idle

Start

Start

LSB

b0

bl

b2

b3

RS-232 levels

b4

Time

bb

b6

MSB

b7

Stop

Stop

Space

Idle

Mark

Voltage levels for an ASCII "K" character
(Ox4B) with 1 start bit, 8 data bits (least
significant bit first), 1 stop bit

RS-232 data line on the terminals of the

receiver side (RxD) probed by an oscilloscope
(for an ASCII "K" character (0x4B) with 1 start
bit, 8 data bits, 1 stop bit, and no parity bits).
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Inter-Integrated Circuit (1°C) Bus

Inter-1C or 12C-bus
— Pronounced “eye-squared-see”
— Sometimes called “eye-two-see”

Simple, synchronous bidirectional 2-wire serial bus
— Multi-controller/multi-target (a.k.a. master-slave)

Invented by Philips Semiconductors in 1982 ( )
— (now NXP Semiconductors) @ (——
— Was a patented protocol
— Since October 10, 2006, no licensing fees

are required to implement |12C protocol
— However, fees are required to obtain I12C slave e
addresses allocated by NXP... B U S
UM10204 I°C-bus specification and user manual S =

— https://www.nxp.com/docs/en/user-guide/UM10204.pdf

12C is appropriate for peripherals where simplicity and low manufacturing cost
are more important than speed

28
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12C Applications

Originally used by Philips inside televisions
Now very common peripheral bus standard
Intended for use in embedded systems

— Also used (a lot) in (New) space avionics!!!
Today, a variety of devices are available with 12C

— Microcontroller, EEPROM, real-time clock (RTC), LCD
drivers, A/D converters

— Sensors (accelerometers, temperature, pressure)
— Onboard Computers (OBCs), cameras, etc for control

12C-bus is a de facto world standard used in various
control architectures

[E= I

. | ARM )
Cortex-A9 kel T°

FPGA

YT

3 daugther board slots
{Slot A, B and C}

Figure 3.1: NanoMind HP MK3 Block diagram
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12C Features

Only 2 bus lines are required:
— a Serial Data (SDA)
— a Serial Clock (SCL)

Each device connected to the bus is SW addressable by a unique
address with a simple master/slave relationship

— Masters can operate as master-transmitters or as master-receiver

Multi-master bus including collision detection & arbitration if two or
more masters simultaneously initiate data transfer

Serial, 8-bit oriented, bidirectional data transfers can be made at:
— up to 100 kbit/s in the Standard-mode
— up to 400 kbit/s in the Fast-mode
— up to 1 Mbit/s in Fast-mode Plus
— up to 3.4 Mbit/s in High-speed mode
Serial, 8-bit oriented, unidirectional data transfers
— up to 5 Mbit/s in Ultra Fast-mode

# of ICs connected to same bus limited only by a max bus capacitance



12C Bus Applications

12c 2c
[Ee 12c Ec
AD or D/A General Purpose .
Converters e LED Confrollers DIP Switches Slave
VoD4 VbDs
2C
Repeaters/
Hubs/Extenders
Vooo
I2C Port
UDDZ via HW or MCUs
o PCA954 1 Bit Banging
. 2c
Multiplexers Master Selector/ Vooi
and Switches Demux
12 MCU
Bus Confrollers 5
, I2c 12c
12C LCD Drivers
Serial EEPROMs (with 12C) el Temperatura
Calendars Sensors
Vop3 SPI
Bridg UART
ridges
(with 12C) ‘ .
UsSB

002aacB58
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Definition of 12C-bus terminology

Term

Description

Transmitter

the device which sends data to the bus

Receiver the device which receives data from the bus

Master the device which initiates a transfer, generates clock signals and
terminates a transfer

Slave the device addressed by a master

Multi-master more than one master can attempt to control the bus at the same time
without corrupting the message

Arbitration procedure to ensure that, if more than one master simultaneously tries to

control the bus, only one is allowed to do so and the winning message is
not corrupted

Synchronization

procedure to synchronize the clock signals of two or more devices

32




12C Bus Protocol

Two-wires carry information between devices connected to the bus
— Serial data (SDA)
— Serial clock (SCL)

Each device is recognized by a unique address and can operate as
either a transmitter or receiver, depending on the device function
— E.g. an LCD driver may be only a receiver
— E.g. a memory can both receive and transmit data
Devices can also be considered as masters or slaves

— A master is the device which initiates a data transfer on the bus and
generates the clock signals to permit that transfer.

