T EAAHNIKH AHMOKPATIA

k, Edvikov kot Kanodietpiakov

gy, Movemoetuiov Adnveov
IAPY®EN TO 1837

2XOAH OETIKQN ENIZTHMQN

AMMZ Space Technologies, Applications and seRvices (STAR)
M806 Space Data Systems

Best Practice VHDL Coding for Aerospace Systems
Akadnuaiko Etoc 2023-2024
Nektaptioc Kpavitng

DO-254 and DO-178C Standards

DO-254 and DO-178C are standards developed by Radio Technical Commission for
Aeronautics (RTCA) and adopted by regulatory bodies i.e. the Federal Aviation Administration
(FAA) and European Aviation Safety Agency (EASA) for Aerospace industry

DO-254, “Design Assurance Guidance for Airborne Electronic Hardware (AEH)”

* Provides a structured and standardized approach to the development, verification, and validation of
electronic HW used in aerospace systems

* Covers electronic HW components, such as ICs, PCBs, and other electronic equipment, and defines a set of
Design Assurance Levels (DALs) that must be met for each component based on level of safety criticality.

* Compliance with DO-254 is required for achieving certification of electronic HW used in airborne systems

DO-178C, “Software Considerations in Airborne Systems and Equipment Certification”

* Provides a structured and standardized approach to the development, verification, and validation of SW used
in airborne systems

* Covers SW components, including OSs, application software, and SW tools, and defines five levels of criticality,
called Software Levels (SWLs), that must be met for each component

* Compliance with DO-178C is required for achieving certification of SW used in airborne systems.

In summary, DO-254 focuses on electronic HW, while DO-178C focuses on SW, and both standards are
critical for ensuring the safety and reliability of airborne systems

VHDL coding for DO-254 and DO-178C Compliance

» VHDL design with DAL A, B and C must establish Failre | Resulting Conditons
conformance to VHDL coding standards
* No official list from FAA or EASA g | Bapptphe | [\ FERTTT et e enios et
* Guidance & list of rules proposed by DO-254 UG (2010) ALY z:ifgye(fff,?ﬁ;; melornegative mpscton
» RTCA/DO-254 provides design assurance i i
guidance for airborne electronic HW T L L oot ressomomar e
e Ensure that AEH works reliably as specified, avoiding faulty LevelC Major Zifce:ayﬁrfr’ggv‘”w‘z;l‘ggéﬂCsansts'grfgisjs'zxm
operation and potential functional hazards or minor injuries can result.

* Discusses need for “Design Standards”

Failure slightly reduces the margin of safety or
causes slight increase in aircraft crew

» FAA Order 8110.105 section 6-2a clarified that Level D Minor workoad Resuls an nclde passenger |
. . inconvenience or changes to a routine flight
HDL coding standards should be defined and plan.

checked when it stated:

. “To prevent potentially unsafe attributes of HDLs from leading
to unsafe features of the components, we must expect that, if
they use an HDL, applicants define the coding standards for this
language consistent with the system safety objectives, and
establish conformance to those standards by HDL code reviews.”

Failure causes no impact or effect on safety,

Level E No Effect))
crew workload, or operation of the aircraft.

DO-254 UG Positioning Paper

Provide a list of generally accepted VHDL
design best practice coding guidelines that
should be considered for a fail-safe design,
Including DO-254 programs

These coding guidelines should NOT be
viewed as what must be done in a DO- 254

program
What must be done is always the decision of the applicant in
conjunction with the certification authority
* However, if project team is looking for a good foundational set of
checks to assess the HDL design quality for their DO-254 program,
this document provides that foundation

DO-254 Users Group
Position Paper
D0254-UG-001

Best Practice VHDL Coding Standards for DO-254
Programs

COMPLETED 2/26/10
(MODIFIED 9/13/10)

(Rev 1a)

Team Primary Author: Michelle Lange

among representatives from he nrupe and UST O
254 users groups. This document s provided fo
u p n

NOTE: This position paper has been coordinated

his
positio ppcfdoes not represent an official position of
the EASA, FAA or Eurocae/RTCA related committees.

