
ΣΕΙΡΙΑΚΑ ΠΡΩΤΟΚΟΛΛΑ

Ακαδημαϊκό Έτος 2023-2024

Νεκτάριος Κρανίτης

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

M806 Space Data Systems

ΔΠΜΣ Space Technologies, Applications and seRvices (STAR)

Serial Communication

• Native word size is multi-bit (8, 16, 32, 64, etc.)

• Often, it’s not feasible to support sending all the word’s bits
at the same time

• Serial communication
– Transmits data one bit at a time, in a sequential fashion

– In contrast to parallel comm. where multiple bits are sent as a whole

• Commonly used for long-haul communication, modems and
non-networked communication between devices

• Examples: UART, I2C, CAN, USB, Ethernet, PCI Express etc.

2

Serial vs. Parallel Communication

• Cost and weight
– Less cost and weight, as less wires and smaller connectors are

needed compared with parallel communication

• Better reliability
– Parallel communications may introduce more clock skews, as well as

crosstalk between different wires

• Higher clock rate
– Due to the higher reliability, serial communication can be clocked in

a higher frequency, hence increase the throughput

• On the other hand, the conversion between serial and
parallel data may consume extra overheads

3

Example: SpaceWire Interface for Space Systems

4

• SpaceWire (SpW) protocol is a standard for
“high”-speed links and networks for use
onboard spacecraft, easing interconnection of:

– sensors

– mass-memories

– processing units, and

– downlink telemetry sub-systems

• SpW is being widely used on many space
missions by: ESA, NASA, JAXA, CNSA

• SpW equipment is connected together using
SpW links which are:

– serial

– high-speed (2 Mbits/sec to 200 Mbits/sec)

– bi-directional

– full-duplex

Juice: Launch 2022

Euclid: Launch 2022

Proba-3: Launch 2023

GR765 Octa-Core Processor

5

Types of Serial Communication

• Synchronous Serial Transmission
– A common clock is shared by both the sender and the receiver

– More efficient transmission, since one wire is dedicatedly used for
data transferring

– More costly since an extra clock wire is required

• Asynchronous Serial Transmission
– The sender does not have to send a clock signal

– Both sender and receiver agree on timing parameters in advance

– Special bits are added to synchronize transmission

6

Example System

• Dedicated point-to-point connections

– Parallel data lines, read and write lines between MCU and each peripheral

✓ Fast, allows simultaneous transfers

 Requires many connections, PCB area, scales badly

7

MCU

Peripheral
DataRdWr

Peripheral

Data Rd Wr

P
e

ri
p

h
e

ra
l

D
a

ta
R

d
W

r
P

e
rip

h
e

ra
l

D
a

ta
R

d
W

r

Parallel Buses

• All devices use buses to share data, read and write signals

• MCU uses individual select lines to address each peripheral

• MCU requires fewer pins for data, but still one per data bit

• MCU can communicate with only one peripheral at a time

8

MCU

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Peripheral
DataRdWr

Select

Synchronous Serial Data Transmission

• Use shift registers and a clock signal to convert between serial and
parallel formats

• Synchronous: an explicit clock signal is along with the data signal

9

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial

Data Out

Parallel Data In

Clk

D Q

D3

D Q

D2

D Q

D1

D Q

D0

Serial

Data In

Parallel Data Out

Transmitting Device Receiving Device

Clock

Serial Data

Data Sampling Time at Receiver

Synchronous Full-Duplex Serial Data Bus

• Use two serial data lines - one for reading, one for writing

– Allows simultaneous send and receive full-duplex communication

10

MCU

Peripheral
DOut

Select

DInClk

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

Peripheral
DOut

Select

DIn

Synchronous Half-Duplex Serial Data Bus

• Share the serial data line

• Doesn’t allow simultaneous send and receive –
is half-duplex communication

11

MCU

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Peripheral
Data

Select

Clk

Asynchronous Serial Communication

• Eliminate the clock line!
• Transmitter and receiver must generate clock locally
• Transmitter must add start bit (always same value) to indicate

start of each data frame
• Receiver detects leading edge of start bit, then uses it as a timing

reference for sampling data line to extract each data bit N at
time Tbit*(N+5)

• Stop bit is also used to detect some timing errors

12

Serial Communication Specifics

13

• Data frame fields
– Start bit (one bit)
– Data (LSB first or

MSB, and size –
7, 8, 9 bits)

– Optional parity bit is
used to make total
number of ones in data even or odd

– Stop bit (one or two bits)
• All devices must use the same communications parameters

– E.g. comm. speed (300 baud, 600, 1200, 2400, 9600, 14400, 19200, etc.)
• Sophisticated network protocols have more information in each

data frame
– Medium access control – when multiple nodes are on bus, they must

arbitrate for permission to transmit
– Addressing information – for which node is this message intended?
– Larger data payload
– Stronger error detection or error correction information
– Request for immediate response (“in-frame”)

Error Detection

14

• Can send additional information to verify data was received correctly

• Need to specify which parity to expect: even, odd or none.