— At that time, any device addressed is considered a slave
Multi-master bus

— More than one device capable of controlling the bus can be connected



12C Clock

|”

Not a “traditional” clock

Normally is kept “high” using a pull-up
Pulsed by the master during data transmission
— Master could be either the transmitter or receiver

Slave device can hold clock low if needs more time

— Allows for flow control



12C Transaction

 Transmitter/receiver differs from master/slave
— Master initiates transactions
— Slave responds

 Transmitter sets data on SDA line, slave ACKs

— For a read, slave is transmitter
— For a write, master is transmitter



12C Address Transmission

Data is always sampled on the rising clock edge

Address is 7 bits

An 8-th bit indicated read or write

— High for read
— Low for write

Addresses assigned by Philips/NXP

— For a fee
— Was covered by patent



12C Data Transmission

Transmitted just like address (8 bits)
For a write, master transmits, slave acknowledges
For a read, slave transmits, master acknowledges

Transmission continues
— Subsequent bytes sent
— Continue until master creates stop condition

I

Data MSB Data LSB  ACK !

( _ _ |

A garegate \ }{,.‘ \/ \_1‘ Iy : \_‘ ‘\’ / i
SDA from / \/ \/ L N/ \/
Transmitter oL FAS AN I AN /\ /
SDA from ~— /7~ L A\
Receiver ! '

SCL from ' \ 7\ VAR ) J \ !

Master / NS N/ \_/ S/ N
] I
1 2 / g ? | STOP REPEATED
SLA+R/W Data Byte i START or Next
i

Data Byte



Example 12C Bus Configuration

Example: Data transfer between 2 microcontrollers (uC)

Case 1: uC A wants to send information to uC B:
— MC A (master), addresses pC B (slave)
— MC A (master-transmitter), sends data to uC B (slave-receiver)
— MC A terminates the transfer

Case 2: If uC A wants to receive information from uC B:

— MC A (master) addresses pC B (slave)
— MuC A (master-receiver) receives data from pC B (slave-transmitter)
— MC A terminates the transfer

Even in Case 2, master (LC A) generates timing and terminates
the transfer

MICRO - LCD STATIC
CONTROLLER DRIVER RAM OR
A EEPROM

[SDA B

| scL

MICRO -
GATE CONTROLLER
ARRAY ADC B




Clock synchronization and arbitration

e Connecting more than one puC to 1°C-bus means more than one
master could try to initiate a data transfer at the same time

* An arbitration procedure is developed
e Relies on the wired-AND connection of all I2C interfaces to 12C-bus

* If two or more masters try to put information onto bus, the first
to produce a ‘one’ when other produces a ‘zero’ loses arbitration

* The clock signals during arbitration are a synchronized
combination of the clocks generated by the masters using the
wired-AND connection to the SCL line



SDA and SCL signals

SDA and SCL are bidirectional lines, connected to a positive
supply voltage via pull-up resistor
— When the bus is free, both lines are HIGH

Output stages of devices connected to bus must have open-
drain or open-collector to perform wired-AND function

Bus capacitance limits # of interfaces connected to bus

Vbp1 =
5V +10% Vbb2 VbDp3

CMOS CMOS NMOS BIPOLAR

] w]

SDA
SCL

002aac860

Vpp2, Vpps are device-dependent (for example, 12 V).



