
Best Practice VHDL Coding for Aerospace Systems
Ακαδημαϊκό Έτος 2023-2024

Νεκτάριος Κρανίτης

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

M806 Space Data Systems

ΔΠΜΣ Space Technologies, Applications and seRvices (STAR)

DO-254 and DO-178C Standards

2

• DO-254 and DO-178C are standards developed by Radio Technical Commission for

Aeronautics (RTCA) and adopted by regulatory bodies i.e. the Federal Aviation Administration

(FAA) and European Aviation Safety Agency (EASA) for Aerospace industry

• DO-254, “Design Assurance Guidance for Airborne Electronic Hardware (AEH)”

• Provides a structured and standardized approach to the development, verification, and validation of
electronic HW used in aerospace systems

• Covers electronic HW components, such as ICs, PCBs, and other electronic equipment, and defines a set of
Design Assurance Levels (DALs) that must be met for each component based on level of safety criticality.

• Compliance with DO-254 is required for achieving certification of electronic HW used in airborne systems

• DO-178C, “Software Considerations in Airborne Systems and Equipment Certification”

• Provides a structured and standardized approach to the development, verification, and validation of SW used
in airborne systems

• Covers SW components, including OSs, application software, and SW tools, and defines five levels of criticality,
called Software Levels (SWLs), that must be met for each component

• Compliance with DO-178C is required for achieving certification of SW used in airborne systems.

• In summary, DO-254 focuses on electronic HW, while DO-178C focuses on SW, and both standards are

critical for ensuring the safety and reliability of airborne systems

VHDL coding for DO-254 and DO-178C Compliance

3

• VHDL design with DAL A, B and C must establish

conformance to VHDL coding standards

• No official list from FAA or EASA

• Guidance & list of rules proposed by DO-254 UG (2010)

• RTCA/DO-254 provides design assurance

guidance for airborne electronic HW

• Ensure that AEH works reliably as specified, avoiding faulty
operation and potential functional hazards

• Discusses need for “Design Standards”

• FAA Order 8110.105 section 6-2a clarified that

HDL coding standards should be defined and

checked when it stated:

• “To prevent potentially unsafe attributes of HDLs from leading
to unsafe features of the components, we must expect that, if
they use an HDL, applicants define the coding standards for this
language consistent with the system safety objectives, and
establish conformance to those standards by HDL code reviews.”

DO-254 UG Positioning Paper

4

• Provide a list of generally accepted VHDL

design best practice coding guidelines that

should be considered for a fail-safe design,

including DO-254 programs

• These coding guidelines should NOT be

viewed as what must be done in a DO- 254

program
• What must be done is always the decision of the applicant in

conjunction with the certification authority
• However, if project team is looking for a good foundational set of

checks to assess the HDL design quality for their DO-254 program,
this document provides that foundation

DO-254 UG Positioning Paper

5

• Following 4 Rule Categories Were Proposed
• Coding Practices [14 Rules CP1 – CP14]

• This set of rules ensures that a coding style supporting safety-critical and good
digital design practices are used

• Safe Synthesis [21 Rules SS1-SS21]
• This set of rules ensure that a proper netlist is created by the synthesis tool.

• Code Reviews [13 rules DR1 – DR13]
• This set of rules are checked to ease design reviews & code comprehension

• Clock Domain Crossings [1 Rule CDC1]
• This rule addresses potential hazards with designs containing multiple clock

zones and asynchronous clock zone transitions

DO-254 Category: Coding Practices (CP)

6

• This category ensures that a coding style supporting safety-critical and good digital

design practices are used

• Each rule that follows is given a coding practice (CP) number for ease of reference

DO-254 Category : Coding Practices (CP)

7

8

DO-254 Category : Coding Practices (CP)

9

DO-254 Category : Coding Practices (CP)

10

DO-254 Category : Coding Practices (CP)

DO-254 Category : Clock Domain Crossing (CDC)

11

DO-254 Category : Safe Synthesis (SS)

12

• The following standards are checked to ensure a proper netlist is created by synthesis tool.