• Parity bit is set so that total number of “1” bits in data and parity is even
(for even parity) or odd (for odd parity)

– 01110111 has 6 “1” bits, so parity bit will be 1 for odd parity, 0 for even parity

– 01100111 has 5 “1” bits, so parity bit will be 0 for odd parity, 1 for even parity

• Single parity bit detects if 1, 3, 5, 7 or 9 bits are corrupted,
but doesn’t detect an even number of corrupted bits

• Stronger error detection codes (e.g. Cyclic Redundancy Check, CRC) exist
and use multiple bits (e.g. 8, 16), and can detect many more corruptions

– Used for CAN, USB, Ethernet, Bluetooth, etc.

Universal Asynchronous
Receiver Transmitter (UART)

15

• UART (pronounced “you-art”) is a serial I/O peripheral that communicates
between two systems without sending a clock

• Instead, the systems must agree in advance about what data rate to use and must
each locally generate its own clock

– Transmission is asynchronous because the clocks are not synchronized

– Although these system clocks may have a small frequency error and an unknown phase
relationship, the UART manages reliable asynchronous communication

• UARTs are used in protocols such as RS-232 and RS-485
– E.g. old computer serial ports use RS-232C standard (1969 by Electronics Industries Associations)

– The standard originally envisioned connecting Data Terminal Equipment (DTE) such as a mainframe
computer to Data Communication Equipment (DCE) such as a modem

• Although UART is relatively slow and prone to misconfiguration issues, standards
have been around for so long that they remain important today

DTE sends data to DCE over the TX line and receives
data back over the RX line

UART Asynchronous Serial Link

16

• Line idles at a logic ‘1’ when not in use
– Why do you think?

• Each character is sent as a start bit (0), 7 or 8 data bits, an optional
parity bit, and one or more stop bits (1’s)

• UART detects falling transition from Idle to Start to lock on to the
transmission at the appropriate time

Sending a character at a data rate of 9600 baud

UART Baud rate

17

• Although 7 data bits is sufficient to send an ASCII character, 8 bits are normally
used because they can convey an arbitrary byte of data

• Optional parity bit allows detection if a bit was corrupted during transmission

• A common choice is 8 data bits, no parity, and 1 stop bit, making a total of 10
symbols to convey an 8-bit character of information

• Signaling rates are referred to in units of baud rather than bits/sec
– a baud rate of 9600 indicates 9600 symbols/sec, or 960 characters/sec

– a baud rate of 9600 has a bit rate of (9600 symbols/second)×(8 bits/10 symbols)=7680 bits/second

• Both systems must be configured for the appropriate baud rate and number of
data, parity, and stop bits or the data will be garbled

• Typical baud rates: 1200, 2400, 9600, 14400, 19200, 38400, 57600,115200,230400

• The lower rates were used in the 1970’s and 1980’s for modems that sent data
over the phone lines as a series of tones

• In contemporary systems, 9600 and 115200 are two common baud rates
– 9600 is encountered where speed doesn’t matter

– 115200 is the fastest standard rate, though slow compared to other modern serial I/O standards

UART Transmitter

18

• If no data to send, keep sending 1 (stop bit) – idle line
• When there is a data word to send:

– Send a 0 (start bit) to indicate the start of a word
– Send each data bit in word (use shift register for transmit buffer)
– Send a 1 (stop bit) to indicate the end of the word

T
b
it

Data

bits

Data Sampling

Time at Receiver T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

T
b
it

UART Receiver

19

• Wait for a falling edge (beginning of a Start bit)
– Then wait ½ bit time
– Do the following for as many data bits in the word

• Wait 1 bit time
• Read the data bit and shift it into a receive buffer (shift register)

• Wait 1 bit time
• Read the bit

– if 1 (Stop bit), then OK
– if 0, there’s a problem!