Data Validity

* Data on SDA line must be stable during HIGH clock period
— HIGH or LOW state of SDA can only change when clock on SCL is LOW

* One clock pulse is generated for each data bit transferred

SDA /

SCL /

data line
stable;
data valid

Bit transfer on the 12C-bus

change
of data
allowed

mba607



START and STOP conditions

All transactions begin with a START (S)
— START condition: A HIGH to LOW transition on SDA line while SCL is HIGH
— Bus considered to be busy after the START condition
All transactions are terminated by a STOP (P)
— STOP condition: A LOW to HIGH transition on the SDA line while SCL is HIGH
— Bus considered to be free again a certain time after the STOP condition
START and STOP conditions are always generated by the Master
Bus stays busy if repeated START (Sr) generated instead of STOP condition

Detection of START and STOP conditions by devices is easy if they
incorporate the necessary interfacing HW

— uCs without such I/F must sample SDA line at least twice per clock period to
sense the transition

—— -
\
\
|
\
|
[
\

\ [\ W
-

L — - —

START condition STOP condition
mba608

START and STOP conditions



Byte Format

Every byte put on SDA line must be 8 bits

Number of bytes that can be transmitted per transfer is unrestricted
Each byte must be followed by an acknowledge (ACK) bit

Data is transferred with the MSB first

If a slave cannot receive or transmit another complete byte of data until it
has performed some other function (e.g. servicing internal interrupt),
it can hold the clock line SCL LOW to force the master into a wait state

— Data transfer continues when slave is ready for another data byte and releases clock line SCL

m— B
| = [—— I i

soa | \| / N X _ X >< \ / \ x x o —X X | |
| | MSB acknowledgement acknowledgement | Sr |

| | signal from slave signal from receiver | |

SCL |SDFS[| m _/_\_/_\_/_\_/_\_/_\_/-3108 |SFDFP|
- ACK

——- ACK
START or STDP or
repeated START byte complete, clock line held LOW repeated START

condition interrupt within slave while interrupts are serviced condition
002aac861

Fig 6. Data transfer on the I2C-bus
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Acknowledge (ACK) and
Not Acknowledge (NACK)

Acknowledge takes place after every byte

ACK bit allows the receiver to signal the transmitter that the byte was
successfully received, and another byte may be sent

Master generates all clock pulses, including ACK 9th clock pulse

Acknowledge signal: Transmitter releases the SDA line during the
acknowledge clock pulse so the receiver can pull the SDA line LOW and it
remains stable LOW during the HIGH period of this clock pulse

77 r— 5 —|
| - - | |
sbpA | \| / X X >< >< \ / \ X x _X X | |
| | MSB acknowledgement acknowledgement | Sr |
| | signal from slave signal from receiver | |
| | --
SCL |SDrSr| \_/_\_/_\ _/_\_/_\_/_\_/_\_/_\_/-Stos |SrorP|
L—— CK ACK
START or STOF‘ or
repeated START byte complete, clock line held LOW repeated START
condition interrupt within slave while interrupts are serviced condition

0Zaac861

Fig 6. Data transfer on the I2C-bus "



Acknowledge (ACK) and
Not Acknowledge (NACK)

When SDA remains HIGH during 9t clock is defined as Not Acknowledge (NACK)
The master can then generate either a STOP condition to abort the transfer, or a
repeated START condition to start a new transfer

There are 5 conditions that lead to the generation of a NACK:
— No receiver is present on bus with the transmitted address > no device to respond with ACK
— The receiver is unable to receive or transmit because it is performing some real-time function
and is not ready to start communication with the master
— During the transfer, the receiver gets data or commands that it does not understand
— During the transfer, the receiver cannot receive any more data bytes
— A master-receiver must signal the end of the transfer to the slave transmitter

—— | - —
SDA | /X X _ X X \ / \ X x o _X X | |
| | MSB acknowledgement acknowledgement | Sr |

| | signal from slave signal from receiver | |

SCL |SorSr| 1 2 ____/;\/_\_/_\_/_\/_\_/_3108 9 |Sr0rP|
L——d ACK ACK L——

START or STOP or

repeated START byte complete, clock line held LOW repeated START

condition interrupt within slave while interrupts are serviced condition

002aacd61

Fig 6. Data transfer on the I12C-bus



Clock synchronization

Two masters can begin transmitting on a free bus at the same time

Clock synchronization and arbitration: method for deciding which
master takes control of the bus and complete its transmission