DO-254 UG Positioning Paper

* Following 4 Rule Categories Were Proposed
* Coding Practices [14 Rules CP1 — CP14]

* This set of rules ensures that a coding style supporting safety-critical and good
digital design practices are used

e Safe Synthesis [21 Rules SS1-5521]

e This set of rules ensure that a proper netlist is created by the synthesis tool.

* Code Reviews [13 rules DR1 — DR13]

* This set of rules are checked to ease design reviews & code comprehension

* Clock Domain Crossings [1 Rule CDC1]

* This rule addresses potential hazards with designs containing multiple clock
zones and asynchronous clock zone transitions

DO-254 Category: Coding Practices (CP)

« This category ensures that a coding style supporting safety-critical and good digital
design practices are used
« Each rule that follows is given a coding practice (CP) number for ease of reference

3. Avoid Hard-Coded Numeric Values (CP3)
For design IP reuse and portability ease, hard-coded numeric values should not be

used.

Constants or generics should be used and documented within the design. This will
greatly reduce the probability of a design error from creeping into the design code as
it is being ported to a new application.

Default severity: Warning

Example:
PACKAGE dcc_pkg is

CONSTANT CPU_ADR_WIDTH : INTEGER := 16; —— cpu address bus width
CONSTANT CPU_DATA _WIDTH : INTEGER := 32; —— cpu data bus width
ENTITY dual_clock_cache_struct is
PORT (
cpu_addr : IN std_logic_vector(15 DOWNTO 0O); —-- violation
cpu_di : IN std_logic_vwvector (CPU_DATA_WIDTH-1 DOWNTO 0); --32-bit

cpu_clk : IN std_logic;

DO-254 Category : Coding Practices (CP)

4. Avoid Hard-Coded Vector Assignment (CP4)
For vector reset assignments; do not use hard-coded values.

The reset assignment should be done in a way that is independent of the size of the
vector. This limits the impact of changing vector sizes and enhances design

portability ease.

Default severity: Note

Example:
WHEN OTHERS =>
clk_div_en <= "'0"';
xmitdt_en <= '0"';
ser_if_select <= "00000000"; —-— Violation

ser_in_select <= (OTHERS => ‘0’); —-- This is preferred

DO-254 Category : Coding Practices (CP)

5. Ensure Consistent FSM State Encoding Style (CP5)
a. A design should employ a consistent state encoding style for Finite State Machines

(FSM).
b.FSM state types should not be hard-coded, unless unavoidable.

Default severity: Error

Example:
TYPE cpu_sm_state_type IS (
IDLE, —-— reset & default state
START_OP,
WRITE_DATA,
DO_READ,
WAITMEM,
STALL_WAIT,
DO_RD —-— Note, FSM states are encoded as enumerated type
)
P_CPU_SM_NEXT_STATE : PROCESS(. . .)
BEGIN
CASE current_state_r is
WHEN IDLE =>

WHEN START_OP =>
WHEN “0011" => —— Violation, inconsistent state encoding
END CASE;

END PROCESS P_CPU_SM _NEXT_STATE;

DO-254 Category : Coding Practices (CP)

6. Ensure Safe FSM Transitions (CP6)
a. An FSM should have a defined reset state.
b. All unused (illegal or undefined) states should transition to a defined state,
whereupon this error condition can be processed accordingly.
c. There should be no unreachable states (i.e., those without any incoming
transitions) and dead-end states (i.e., those without any outgoing transitions) in an
FSM.

Default severity: Error

Example:
TYPE fsm_state_type IS (
IDLE, -— reset & default state
START_OP,
WRITE_DATA,
DO_READ,
WAITMEM, -— wait for memory response
STALL_WAIT, -— cpu stall
DO_RD
-— AIS —— Commented out AIS state will cause violation

)i

CASE current_state IS
WHEN IDLE =>

IF (rd_reqg='1l" AND pre=’'0') THEN
next_state <= DO_RD;

WHEN DO_READ => —-— Violation, no incoming transition
next_state <= DO_RD;

WHEN DO_RD =>

IF (pre="1'") THEN
status <= WAITMEM; —-— Violation, no outgoing transition
WHEN OTHERS => —— Others, including error states
next_state <= AIS; —— transition to the AIS state

—— Violation, AIS is not a defined state
END CASE;

DO-254 Category : Coding Practices (CP)

10. Assign Value Before Using (CP10)
Every object (e.g., signal, variable, port) should be assigned a value before using it.