UART Receiver Oversampling

20

• When receiving, UART oversamples incoming data line
– Extra samples allow voting, improving noise immunity

– Better synchronization to incoming data, improving noise immunity

– Common oversampling rate: 8 or 16 times the baud rate clock

– Two voting methods: a) single sample in the center or
b) majority vote of the three samples in the center

• Example:
– Serial input data period 1/BaudRate

– Receiver uses clock falling-edge to start mod-16 internal counter

– When internal counter points to Start bit center, resets and repeats pointing
to 1st data bit (d0) written in Serial-Input Parallel-Output (SIPO) register

– Repeat for all data bits, (parity) and stop bits

UART Baud rate generator

21

• Consider a UART that has an internal system clock that must be
divided down to produce a clock that is 16x the desired baud rate

• The appropriate divisor, BRD, is BRD = sys_clock/(16×baud rate)

• Baud rates do not all evenly divide system clock, so some divisors
produce a frequency error
– UART accommodates this error so long as it is small enough..

• Example:
– Baud rate required: 38400

– System clock: 100MHz

– BRD: 100,000,000/(16*38400)=162.76≈163

– Error 0.145%, acceptable if <1%

– Baud-rate generator: pulse generator producing an enable pulse
(en_x16_baud) used for oversampling every 163 clock cycles

•

Example UART Architecture

22

23

UART ClearToSend

UART RequestToSend

RS-232 Standard

24

• RS-232 standard defines several additional signals

• Request-to-Send (RTS) and Clear-to-Send (CTS) signals can be used
for hardware handshaking

• They can be operated in either of two modes:
– Flow control mode: DTE clears RTS to 0 when it is ready to accept data from

DCE. Likewise, DCE clears CTS to 0 when it is ready to receive data from DTE

– (older) simplex mode, DTE clears RTS to 0 when it is ready to transmit. DCE
replies by clearing CTS when it is ready to receive the transmission

RS-232 pinout and wiring

25

• Original standard recommended a massive 25-pin DB-25
connector, but PCs streamlined to a male 9-pin DE-9
connector with the pinout shown in figure (a)

• Cable wires normally connect straight across as shown
in figure (b)

• However, when directly connecting two DTEs, a null
modem cable shown in figure (c) may be needed to
swap RX and TX and complete the handshaking

• As a final insult, some connectors are male and some
are female

• In summary, it can take a large box of cables and a
certain amount of guess-work to connect two systems
over RS-232, again explaining the shift to USB

• Fortunately, embedded systems typically use a
simplified 3- or 5-wire setup consisting of GND, TX, RX,
and possibly RTS and CTS

RS-232 levels

26

• RS-232 represents:
– Logic 0, electrically with 3 to 15V

– Logic 1, electrically with −3 to −15 V

– This is called bipolar signaling

• Transceiver
– converts UART logic levels to positive and negative levels expected by RS-232

– provides electrostatic discharge protection when the user plugs in a cable

• MAX3232E: popular transceiver compatible with 3.3 and 5V logic
– It contains a charge pump that, in conjunction with external capacitors, generates

±5 V outputs from a single low-voltage power supply

• Some serial peripherals intended for embedded systems omit the
transceiver and just use:
– 0V for a 0

– and 3.3 or 5V for a 1

RS-232 levels

27

Voltage levels for an ASCII "K" character
(0x4B) with 1 start bit, 8 data bits (least
significant bit first), 1 stop bit

RS-232 data line on the terminals of the
receiver side (RxD) probed by an oscilloscope
(for an ASCII "K" character (0x4B) with 1 start
bit, 8 data bits, 1 stop bit, and no parity bits).

Inter-Integrated Circuit (I2C) Bus

28

• Inter-IC or I2C-bus
– Pronounced “eye-squared-see”

– Sometimes called “eye-two-see”

• Simple, synchronous bidirectional 2-wire serial bus
– Multi-controller/multi-target (a.k.a. master-slave)

• Invented by Philips Semiconductors in 1982
– (now NXP Semiconductors)

– Was a patented protocol

– Since October 10, 2006, no licensing fees
are required to implement I²C protocol

– However, fees are required to obtain I²C slave
addresses allocated by NXP…

• UM10204 I2C-bus specification and user manual
– https://www.nxp.com/docs/en/user-guide/UM10204.pdf

I²C is appropriate for peripherals where simplicity and low manufacturing cost
are more important than speed

https://www.nxp.com/docs/en/user-guide/UM10204.pdf

I2C Applications
• Originally used by Philips inside televisions

• Now very common peripheral bus standard

• Intended for use in embedded systems
– Also used (a lot) in (New) space avionics!!!