— In single master systems, clock synchronization & arbitration not needed
Clock synchronization performed using wired-AND to SCL line

A synchronized SCL is generated with its LOW period determined
by the master with the longest clock LOW period, and its HIGH
period determined by the one with the shortest clock HIGH period

start counting
i HIGH perod
wait - P

counter

CLK | a5 reset Y
2 | |" \ o

- |
A

Clock synchronization during the arbitration procedure




Arbitration

A master may start a transfer only if the bus is free
Arbitration is required to determine which master will complete its transmission
Arbitration proceeds bit by bit

The first time a master tries to send HIGH, but detects that SDA level is LOW
(different from what expected and concludes that another node is transmitting)
master knows it has lost the arbitration and turns off its SDA output driver.

The other master goes on to complete its transaction

A master that loses arbitration can generate clock pulses until the end of the byte
in which it loses the arbitration and must restart its transaction when bus is free

— master 1 loses arbitration

DATA W\ ,«—'—/———i‘ _______
Wired-AND { i | \:_/, \ i
I .
SDA W\ \ /
::\/ AW RWAWAWE

Arbitration procedure of two masters 47



Slave Address and R/W bit

After the START condition (S), a slave address is sent

Address is 7 bits long followed by an 8% bit which is a data direction bit (R/W )
= ‘Zero' indicates a transmission (WRITE), a ‘one’ indicates a request for data (READ)

A data transfer is always terminated by a STOP condition (P) generated by the master

If a master still wishes to communicate on the bus, it can generate a repeated START
condition (Sr) and address another slave without first generating a STOP condition.

Various combinations of read/write formats are then possible within such a transfer

A complete

- a " - — data transfer
L p

START ADDRESS RIW ACK DATA ACK DATA ACK STOP
condition condition
mbc604

MSB LSB
T T T T T | — First byte after
RIW the START

| | | | | |
rocedure
\— slave address g P 48

mbc608




Data transfer formats

e Master-transmitter transmits to slave-receiver

— The transfer direction is not changed

— The slave receiver acknowledges each byte

S SLAVE ADDRESS RW | A | DATA | A | DATA |A/A| P

data transferred

0" (write) (n bytes + acknowledge)
from master to slave A = acknowledge (SDA LOW)
A = not acknowledge (SDA HIGH)
from slave to master S = START condition

P = STOP condition
mbcE03

A master-transmitter addressing a slave receiver with a 7-bit address
(the transfer direction is not changed)
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Data transfer formats

= Master reads slave immediately after first byte

= At the moment of the first acknowledge, the master-transmitter becomes

a master-receiver and the slave-receiver becomes a slave-transmitter.

This first acknowledge is still generated by the slave
= The master generates subsequent acknowledges

= The STOP condition is generated by the master, which sends a not-
acknowledge (A) just before the STOP condition

S SLAVE ADDRESS

R/W

DATA

A

DATA

p]

(read)

data transferred
(n bytes + acknowledge)

A master reads a slave immediately after the first byte

mbe606
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Data transfer formats

= Combined format

During a change of direction within a transfer, the START condition and
the slave address are both repeated, but with the R/W bit reversed

If a master-receiver sends a repeated START condition, it sends a not-
acknowledge (4) just before the repeated START condition
Combined formats can be used, for example, to control a serial memory
= The internal memory location must be written during the first data byte
= After the START condition and slave address is repeated, data can be

transferred
S | SLAVE ADDRESS | RAW | A | DATA | A/A | Sr| SLAVE ADDRESS | RIW | A | DATA|A/A| P
(n bytes
 +ack)t

read or write

*not shaded because
transfer direction of
data and acknowledge bits
depends on R/W bits.

). Combined format

Sr = repeated START condition

(n bytes J
~ +ack)"
read or write

direction of transfer
may change at this

point.

mbec607
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12C Write Sequence

* A typical I°C bus sequence for writing to a slave:
Send a START sequence.