When objects are used before being defined, a latch may be inferred during synthesis,
which is most likely unintentional functional behavior for the design.

Default severity: Warning

Example:

ENTITY fifo_bk_pressure IS

PORT (
—— Port Declarations
clk_ck2 : IN std_logic; —— GLOBAL: downstream clock
rst_ckZ2_n : IN std_logic; —— GLOBAL: downstream reset (N)
cntr_ckl_i : IN std_logic_vector (FIFO_CNTR-1 DOWNTO 0); —-— 9-bit

—-— Cut-and-paste error, should be cntr_ck2_i, results in violation
)

ARCHITECTURE rtl OF fifo_bk_pressure is

signal full_threshold_r : fifo_cntr_type; —— 9-bit data type

threshold_proc: PROCESS (cntr_ck2_i, full_threshold_r)
BEGIN
assert_bk_pressure_s <= ‘0';

ELSIF (cntr_ck2_i = full threshold_r - CDC_DELAY) THEN

——VIOLATION “cntr_ck2_i"” should be assigned before being read
assert_bk_pressure_s <= ‘1’';

END IF;

10
END PROCESS threshold_proc;

DO-254 Category : Clock Domain Crossing (CDC)

This set of standards addresses potential hazards with designs containing multiple clock
zones and asynchronous clock zone transitions.

L.

Analyze Multiple Asynchronous Clocks (CDC1)
Any time a design has multiple asynchronous clocks, or if internally-generated clocks
are allowed, a thorough clock domain crossing (CDC) analysis should be done.

Improper clock domain crossings result in metastability or indeterminate circuit
operation, which can have serious adverse atfects on a device’s operation. This design
guidance needs to be mentioned, even though clock domain crossing issues and

analysis 1s beyond the scope of typical HDL linting tools and beyond the scope of this
document.

11

DO-254 Category : Safe Synthesis (SS)

« The following standards are checked to ensure a proper netlist is created by synthesis tool.

1. Avoid Implied Logic (SS1)
Do not allow coding that implies feed-throughs, delay chains, and internal tri-state

drivers. . .
Default severity: Warning
Example:
SIGNAL mode : std_logic; —-- Internal Tri-state Control
SIGNAL tri_bus : std_logic_vector (1 DOWNTO 0); -- Internal signal

-— (not top level port)

Tristate _Control: PROCESS (mode)

BEGIN
IF (mode = '0') THEN
tri bus <= "0Z"; —— Do not allow internal tristates
ELSE
tri bus <= "Z0"; —— Do not allow internal tristates
END IF;

END PROCESS Tristate_ Control;

Example:
ENTITY feed through_ea IS
PORT (
a_i : IN std_logic;
av_1i : IN std_logic_vwvector (10 DOWNTO 0);
X_0O : OUT std_logic

)i
END feed_through_ea;

ARCHITECTURE rtl OF feed_through_ea IS
BEGIN
X 0 <= a_i; —-- Violation, feed-through from input port *a_i" to

output port “x_o” 12

DO-254 Category : Safe Synthesis (SS)

2. Ensure Proper Case Statement Specification (SS2)
Case statements should:
a. Be complete
b. Never have duplicate/overlapping statements
c. Never have unreachable case items
d. Always include the “when others” clause

Example:
CASE addr IS
WHEN "Q000" =>
clk _div_en <= '1"';
WHEN "001" =>
clk _div_en <= '1"';

WHEN "000" => —— Duplicate/overlapping case specification
clk _div_en <= '1"';
—-— Incomplete case specification
WHEN "10X" => —— Not reachable case specification
xmitdt_en <= '1';

ser_ 1f select <= addr (1l DOWNTO 0);
WHEN "110" =>
ser_1f select <= addr (1l DOWNTO 0);
WHEN "111" =>
clr _int_en <= '1";
—— Missing WHEN OTHERS clause
END CASE;

13

DO-254 Category : Safe Synthesis (SS)

4. Avoid Latch Inference (SS4)
The HDL coding style should avoid inference of latches.

Example:
library ieee;
use ieee.std_logic_1164.all;

ENTITY wvhdlatch IS
PORT (
inl, in2, in3, in4 : IN std_logic;
outl : OUT std_logic;
out2 : OUT std_logic_vector (3 DOWNTO 0));
END;