• Today, a variety of devices are available with I2C

– Microcontroller, EEPROM, real-time clock (RTC), LCD
drivers, A/D converters

– Sensors (accelerometers, temperature, pressure)

– Onboard Computers (OBCs), cameras, etc for control

• I2C-bus is a de facto world standard used in various
control architectures

29

I2C Features

30

• Only 2 bus lines are required:
– a Serial Data (SDA)

– a Serial Clock (SCL)

• Each device connected to the bus is SW addressable by a unique
address with a simple master/slave relationship
– Masters can operate as master-transmitters or as master-receiver

• Multi-master bus including collision detection & arbitration if two or
more masters simultaneously initiate data transfer

• Serial, 8-bit oriented, bidirectional data transfers can be made at:
– up to 100 kbit/s in the Standard-mode

– up to 400 kbit/s in the Fast-mode

– up to 1 Mbit/s in Fast-mode Plus

– up to 3.4 Mbit/s in High-speed mode

• Serial, 8-bit oriented, unidirectional data transfers
– up to 5 Mbit/s in Ultra Fast-mode

• # of ICs connected to same bus limited only by a max bus capacitance

I2C Bus Applications

31

Definition of I2C-bus terminology

32

I2C Bus Protocol

33

• Two-wires carry information between devices connected to the bus

– Serial data (SDA)

– Serial clock (SCL)

• Each device is recognized by a unique address and can operate as
either a transmitter or receiver, depending on the device function

– E.g. an LCD driver may be only a receiver

– E.g. a memory can both receive and transmit data

• Devices can also be considered as masters or slaves

– A master is the device which initiates a data transfer on the bus and
generates the clock signals to permit that transfer.

– At that time, any device addressed is considered a slave

• Multi-master bus

– More than one device capable of controlling the bus can be connected

I2C Clock

• Not a “traditional” clock

• Normally is kept “high” using a pull-up

• Pulsed by the master during data transmission

– Master could be either the transmitter or receiver

• Slave device can hold clock low if needs more time

– Allows for flow control

34

I2C Transaction

• Transmitter/receiver differs from master/slave

– Master initiates transactions

– Slave responds

• Transmitter sets data on SDA line, slave ACKs

– For a read, slave is transmitter

– For a write, master is transmitter

35

I2C Address Transmission

• Data is always sampled on the rising clock edge

• Address is 7 bits

• An 8-th bit indicated read or write

– High for read

– Low for write

• Addresses assigned by Philips/NXP

– For a fee

– Was covered by patent

36

I2C Data Transmission
• Transmitted just like address (8 bits)

• For a write, master transmits, slave acknowledges

• For a read, slave transmits, master acknowledges

• Transmission continues
– Subsequent bytes sent

– Continue until master creates stop condition

37

Example I2C Bus Configuration
• Example: Data transfer between 2 microcontrollers (μC)

• Case 1: μC A wants to send information to μC B:
– μC A (master), addresses μC B (slave)

– μC A (master-transmitter), sends data to μC B (slave-receiver)

– μC A terminates the transfer

• Case 2: If μC A wants to receive information from μC B:
– μC A (master) addresses μC B (slave)

– μC A (master-receiver) receives data from μC B (slave-transmitter)

– μC A terminates the transfer

• Even in Case 2, master (μC A) generates timing and terminates
the transfer

38

Clock synchronization and arbitration

• Connecting more than one μC to I2C-bus means more than one
master could try to initiate a data transfer at the same time

• An arbitration procedure is developed

• Relies on the wired-AND connection of all I2C interfaces to I2C-bus

• If two or more masters try to put information onto bus, the first
to produce a ‘one’ when other produces a ‘zero’ loses arbitration

• The clock signals during arbitration are a synchronized
combination of the clocks generated by the masters using the
wired-AND connection to the SCL line

39

SDA and SCL signals
• SDA and SCL are bidirectional lines, connected to a positive

supply voltage via pull-up resistor

– When the bus is free, both lines are HIGH

• Output stages of devices connected to bus must have open-
drain or open-collector to perform wired-AND function