Send the 12C device address.
Send the data byte.

Optionally send additional data bytes (after repeating START)

Send the STOP sequence after all data bytes have been sent

* The Slave responds by setting the ACK bit (Acknowledge)

START

SDA

A6

AS

Al | A3

Al

Al ks'\\'

ACK

D6

S| D4

D3

D2

DI

DO

ACK

Repeated START

SCL
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12C Read Sequence

* Reading an I°C Slave device usually begins by writing to it
— You must tell the chip which internal register you want to read
* |°C Read Sequence:
— Send the START condition
— Send the device address
— Send the number of the register you want to read
— Send a repeated START condition
— Send the device address
— Read the data byte from the slave
— Send the STOP sequence



12C Read Example

12C Read example using device address
1100000 and reading register number 1

START Repeated START

SDA A6 A5| A4 A3 A2 Al A0 RW ACK D7 D6 D5 D4 D3 D2 DI| DOMCK

SCL U

SDA A6 AS| A4 A3 A2 Al A0 RWHICK D7y D6 | DSy D4 D3| D2| DI | DOICK
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12C Bus Addressing

pullups are needed

Encoded within device

device specific

10K ; ; I°C Peripheral
PIC
A2
SCL ® SCL
Al
SDA ’ SDA
A0
SCL: Clock *
SDA: Data I°C Peripheral
Both SCL, SDA . . AD
are bidirectional SCL Al
¢ SDA
A0

‘)’ Master to Slave

“1” Slave to Master

10 K (address = 0b mmmm A2 A1 A0 R/W#)

External Connections
personalize address

I’C Peripheral
A2

SCL
Al

SDA
A0
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rRONTGRADLC

Gaisler
GRLIB IP Core
86  I2CMST - I>*C-mast
AMBAAPB
SLAVE
Prescale R Clock
A Register generator
M A v
B Command
Register b Byte - > Bit | 73 SCL
A Command Command
hilg Status i Controller <« Controller [¢«——»FJ SDA
A Register
P
B Transmit —{p J
Register DatalO
Shift
Receive |¢}-| Register ||
Register

The 1>C-master core is a modified version of the OpenCores [>’C-Master with an AMBA APB inter-
face. The core is compatible with Philips I°C standard and supports 7- and 10-bit addressing. Stan-
dard-mode (100 kb/s) and Fast-mode (400 kb/s) operation are supported directly. External pull-up
resistors must be supplied for both bus lines.
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rRONTGRADE

Gaisler

GRLIB IP Core

87 I2CSLYV - I2C slave

Slave addr.
A < SCL (filtered)
M Control reg.
SDA (filtered) c
B <« S
A Status reg. 12CSLV ﬁ <«——»J SCL
<P 4> Control [*P| Shift register > 3 IS
A Mask reg. FSM ? = > S |« »[ISDA
(&)
START S,
g Transmit < 2
, P STOP
Receive

The I°C slave core is a simple I2C slave that provides a link between the IC bus and the AMBA APB.
The core is compatible with Philips I°C standard and supports 7- and 10-bit addressing with an
optionally software programmable address. Standard-mode (100 kb/s) and Fast-mode (400 kb/s) oper-
ation are supported directly. External pull-up resistors must be supplied for both bus lines.
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Controller Area Network (CAN) bus

* CAN is multi-master 2-wire differential serial-bus message-based protocol
* Launched in 1986 by Bosch GmbH to provide a cost-effective communications
bus for automotive applications
— ADAS, transmission, airbus, ABS, cruise control, power windows, ......
— First CAN controller chip: Intel 1987
— First car with CAN: 1991 Mercedes W140 S-class (5 CAN bus nodes)
* CAN today successfully replaces point-to-point connections in many applications

— Automotive, space avionics, industrial machines, building automation, elevators,
escalators, medical instruments and equipment etc

Bosch launches CAN is standardized CAN FD is standardized Start of CAN XL
the CAN protocol (ISO 11898) (ISO 11898-1) development
e N N
CAN JCAN FD CAN XL
1986 1993 2015 2018