DO-254 Category : Safe Synthesis (SS)

13

DO-254 Category : Safe Synthesis (SS)

14

DO-254 Category : Safe Synthesis (SS)

15

DO-254 Category : Safe Synthesis (SS)

16

DO-254 Category : Safe Synthesis (SS)

17

DO-254 Category : Safe Synthesis (SS)

18

Clock gating designs for FPGA should not be allowed
if the targeted FPGA device does not contain special
purpose-built clock gating circuitry in silicon.

DO-254 Category : Safe Synthesis (SS)

19

DO-254 Category : Safe Synthesis (SS)

20

DO-254 Category : Safe Synthesis (SS)

21

DO-254 Category : Safe Synthesis (SS)

22

23

DO-254 Category : Design Reviews (DR)

24

DO-254 Category : Design Reviews (DR)

25

DO-254 Category : Design Reviews (DR)

26

DO-254 Category : Design Reviews (DR)

27

DO-254 Category : Design Reviews (DR)

28

DO-254 Category : Design Reviews (DR)

Automated Rule Checking

29

• Design reviews: can be done manually

• Automated approach (called linting):
• guarantees a more consistent VHDL code

quality assessment
• has the added benefit of promoting regular

VHDL design checking steps throughout the
design development process, as opposed to
waiting for gating design reviews where
issues can be overwhelming and more
costly to address

SIEMENS Questa Lint

BluePearl

Siemens HDL Designer

CNES Rules

30

• Originally developed by CNES for internal projects

• To improve the way VHDL code is written and thus

reducing the time spent for code review

• Useful for other companies that want to share

common VHDL rules between them and their

subcontractors

• Handbook is divided into two chapters:

• "Standard Rules“: includes general rules or
recommendations that are common between all
companies working with VHDL. These rules share a
general agreement between CNES and partners initially
involved. Addition and changes to these rules have to
be agreed by everyone.

• "Custom Rules“: includes company specific rules that
are adapted/refined from standard rules or completely
new. These custom rules allow third party companies to
create their own version of the VHDL Handbook.

CNES Rules

31

CNES Standard rules: Examples

32

33

CNES Standard rules: Examples

34

CNES Standard rules: Examples

35

CNES Standard rules: Examples

36

CNES Standard rules: Examples

37

CNES Standard rules: Examples

38

CNES Standard rules: Examples

39

CNES Standard rules: Examples

40

CNES Standard rules: Examples

41

CNES Standard rules: Examples

42

CNES Standard rules: Examples

43

CNES Custom rules: Examples

44

CNES Custom rules: Examples

45

CNES Custom rules: Examples

46

CNES Custom rules: Examples

47

CNES Custom rules: Examples

48

CNES Custom rules: Examples

Automated Rule Checking

49

https://github.com/VHDLTool/Zamiacad-Rulechecker

https://github.com/VHDLTool/Zamiacad-Rulechecker

Traditional VHDL design
• Features

– Many concurrent statements

– Many signals

– Few and small process statements

– No unified signal naming convention

– Coding is done at low RTL level:
• Assignments with logical expressions

• Only simple array data structures are used

50

• Problems
– Slow execution due to many signals and processes

– Dataflow coding difficult to understand

– Algorithm difficult to understand

– No distinction between sequential and combinational signals

– Difficult to identify related signals

– Large port declarations in entity headers

Abstract of synchronous digital system
• Two separate parts

– A combinational part

– A sequential part

51

Two-process method (J. Gaisler)
• Two local signals are declared:

– register-in (rin)

– register-out (rout)

• The full algorithm (q = f(d,r)) is performed in combinational process

• Comb. process is sensitive to all input ports and register outputs r

• The sequential process is only sensitive to the clock

• Record types are used extensively
• Record in each module defines all the registers

• Records in Packages define port I/O

• Don’t have to fix every instantiation when a port map changes,
just update the record and everything still works!