• Bus capacitance limits # of interfaces connected to bus

40

Data Validity
• Data on SDA line must be stable during HIGH clock period

– HIGH or LOW state of SDA can only change when clock on SCL is LOW

• One clock pulse is generated for each data bit transferred

41

START and STOP conditions
• All transactions begin with a START (S)

– START condition: A HIGH to LOW transition on SDA line while SCL is HIGH

– Bus considered to be busy after the START condition

• All transactions are terminated by a STOP (P)
– STOP condition: A LOW to HIGH transition on the SDA line while SCL is HIGH

– Bus considered to be free again a certain time after the STOP condition

• START and STOP conditions are always generated by the Master

• Bus stays busy if repeated START (Sr) generated instead of STOP condition

• Detection of START and STOP conditions by devices is easy if they
incorporate the necessary interfacing HW
– μCs without such I/F must sample SDA line at least twice per clock period to

sense the transition

42

Byte Format
• Every byte put on SDA line must be 8 bits

• Number of bytes that can be transmitted per transfer is unrestricted

• Each byte must be followed by an acknowledge (ACK) bit

• Data is transferred with the MSB first

• If a slave cannot receive or transmit another complete byte of data until it
has performed some other function (e.g. servicing internal interrupt),
it can hold the clock line SCL LOW to force the master into a wait state
– Data transfer continues when slave is ready for another data byte and releases clock line SCL

43

Acknowledge (ACK) and
Not Acknowledge (NACK)

• Acknowledge takes place after every byte

• ACK bit allows the receiver to signal the transmitter that the byte was
successfully received, and another byte may be sent

• Master generates all clock pulses, including ACK 9th clock pulse

• Acknowledge signal: Transmitter releases the SDA line during the
acknowledge clock pulse so the receiver can pull the SDA line LOW and it
remains stable LOW during the HIGH period of this clock pulse

44

Acknowledge (ACK) and
Not Acknowledge (NACK)

• When SDA remains HIGH during 9th clock is defined as Not Acknowledge (NACK)
• The master can then generate either a STOP condition to abort the transfer, or a

repeated START condition to start a new transfer
• There are 5 conditions that lead to the generation of a NACK:

– No receiver is present on bus with the transmitted address > no device to respond with ACK
– The receiver is unable to receive or transmit because it is performing some real-time function

and is not ready to start communication with the master
– During the transfer, the receiver gets data or commands that it does not understand
– During the transfer, the receiver cannot receive any more data bytes
– A master-receiver must signal the end of the transfer to the slave transmitter

45

Clock synchronization
• Two masters can begin transmitting on a free bus at the same time

• Clock synchronization and arbitration: method for deciding which
master takes control of the bus and complete its transmission
– In single master systems, clock synchronization & arbitration not needed

• Clock synchronization performed using wired-AND to SCL line

• A synchronized SCL is generated with its LOW period determined
by the master with the longest clock LOW period, and its HIGH
period determined by the one with the shortest clock HIGH period

46

Arbitration
• A master may start a transfer only if the bus is free

• Arbitration is required to determine which master will complete its transmission

• Arbitration proceeds bit by bit

• The first time a master tries to send HIGH, but detects that SDA level is LOW
(different from what expected and concludes that another node is transmitting)
master knows it has lost the arbitration and turns off its SDA output driver.
The other master goes on to complete its transaction

• A master that loses arbitration can generate clock pulses until the end of the byte
in which it loses the arbitration and must restart its transaction when bus is free

47

Wired-AND

48

First byte after
the START
procedure

A complete
data transfer

Slave Address and R/𝑊 bit

Data transfer formats
• Master-transmitter transmits to slave-receiver

– The transfer direction is not changed

– The slave receiver acknowledges each byte

49

Data transfer formats

50

Data transfer formats

51

I2C Write Sequence

• A typical I2C bus sequence for writing to a slave:
– Send a START sequence.

– Send the I2C device address.

– Send the data byte.