// yy yy
® 7/ ® 7/ 7/ ® *—>
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CAN bus

CAN is attractive for embedded control systems

High Reliability: CAN ensures robust data transmission in noisy environments
making it suitable for critical applications such as automotive & aerospace systems

Scalability: CAN supports a scalable network architecture, allowing the addition of
nodes without significant impact on the overall system performance

Deterministic Communication: With its time-triggered communication
mechanism, CAN provides deterministic and predictable data transmission which
is critical for automotive safety systems and aerospace

Efficient Bandwidth Utilization: CAN efficiently utilizes the available bandwidth by
prioritizing messages based on their identifiers. This ensures that critical messages
can be transmitted without delay, enhancing overall system efficiency.

Error Detection and Handling: CAN protocol incorporates robust error detection
and handling mechanisms. It can detect errors (e.g. bit errors or frame errors),
enabling the identification and correction of issues, which is vital for maintaining
system integrity



CAN bus advantage

Without CAN With CAN

i
L e

(] [Rest) [Rsol) (Rl
In”ns ||A76/:|:‘1“/:|Inu|
3 Py T

£ o




CAN bus and OSI Layers

DSP
Application Layer or
Controller
g Logic Link Control
D"L'a'"'"" Embedded
ayor Medium Access Control CAN
Controller
Physical Signaling
Pt:sical Physical Medium Attchment * ?
yer
CAN
Medium Dependant Interface Transceiver
CAN Bus-Line
ISO 11898 Specification Implementation

CAN Controller,
Embedded or Separate

Electrical Specifications:
Transceivers, Connectors,
Cable
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CAN Bus Types

 CAN High Speed (CAN 2.0B)
— Speed: Up to 1Mbps
— Range: 40m
— 29bit Message ldentifier
— Termination with 120 Q Resistor

* CAN Low Speed (CAN 2.0A)
— Speed: Up to 125Kbps
— Range: 500m
— 11bit Message ldentifier
— Overall termination resistance =100 Q

 CAN FD (Flexible Data Rate)
— Speed: Up to 15Mbps
— Range: 10m



CAN Bus Topology

* CAN allows multiple devices ("nodes") to communicate

— Two or more nodes are required on the CAN network to communicate

term

Stub Leng

B

CAN Node

Not Terminated
At Node

CAN NODE1 CAN NODE 2

ACCEPT DATA

CHECK DATA

RECEIVE DATA

IS0 11898-2 Network

CAN NODE 3

IGNORE DATA

CHECII( DATA

RECEIVE DATA

Stub Leng

=2

)
)] 1
(.

CAN Node

Not Terminated
At Node

DB9 CAN Network Wiring (Front)

(o)

oo

e} Y e wQ
=0 2: =0 0: =0 o: ______'__clg gj
ek e e
o~ o- o~ o-
Ny N 0 0

With Termination Resistors (120 Ghm)

~Ot =6 =P e o

=0 =0 =0 =0
co o= co O« °Z o- o=

DBS CAN Network Wiring (Rear)

Transceiver

CAN Node
Mierocontroller
c ;éN]ler Data Link Layer
e I150.11898:1...
CAN Medium Access Unit

(Electrical Levels)
1SO 11898-2. 3

*pin 2: CAN-Low (CAN-)
*pin 3: GND (ground)
*pin 7: CAN-High (CAN+)
*pin 9: CAN V+ (power)
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CAN Communication

All nodes are connected to each other through a two-wire bus
— Wires are a twisted pair with a 120 Q (nominal) characteristic impedance
CAN bus uses differential wired-AND signals
Two signals, CAN-high (CANH) and CAN-low (CANL) are either driven to:
— Dominant state (logic 0) with CANH > CANL
— Recessive state (logic 1), using pull-up resistors, with CANH < CANL
A 0 data bit encodes a dominant state, while a 1 data bit encodes a recessive state
— Supports wired-AND convention, which gives nodes with lower ID numbers bus priority
Bus is always in recessive state (logic 1)