ARCHITECTURE arch OF wvhdlatch IS

BEGIN
PROCESS (inl, in2, in3, in4d) —— Violation
BEGIN
IF(in4 = '0') THEN
out2(3) <= inl;
out2(0) <= in2;
ELSE
out?2 <= (others => 1in3);
END IF;
END PROCESS;
END;

14

DO-254 Category : Safe Synthesis (SS)

7. Avoid Uninitialized VHDL Deferred Constants (SS7)
Ensure all VHDL deferred constants are initialized.

Default severity: Warning

Example:

PACKAGE trafficPackage IS
CONSTANT MaxTimerVal: integer
—-— Violation. Deferred constant ‘MaxTimerVal’ without initial
—-— value may not be synthesizable

END trafficPackage;

15

DO-254 Category : Safe Synthesis (SS)

8. Avoid Clock Used as Data (SS8)
Clock signals should not be used in a logic path that drives the data input of a
register.

Default severity: Error

Example:
P_GATED_IN : PROCESS(inl, mclk)
BEGIN
gated_in_s <= '0"';
IF (inl = TRANSITION) and (mclk = '0') THEN -- Associated Violation
gated_in_s <= '1'; —— See below
END IF;

END PROCESS P_GATED_IN;

P_PULSE_FF : PROCESS(mclk, rst_n) —-- Violation clock used as data
BEGIN —— Race condition can occur here
IF (rst_n = '0') THEN
pulse_r <= '0';

ELSIF rising_edge (mclk) THEN
pulse_r <= gated_in_s;
END IF;
END PROCESS P_PULSE_FF;

16

DO-254 Category : Safe Synthesis (SS)

9.

Avoid Shared Clock and Reset Signal (SS9)
The same signal should not be used as both a clock and reset signal.

Default severity: Error

Example:
reset_n <= mclk AND en_i; —— reset_n signal has embedded clock

P_FRED_R : PROCESS(mclk, reset_n)
BEGIN
IF (reset_n = '0') THEN -- Violation shared clock & reset signal
fred_r <= '0';
ELSIF rising_edge (mclk) THEN
fred_r <= inl (DIR_BIT);
END IF;
END PROCESS P_FRED_R;

17

DO-254 Category : Safe Synthesis (SS)

10. Avoid Gated Clocks (SS10)
Data signals should not be used in a logic path that drives the clock input of a

register. , _
Clock gating designs for FPGA should not be allowed

if the targeted FPGA device does not contain special

_ / purpose-built clock gating circuitry in silicon.
Default severity:

Example:
clk s <= mclk AND en_1i; —— Gating mclk as clk_s
P_PULSE_FF : PROCESS(clk_s, rst_n) —--— Violation gated clock
BEGIN
IF (rst_n = '0'") THEN
pulse_r <= '0"';

ELSTF rising_edge(clk_s) THEN
pulse_r <= inl(DIR_BIT);
END IF;
END PROCESS P_PULSE_FF;

18

DO-254 Category : Safe Synthesis (SS)

13. Avoid Mixed Polarity Reset (SS13)
The same reset signal should not be used with mixed styles or polarities.

Default severity: Warning

Example:
ARCHITECTURE rtl OF top IS
BEGIN
procl: PROCESS(clk_master, clk_n, rst_master)
BEGIN
IF rising_edge(clk_master) THEN
IF (rst _master = '1') THEN —— Violation, inconsistent
q <= '0"; —— reset polarities & style
ELSE
g <= dl;
END IF;
END IF;

IF (rst_master = '0') THEN —— Violation, inconsistent
g <= '0"; —-— reset polarities & style
ELSIF (falling_edge(clk_n)) THEN
g <= d2;
END IF;
END PROCESS;
END rtl;

19

DO-254 Category : Safe Synthesis (SS)

15. Avoid Asynchronous Reset Release (SS15)
Reset signals should have a synchronous release.

For synchronous digital designs, it is considered best practice to generate reset control
as asynchronous assertion and synchronous de-assertion signal to avoid problems
when the reset signal is de-asserted during the active edge of the clock..

Default severity: Error
Example:

Note that the following figure demonstrates a correct on-chip reset scheme as
described in the preceding text.