– Optionally send additional data bytes (after repeating START)

– Send the STOP sequence after all data bytes have been sent

• The Slave responds by setting the ACK bit (Acknowledge)

52

I2C Read Sequence

• Reading an I2C Slave device usually begins by writing to it
– You must tell the chip which internal register you want to read

• I2C Read Sequence:

– Send the START condition

– Send the device address

– Send the number of the register you want to read

– Send a repeated START condition

– Send the device address

– Read the data byte from the slave

– Send the STOP sequence

53

I2C Read Example

• I2C Read example using device address
1100000 and reading register number 1

54

I2C Bus Addressing

55

No chip selects needed!!!!!

pullups are needed

56

57

• CAN is multi-master 2-wire differential serial-bus message-based protocol

• Launched in 1986 by Bosch GmbH to provide a cost-effective communications
bus for automotive applications

– ADAS, transmission, airbus, ABS, cruise control, power windows, ……

– First CAN controller chip: Intel 1987

– First car with CAN: 1991 Mercedes W140 S-class (5 CAN bus nodes)

• CAN today successfully replaces point-to-point connections in many applications

– Automotive, space avionics, industrial machines, building automation, elevators,
escalators, medical instruments and equipment etc

Controller Area Network (CAN) bus

58

CAN bus
• CAN is attractive for embedded control systems

– High Reliability: CAN ensures robust data transmission in noisy environments
making it suitable for critical applications such as automotive & aerospace systems

– Scalability: CAN supports a scalable network architecture, allowing the addition of
nodes without significant impact on the overall system performance

– Deterministic Communication: With its time-triggered communication
mechanism, CAN provides deterministic and predictable data transmission which
is critical for automotive safety systems and aerospace

– Efficient Bandwidth Utilization: CAN efficiently utilizes the available bandwidth by
prioritizing messages based on their identifiers. This ensures that critical messages
can be transmitted without delay, enhancing overall system efficiency.

– Error Detection and Handling: CAN protocol incorporates robust error detection
and handling mechanisms. It can detect errors (e.g. bit errors or frame errors),
enabling the identification and correction of issues, which is vital for maintaining
system integrity

59

CAN bus advantage

60

CAN bus and OSI Layers

61

CAN Bus Types

• CAN High Speed (CAN 2.0B)
– Speed: Up to 1Mbps

– Range: 40m

– 29bit Message Identifier

– Termination with 120 Ω Resistor

• CAN Low Speed (CAN 2.0A)
– Speed: Up to 125Kbps

– Range: 500m

– 11bit Message Identifier

– Overall termination resistance ≈100 Ω

• CAN FD (Flexible Data Rate)
– Speed: Up to 15Mbps

– Range: 10m

62

CAN Bus Topology
• CAN allows multiple devices ("nodes") to communicate

– Two or more nodes are required on the CAN network to communicate

63

•pin 2: CAN-Low (CAN−)
•pin 3: GND (ground)
•pin 7: CAN-High (CAN+)
•pin 9: CAN V+ (power)

CAN Communication
• All nodes are connected to each other through a two-wire bus

– Wires are a twisted pair with a 120 Ω (nominal) characteristic impedance

• CAN bus uses differential wired-AND signals

• Two signals, CAN-high (CANH) and CAN-low (CANL) are either driven to:

– Dominant state (logic 0) with CANH > CANL

– Recessive state (logic 1), using pull-up resistors, with CANH ≤ CANL

• A 0 data bit encodes a dominant state, while a 1 data bit encodes a recessive state

– Supports wired-AND convention, which gives nodes with lower ID numbers bus priority

• Bus is always in recessive state (logic 1)

– When a node has to transmit 1, it leaves bus in default state

– When a node has to transmit 0, it drives bus in dominant state

64

CAN bus Frames
• CAN bus has four frame types:

– Data frame: containing node data for transmission

– Remote frame: requesting transmission of a specific identifier

– Error frame: transmitted by any node detecting an error

– Overload frame: to inject a delay between data or remote frame

65

CAN Data Frame
• CAN nodes transmit data in the form of CAN data frames

– Standard-or base format CAN frame - 11 bits identifier frame (CAN 2.0A)

– Extended 29-bit identifier frame (CAN 2.0B)

66

• SOF: Start of Frame is a 'dominant 0' to tell other nodes that a CAN node intends to talk

• ID: Unique frame identifier - lower values have higher priority

• RTR: Remote Transmission Request indicates whether identifies whether the frame is a data frame
(dominant 0) or a request (remote) frame (recessive 1)

• Control: contains Identifier Extension bit (IDE) which is a 'dominant 0' for 11-bit. It also contains 4-bit
Data Length Code (DLC) specifying length of data bytes to be transmitted (0 to 8 bytes)

• Data: contains data bytes, including CAN signals that can be extracted and decoded for information

• CRC: The Cyclic Redundancy Check is used to ensure data integrity

• ACK: indicates if node has acknowledged and received the data correctly and transmits a dominant
level (0) and thus overrides the recessive level (1) of transmitter. A receiving node can transmit a
recessive (1) to indicate that it did not receive a valid frame, but another node that did receive a valid
frame may override this with a dominant. Transmitting node cannot know that the message has been
received by all of the nodes on the CAN network.