— When a node has to transmit 1, it leaves bus in default state
— When a node has to transmit O, it drives bus in dominant state

0 1 0 1 1 0 1 1 0 0 0 1 1 0 1
5v t } 1 4 t t t t t } : t t t t 15

Dominant dltage
CAN Hi J \ ‘ \ } ‘ l \ J \ 25

Recessive dltage

“Uy U U

Dominant dltage

2.5V

Driver logic
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CAN bus Frames

* CAN bus has four frame types:
— Data frame: containing node data for transmission
— Remote frame: requesting transmission of a specific identifier
— Error frame: transmitted by any node detecting an error
— Overload frame: to inject a delay between data or remote frame



CAN Data Frame

CAN nodes transmit data in the form of CAN data frames

— Standard-or base format CAN frame - 11 bits identifier frame (CAN 2.0A)
— Extended 29-bit identifier frame (CAN 2.0B)

/s
6 0-64 16 7

7/
SOF RTR Control Data CRC ACK  EOF

Start of Remote Trans- Cyclic Redundancy Acknow- End of
Frame mission Request Check ledgement  Frame

#bits

SOF: Start of Frame is a 'dominant 0' to tell other nodes that a CAN node intends to talk
ID: Unique frame identifier - lower values have higher priority

RTR: Remote Transmission Request indicates whether identifies whether the frame is a data frame
(dominant 0) or a request (remote) frame (recessive 1)

Control: contains Identifier Extension bit (IDE) which is a 'dominant O' for 11-bit. It also contains 4-bit
Data Length Code (DLC) specifying length of data bytes to be transmitted (0 to 8 bytes)

Data: contains data bytes, including CAN signals that can be extracted and decoded for information
CRC: The Cyclic Redundancy Check is used to ensure data integrity

ACK: indicates if node has acknowledged and received the data correctly and transmits a dominant
level (0) and thus overrides the recessive level (1) of transmitter. A receiving node can transmit a
recessive (1) to indicate that it did not receive a valid frame, but another node that did receive a valid
frame may override this with a dominant. Transmitting node cannot know that the message has been
received by all of the nodes on the CAN network.

EOF: The EOF marks the end of the CAN frame 66



CAN Frame

, 0s4l
LS4l
[43E]

0403
k403
¢d03
€403
403
G403
9403

< End of frame —»|

Jsjwlieg MOV
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4 Jeywiie@ 04O
0040
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L1OHO

¢lodo

€LOHO
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ovivd
Ivlva
8
©
o

CRC

2viva
uq ymis
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pviva

Svivd
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0010
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€010

uq yms
o
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v  eweljjo LUelS

e [ UL
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CAN RX
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vimlwliinwis
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NodeB |0 (O |O|O |O|O (1 |1 |1 Stop Tx

CAN Arbitration Example (1)

Two nodes (A,B) start transmitting (SOF) at same time
After SOF, they start transmitting ID
Each node transmits a bit and then observes bus

— |If bit sent is same as bit sensed, it continues to transmit the identifier

— If bit sent and the bit sensed back are different, it knows that a higher priority message is being
transmitted on the bus and it starts listening and stops transmitting

Node with lower identifier (A) will continue to transmit as it will drive the bus to

dominant state (0) while node (B) that intend to keep it in default state (recessive
state 1), will read back the dominant state on the bus and stop transmitting

This mechanism thus preserves the data as the frame with lower priority is not
corrupted due to simultaneous transmissions

Identifer
SOF

Nodea |0 [0 [0 ]o oo |1 ]1 o]0 |0 |0 ]

Frame on bus

=>|o|o|ofo|o|o|1|1]0o]o]o0 0] ]

[
Collision



CAN Arbitration Example (2)

NODE 1

NODE 2

NODE 3

BUS

0 0 0 1

0 0 0 1

1 1 1 0 0

SOF

SID

RTR
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CAN Error Handling

 CAN bus errors can occur due to:
— Faulty cables
— Noise
— Incorrect termination
— Malfunctioning CAN nodes