"1° (Vas)

L.

D o D" o rst_ck_sys_n
clk sys
[- > >
5] » @

T = 7

Optional delay buffer
(typ. 100-300 ps,
for gitch supression)

20

DO-254 Category : Safe Synthesis (SS)

20. Ensure Nesting Limits (SS20)
Conditional branching constructs should have a maximum nesting depth.

Default severity: Warning

Example:
FLIP_FLOP: PROCESS(rst,clk)
BEGIN
IF rst = '1' THEN
gout <= '0"';
out_one <= '0"';
out_two <= '0"';
out_three <= '0';
ELSIF RISING_EDGE(clk) THEN
IF in_one = '1' THEN
out_one <= in_one;
IF in_two = '1'THEN
out_two <= in_two;
IF in_three = 'l' THEN -- Violation if set to 3, as 4% level
out_three <= in_three;

21

DO-254 Category : Safe Synthesis (SS)

21. Ensure Consistent Vector Order (SS21)
Use the same multi-bit vector order consistently throughout the design.

Default severity: Warning

Example:
Bus_ascending : IN std _logic_vector (7 DOWNTO O0);
Bus_decending : IN std_logic_vector (0 TO 7); —— Violation if

Descending order enabled

22

DO-254 Category : Design Reviews (DR)

2. Avoid Mixed Case Naming for Differentiation (DR2)
Names should not be differentiated by case alone.

Default severity: Warning

Example:
ENTITY top IS
PORT (nrw: OUT std_logic);

END top;
ARCHITECTURE flow OF top
BEGIN

Nrw <= ‘0';

—-— Violation. Do not allow mixing of case identifier “nrw”

-— Identifiers “nrw” and “Nrw” are differentiated by case only
END

Fr

23

DO-254 Category : Design Reviews (DR)

4. Use Separate Declaration Style (DR4)
Each declaration should be placed on a separate line.

Default severity: Note

Example:
ARCHITECTURE spec OF status_registers IS
SIGNAL xmitting_r, done_xmitting_r : std_logic; —-- declaration

—-— Violation. Multiple signals declared in one line,
—— declarations should be on separate lines.

END spec;

24

DO-254 Category : Design Reviews (DR)

5. Use Separate Statement Style (DRS)
Each statement should be placed on a separate line.

Default severity: Note

Example:
IF (en_i = '1') THEN

X1l s <= NOT(al_1i); x2_s <= al_i; -- Violation, multiple statements
ELSE

xls <= '0'; x2_s <= '0"; -— Violation, multiple statements
END IF;

25

DO-254 Category : Design Reviews (DR)

6. Ensure Consistent Indentation (DR6)
Code should be consistently indented.

Default severity: Note

Example:
FLOP_FLIP: PROCESS(rst,clk) —-- Consistently formatted
BEGIN

IF rst = 'l' THEN

tout_one <= '0';
tout_two <= '0';
tout_three <= '0';

ELSIF rising_edge(clk) THEN

IF in_one = 'l1l' THEN
tout_one <= in_one;
IF in_two = '1l' THEN
tout_two <= in_two;
IF in_three = '1l' THEN
tout_three <= in_three;
ENDIF;
ENDIF;
ENDIF;
ENDIF;

26

DO-254 Category : Design Reviews (DR)

7. Avoid Using Tabs (DR7) Default severity: Warning
Tabs should not be used.

10. Ensure Consistent File Header (DR10)

Default severity: Warnin
Ensure a consistent file header. y &

11. Ensure Sufficient Comment Density (DR11)

Code should be sufficiently documented via inline comments. Default severity: WMIng

27

DO-254 Category : Design Reviews (DR)

13. Ensure Company Specific Naming Standards (DR13)
Each company or project should establish and enforce its own naming standards.

These standards will vary from company to company, or even project to project, and
therefore cannot be explicitly included in a generic set of DO-254 coding standards.
However, they should be considered and included in each company’s HDL coding
standards. The sorts of things to consider include:
¢ Having the component have the same name as the associated entity
¢ Ensuring name association between formal and actual generics, ports or
parameters
¢ Enforcing specific filename matching with associated entity
¢ Enforcing specific object type naming convention, with a prefix or postfix
appended to the object name. Choose only one of these two methods (prefix
vs. postfix labels) and consistently apply it through out the entire design.
Consideration should be give to naming conventions for clocks, resets,
signals, constants, variables, registers, FSM State Variables, generics, labels
etc. For example:
signals use “_s
registers use “_r
constants use “ ¢
processes use “_p
off-chip inputs use “_I”
on-chip inputs use “_i”
off-chip outputs use “_0O”
on-chip outputs use “_o”
etc.