• Few signals, mostly in/out/state records

• Variables

• Functions / procedures are used extensively 52

Two-process VHDL entity
• From “A Structured VHDL Design Method” by Jiri Gaisler

53

• Only two processes combinational
(asynchronous) and sequential
(registers) are used

• Complete algorithm can be coded
sequential in the combinational
process that outputs the internal
state and sequential process
registers the internal state and
handles reset

* http://www.gaisler.com/doc/vhdl2proc.pdf for a full write-up of the benefits of this style.

http://www.gaisler.com/doc/vhdl2proc.pdf

Two-process method: data types

• The local signals r and rin are of composite type (record) and
include all registered values

• All outputs are grouped into one entity-specific record type,
declared in a global interface package

• Input ports are of output record types from other entities

• A local variable of the registered type is declared in the
combinational processes to hold newly calculated values

• Additional variables of any type can be declared in the
combinational process to hold temporary values

54

Example

55

Two-process method: using records
• Useful to group related signals

• Nested records further improves
readability

• Directly synthesizable

• Element name might be difficult
to find in synthesized netlist

56

Hierarchical design

57

• Grouping of signals makes code readable and shows the direction of the dataflow

Dataflow vs. two-process comparison

58

Coding Style Example – Simple Counter

59

entity Counter is

generic (

TPD_G : time := 1 ns); -- Simulated propagation delay

port (

clk : in sl;

rst : in sl;

max : in slv(7 downto 0);

count : out slv(7 downto 0);

rollover : out sl);

end entity Counter;

architecture rtl of Counter is

-- Record containing all register elements

type RegType is record

count : slv(7 downto 0);

rollover : sl;

end record RegType;

-- Initial and reset values for all register elements

constant REG_INIT_C : RegType := (

count => (others => '0'),

rollover => '0');

-- Output of registers. (The Q output)

signal r : RegType := REG_INIT_C;

-- Combinatorial input to registers (The D input)

signal rin : RegType;

begin

-- Boilerplate sequential process

-- Assign rin to r on rising edge of clk to create registers

seq : process (clk) is begin

if (rising_edge(clk)) then

r <= rin after TPD_G;

end if;

end process seq;

-- Main module logic

-- Generates rin based on r and any module inputs

comb : process (max, r, rst) is

variable v : RegType;

begin

-- Initialize v with current value of all registers

v := r;

-- Set register values for next rising edge

v.count := r.count + 1;

v.rollover := '0';

-- Override above assignments when max reached

if (r.count = max) then

v.count := (others => '0');

v.rollover := '1';

end if;

-- Synchronous reset

-- Override all above assignments and apply init values

if (rst = '1') then

v := REG_INIT_C;

end if;

-- Assign final state of local variable to rin signal

-- Registers will assume these values on next rising edge

rin <= v;

-- Assign registered signals to outputs

count <= r.count;

rollover <= r.rollover;

end process comb;

end architecture rtl;

*Source: 'SLAC Firmware Standard Library’

file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html

60

entity UartBrg is

generic (

CLK_FREQ_G : real := 125.0E6; -- Default 125 MHz

BAUD_RATE_G : integer := 115200; -- Default 115.2 kbps

MULTIPLIER_G : integer := 16);

port (

clk : in sl;

rst : in sl;

baudClkEn : out sl);

end entity UartBrg;

architecture rtl of UartBrg is

constant CLK_DIV_C : integer := integer(CLK_FREQ_G /

real(BAUD_RATE_G * MULTIPLIER_G)) - 1;

type RegType is record

count : integer;

baudClkEn : sl;

end record RegType;

constant REG_INIT_C : RegType := (

count => 0,

baudClkEn => '0');

signal r : RegType := REG_INIT_C;

signal rin : Regtype;

begin

comb : process (r, rst) is

variable v : RegType;

begin

v := r;

v.count := r.count + 1;

v.baudClkEn := '0';

if (r.count = CLK_DIV_C) then

v.count := 0;

v.baudClkEn := '1';

end if;

if (rst = '1') then

v := REG_INIT_C;

end if;

rin <= v;

baudClkEn <= r.baudClkEn;

end process;

seq : process (clk) is

begin

if (rising_edge(clk)) then

r <= rin;

end if;

end process;

end architecture rtl;

*Source: 'SLAC Firmware Standard Library’

Coding Style Example – UART BRG*

Coding Style Example – FSMs

61

• Simple case-statement implementation

• Maintains current state

• Both combinational and registered
output possible

Procedure Example

62

procedure updateCount(

v : inout RegType;

max : in slv(7 downto 0)) is

begin

if (v.count = max) then

v.count := (others => ‘0’);

v.rollover := ‘1’;

else

v.count := v.count + 1;

v.rollover := ‘0’;

end if;

end procedure;