• EOF: The EOF marks the end of the CAN frame

CAN Frame

67

CAN Arbitration Example (1)

• Two nodes (A,B) start transmitting (SOF) at same time

• After SOF, they start transmitting ID

• Each node transmits a bit and then observes bus
– If bit sent is same as bit sensed, it continues to transmit the identifier

– If bit sent and the bit sensed back are different, it knows that a higher priority message is being
transmitted on the bus and it starts listening and stops transmitting

• Node with lower identifier (A) will continue to transmit as it will drive the bus to
dominant state (0) while node (B) that intend to keep it in default state (recessive
state 1), will read back the dominant state on the bus and stop transmitting

• This mechanism thus preserves the data as the frame with lower priority is not
corrupted due to simultaneous transmissions

68

69

CAN Arbitration Example (2)

CAN Error Handling
• CAN bus errors can occur due to:

– Faulty cables

– Noise

– Incorrect termination

– Malfunctioning CAN nodes

• CAN bus error handling identifies and rejects erroneous messages,
enabling a sender to re-transmit the message
• Ensures that temporary local disturbances will not result in invalid/lost data

• Identify & disconnect nodes that consistently transmit erroneous messages

• Transmitter attempts to re-send the message
– If it wins arbitration (and there are no errors), the message is successfully sent

– The ability of problematic CAN nodes to transmit data is thus
gracefully reduced to avoid further CAN errors and bus jamming
• CAN nodes keep track of their own CAN error counters and change state

(active, passive, bus off) depending on their counters (see next slides)

70

CAN Error Detection

• When a CAN node detects a frame error, it transmits an Error Flag

• Error flag is normally detected by the node transmitting the invalid
frame, which then retransmits to correct the error
– Retransmission starts over from SOF, thus arbitration with other nodes can

occur again

• CAN nodes detect the following errors:
– Bit error

– Stuff error

– CRC error

– Form error

– Acknowledgment error

71

• Bit Error (Transmitter)

– CAN nodes monitor CAN bus on a bit-by-bit basis

– If bit monitored is different from bit transmitted, a Bit Error is detected

– Node raises an Active Error Flag to inform other nodes

– Bit error check applies only to the following fields
of the transmitted frame: Data Length Code, Data Bytes, CRC

• Bit Stuffing Error (Receiver)

– See next slides…

• CRC Error (Receiver)

– Detected by a receiving node when calculated CRC differs from actual CRC in frame

• Form Error (Receiver)

– Occurs upon a violation of the standard CAN frame encoding

• E.g. if a CAN node begins transmitting SOF bit for a new frame before EOF sequence
completes for a previous frame (does not wait for bus idle)

• ACK Error (Transmitter)

– Detected by a transmitting node when it does not detect a dominant ACK bit

CAN Errors

72

Active Error Flag: 6 consecutive dominant (0) bits (violating rule of bit stuffing)

Evaluated at message-level

Evaluated at bit-level

• In CAN frames, stuff bits are added from SOF through the end of CRC

– To ensure enough transitions to maintain synchronization

– Necessary due to the non-return-to-zero (NRZ) coding used

• After every 5 identical bits (dominant or recessive) a complementary bit is inserted

– These stuff bits are not calculated into the checksum

– The stuffed data frames are destuffed by the receiver

• In the fields where bit stuffing is applied, 6 consecutive bits of the same polarity
(i.e. 111111 or 000000) are considered an error

• Node can transmit an Active Error Flag when an error has been detected

• Bit stuffing -> increase data frames size

– E.g. 11111000011110000...

– is stuffed as (stuffing bits in red): 111110000011111000001...

• Bit stuffing itself may be the first of the five consecutive identical bits

• Worst case: 1 stuffing bit per 4 original bits

CAN bit stuffing

73

NRZ (Non Return to Zero): the binary signals to be
transmitted are mapped directly: a logic “1” to a high
level, a logic “0” to a low level.