* CAN bus error handling identifies and rejects erroneous messages,
enabling a sender to re-transmit the message
* Ensures that temporary local disturbances will not result in invalid/lost data
* |dentify & disconnect nodes that consistently transmit erroneous messages
* Transmitter attempts to re-send the message

— If it wins arbitration (and there are no errors), the message is successfully sent

— The ability of problematic CAN nodes to transmit data is thus

gracefully reduced to avoid further CAN errors and bus jamming

* CAN nodes keep track of their own CAN error counters and change state
(active, passive, bus off) depending on their counters (see next slides)



CAN Error Detection

When a CAN node detects a frame error, it transmits an Error Flag

Error flag is normally detected by the node transmitting the invalid
frame, which then retransmits to correct the error

— Retransmission starts over from SOF, thus arbitration with other nodes can

occur again

CAN nodes detect the following errors:

— Biterror

— Stuff error

— CRCerror

— Form error

— Acknowledgment error



CAN Errors

Bit Error (Transmitter) Evaluated at bit-level
— CAN nodes monitor CAN bus on a bit-by-bit basis
— If bit monitored is different from bit transmitted, a Bit Error is detected

— Node raises an Active Error Flag to inform other nodes 1
— Bit error check applies only to the following fields m
of the transmitted frame: Data Length Code, Data Bytes, CRC

Bit Stuffing Error (Receiver)
— See next slides...

CRC Error (Receiver) Evaluated at message-level
— Detected by a receiving node when calculated CRC differs from actual CRC in frame
Form Error (Receiver)

— Occurs upon a violation of the standard CAN frame encoding

* E.g.if a CAN node begins transmitting SOF bit for a new frame before EOF sequence
completes for a previous frame (does not wait for bus idle)

ACK Error (Transmitter)

— Detected by a transmitting node when it does not detect a dominant ACK bit

Active Error Flag: 6 consecutive dominant (0) bits (violating rule of bit stuffing)

72




CAN bit stuffing

In CAN frames, stuff bits are added from SOF through the end of CRC
— To ensure enough transitions to maintain synchronization

— Necessary due to the non-return-to-zero (NRZ) coding used

After every 5 identical bits (dominant or recessive) a complementary bit is inserted

— These stuff bits are not calculated into the checksum

— The stuffed data frames are destuffed by the receiver
In the fields where bit stuffing is applied, 6 consecutive bits of the same polarity
(i.e. 111111 or 000000) are considered an error
Node can transmit an Active Error Flag when an error has been detected

Bit stuffing -> increase data frames size

— E.g.11111000011110000...

— is stuffed as (stuffing bits in red): 111110000011111000001...

* Bit stuffing itself may be the first of the five consecutive identical bits
*  Worst case: 1 stuffing bit per 4 original bits

NRZ (Non Return to Zero): the binary signals to be
transmitted are mapped directly: a logic “1” to a high
level, a logic “0” to a low level. 1011000100

0
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CAN bus bit stuffing example
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GRLIB IP Core
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AMBA APB

GRCAN - CAN 2.0 Controller with DMA

AMBA AHB
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CAN vs 12C

Synchronization
— 1?Cis synchronous
— CAN is asynchronous

Addressing Method
— I2Crequires a unique slave address for communication
— CAN uses identifiers for messages instead of device addresses
Communication Orientation
— I?C: node-oriented, meaning communication happens between master and slave nodes
— CAN: message-oriented, messages are broadcast, and the node interested in the message will pick it up
Physical Layer
— I?C uses two lines (SDA for data and SCL for clock)
— CAN uses a differential bus which makes it more resistant to noise.
Speed
— I?C operates at speeds from 100kbps (Std mode) up to 3.4mbps (High-speed mode)
— CAN operates at speeds from 250kbps up to Imbps.
Noise Immunity
— CAN'’s differential signaling provides better noise immunity compared to 12C
Complexity

— I?C:simpler & easier to use for short distance low-speed interconnections between ICs on a PCB

— CAN: more complex but provides robust communication over longer distances in noisy environments
(i.e. space avionics)
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