Comb : process (r, max) is

variable v := RegType;

begin

v := r;

updateCount(v);

rin <= v;

end process;

*Source: 'SLAC Firmware Standard Library’

Packages
• Packages are very useful for sharing constants,

typedefs, functions and procedures

• With the “two-process” coding style, functions and
procedures become very easy to use

– Can abstract complex logic to avoid code repetition

– Procedures used when a logic block has more than one
output, or needs to read and update a variable

63

Two-process method: Benefits

• Sequential coding is well known and understood

• Algorithms easily extracted

• Easy to extend

• Readability = Maintainability

• Fast simulation

• Easier debugging and verification

• No simulation/synthesis discrepancies

64

Two-process method : Examples

• Example: Current NOEL-V integer pipeline
– 2 processes

• Combinational, 2200 lines
• Clocked, 60 lines
• 53/22 procedures/functions, ~5000 lines

(not counting generic ones from other files)

– 17 in port signals
– 13 out port signals
– 4 local signals (+12 for disassembler)

• The in/out ports connect to separate modules for:
caches, register file, branch prediction, IRQ, debug,
mul/div.

65*Source: Gaisler

Two-process method : Examples

• Example: Current NOEL-V cache controller and MMU
– 3 processes

• Combinational, 3500 lines
• Two clocked, one assignment each (+debug)
• 10/45 procedures/functions, ~1500 lines

(not counting generic ones from other files)

– 12 in port signals
– 4 out port signals
– 4 local signals (+2 for debug)

• The in/out ports connect to: AHB bus, caches, integer
pipeline.

• Both LEON5 (Sparc) and NOEL-V (RISC-V)!

66*Source: Gaisler

Two-process method : Examples

• Example: First half of the execute stage

67*Source: Gaisler

Two-process method : Examples

• Example: Detail of the execute stage

68*Source: Gaisler

	Slide 1
	Slide 2: DO-254 and DO-178C Standards
	Slide 3: VHDL coding for DO-254 and DO-178C Compliance
	Slide 4: DO-254 UG Positioning Paper
	Slide 5: DO-254 UG Positioning Paper
	Slide 6: DO-254 Category: Coding Practices (CP)
	Slide 7: DO-254 Category : Coding Practices (CP)
	Slide 8: DO-254 Category : Coding Practices (CP)
	Slide 9: DO-254 Category : Coding Practices (CP)
	Slide 10: DO-254 Category : Coding Practices (CP)
	Slide 11: DO-254 Category : Clock Domain Crossing (CDC)
	Slide 12: DO-254 Category : Safe Synthesis (SS)
	Slide 13: DO-254 Category : Safe Synthesis (SS)
	Slide 14: DO-254 Category : Safe Synthesis (SS)
	Slide 15: DO-254 Category : Safe Synthesis (SS)
	Slide 16: DO-254 Category : Safe Synthesis (SS)
	Slide 17: DO-254 Category : Safe Synthesis (SS)
	Slide 18: DO-254 Category : Safe Synthesis (SS)
	Slide 19: DO-254 Category : Safe Synthesis (SS)
	Slide 20: DO-254 Category : Safe Synthesis (SS)
	Slide 21: DO-254 Category : Safe Synthesis (SS)
	Slide 22: DO-254 Category : Safe Synthesis (SS)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Automated Rule Checking
	Slide 30: CNES Rules
	Slide 31: CNES Rules
	Slide 32: CNES Standard rules: Examples
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Automated Rule Checking
	Slide 50: Traditional VHDL design
	Slide 51: Abstract of synchronous digital system
	Slide 52: Two-process method (J. Gaisler)
	Slide 53: Two-process VHDL entity
	Slide 54: Two-process method: data types
	Slide 55: Example
	Slide 56: Two-process method: using records
	Slide 57: Hierarchical design
	Slide 58: Dataflow vs. two-process comparison
	Slide 59: Coding Style Example – Simple Counter
	Slide 60: Coding Style Example – UART BRG*
	Slide 61: Coding Style Example – FSMs
	Slide 62: Procedure Example
	Slide 63: Packages
	Slide 64: Two-process method: Benefits
	Slide 65: Two-process method : Examples
	Slide 66: Two-process method : Examples
	Slide 67: Two-process method : Examples
	Slide 68: Two-process method : Examples