CAN bus bit stuffing example

74

CAN frame after bit
stuffing (in purple).
An incorrect CRC is
used for bit stuffing
illustration purposes.

CAN frame

75

CAN vs I2C
• Synchronization

– I2C is synchronous

– CAN is asynchronous

• Addressing Method
– I2C requires a unique slave address for communication

– CAN uses identifiers for messages instead of device addresses

• Communication Orientation
– I2C : node-oriented, meaning communication happens between master and slave nodes

– CAN: message-oriented, messages are broadcast, and the node interested in the message will pick it up

• Physical Layer
– I2C uses two lines (SDA for data and SCL for clock)

– CAN uses a differential bus which makes it more resistant to noise.

• Speed
– I2C operates at speeds from 100kbps (Std mode) up to 3.4mbps (High-speed mode)

– CAN operates at speeds from 250kbps up to 1mbps.

• Noise Immunity
– CAN’s differential signaling provides better noise immunity compared to I2C

• Complexity
– I2C : simpler & easier to use for short distance low-speed interconnections between ICs on a PCB

– CAN: more complex but provides robust communication over longer distances in noisy environments
(i.e. space avionics)

76

	Slide 1
	Slide 2: Serial Communication
	Slide 3: Serial vs. Parallel Communication
	Slide 4: Example: SpaceWire Interface for Space Systems
	Slide 5: GR765 Octa-Core Processor
	Slide 6: Types of Serial Communication
	Slide 7: Example System
	Slide 8: Parallel Buses
	Slide 9: Synchronous Serial Data Transmission
	Slide 10: Synchronous Full-Duplex Serial Data Bus
	Slide 11: Synchronous Half-Duplex Serial Data Bus
	Slide 12: Asynchronous Serial Communication
	Slide 13: Serial Communication Specifics
	Slide 14: Error Detection
	Slide 15: Universal Asynchronous Receiver Transmitter (UART)
	Slide 16: UART Asynchronous Serial Link
	Slide 17: UART Baud rate
	Slide 18: UART Transmitter
	Slide 19: UART Receiver
	Slide 20: UART Receiver Oversampling
	Slide 21: UART Baud rate generator
	Slide 22: Example UART Architecture
	Slide 23
	Slide 24: RS-232 Standard
	Slide 25: RS-232 pinout and wiring
	Slide 26: RS-232 levels
	Slide 27: RS-232 levels
	Slide 28: Inter-Integrated Circuit (I2C) Bus
	Slide 29: I2C Applications
	Slide 30: I2C Features
	Slide 31: I2C Bus Applications
	Slide 32: Definition of I2C-bus terminology
	Slide 33: I2C Bus Protocol
	Slide 34: I2C Clock
	Slide 35: I2C Transaction
	Slide 36: I2C Address Transmission
	Slide 37: I2C Data Transmission
	Slide 38: Example I2C Bus Configuration
	Slide 39: Clock synchronization and arbitration
	Slide 40: SDA and SCL signals
	Slide 41: Data Validity
	Slide 42: START and STOP conditions
	Slide 43: Byte Format
	Slide 44: Acknowledge (ACK) and Not Acknowledge (NACK)
	Slide 45: Acknowledge (ACK) and Not Acknowledge (NACK)
	Slide 46: Clock synchronization
	Slide 47: Arbitration
	Slide 48
	Slide 49: Data transfer formats
	Slide 50: Data transfer formats
	Slide 51: Data transfer formats
	Slide 52: I2C Write Sequence
	Slide 53: I2C Read Sequence
	Slide 54: I2C Read Example
	Slide 55: I2C Bus Addressing
	Slide 56
	Slide 57
	Slide 58: Controller Area Network (CAN) bus
	Slide 59: CAN bus
	Slide 60: CAN bus advantage
	Slide 61: CAN bus and OSI Layers
	Slide 62: CAN Bus Types
	Slide 63: CAN Bus Topology
	Slide 64: CAN Communication
	Slide 65: CAN bus Frames
	Slide 66: CAN Data Frame
	Slide 67: CAN Frame
	Slide 68: CAN Arbitration Example (1)
	Slide 69: CAN Arbitration Example (2)
	Slide 70: CAN Error Handling
	Slide 71: CAN Error Detection
	Slide 72: CAN Errors
	Slide 73: CAN bit stuffing
	Slide 74: CAN bus bit stuffing example
	Slide 75
	Slide 76: CAN vs I2C