29

b

99

*9

FEg 0 a0 o

Default severity: Note >3

Automated Rule Checking

Visualizer - 2020.2

« Design reviews: can be done manually T — _
- Automated approach (called linting): . = - |
e guarantees a more consistent VHDL code ;
quality assessment
* has the added benefit of promoting regular ‘

VHDL design checking steps throughout the | ;= = ° =" | BT T —

® Fiter @ Qwe - . -

design development ProcCess, as OPPOSEU 10 | it —————————————
’ ’ bus_bits_not_read Bus has one or more bits that are not read. Bus wvead bits gf0), Mo... oc_16_cak Rtl Design Styke open wassgned
tyle open wassigned

waiting for gating design reviews where —— AR —

issues can be overwhelming and more

Costly to address S e -‘m:)vmimmmau s QusrcMogigenenc_bo_dc_gray.v [demo_top to_0_h}
SIEMENS Questa Lint

78 end

79 - else =
80 1 begin

| 1-BPS-0281: Module: ‘base_design' Synchronization of data crossing dock domain boundary from dock clk to dock clk2 at base_design.qcdc? is attempted by a double register at base
81 qcdc2 <= qgedel ;
82 qcdc3 <= gede2 ;
83 end o
< >

Summary: Total Number of Messages: 186
(Total Messages After Filtering: 6 Number of Errors: 0 Number of Warnings: 0 Number of Informationals: 6 Number of Comments: 0)

Enable Cross Probing to RTL?

Check Name Message ID File Name Line Number Module Name Object Name Message ol
‘ 1 REPORT.O.. I-BPS-0281 base_des... 80 base_design base_design... Synchronization of data crossing clock domain boundary from clock clk to clock clk2 at base_design.qcdc2 is a...
2 REPORTO.. I-BPS-0293 base_des... 22 base_design base_design... Clock domain crossing at: base_design.qcdc2 (clock base_design.clk2):
I P
fkd Par 3 ASYNCH_PA.. I-BPS-0665 base_des... 9 base_design base_designa Asynchronous path from base_design.a to base_designy.
Erkd T Pa
oo o 4 ASYNCH_PA.. I-BPS-0665 base_des... 9 base_design base_designb Asynchronous path from base_design.b to base_designy.
Erkd T Pa
Edted A Pess 5 ASYNCH_PA... I-BPS-0665 base_des... 10 base_design base_design.c Asynchronous path from base_design.c to base_design.y. %
T —— Erbkd T Pan
v ey G lcks I Pa
v ey G et T Pa
o M Poay Rt T Pan
=y R BluePearl
e s on s srmerts Erabed R Pae
v e Pesie —— Pa
't U Log: Ered R Pa
—— Pa
—— Pa

Siemens HDL Designer 29

CNES Rules

Originally developed by CNES for internal projects

To improve the way VHDL code is written and thus
reducing the time spent for code review

Useful for other companies that want to share
common VHDL rules between them and their
subcontractors

Handbook is divided into two chapters:

e "Standard Rules”: includes general rules or
recommendations that are common between all
companies working with VHDL. These rules share a
general agreement between CNES and partners initially
involved. Addition and changes to these rules have to
be agreed by everyone.

e "Custom Rules”: includes company specific rules that
are adapted/refined from standard rules or completely
new. These custom rules allow third party companies to
create their own version of the VHDL Handbook.

DESIGN AND VHDL HANDBOOK
FOR VLS| DEVELOPMENT

CNES Edition

30

Version 2.2

DESIGN AND VHDL HANDBOOK
FOR VLSI DEVELOPMENT

2021-10-20

Table of Contents

INTRODUCTION .
GLOSSARY

VERSION HISTORY
STANDARD RULES
1. Formatting

1.1. Naming ..

STD_001!

STD_00200
STD_00300
STD_00400

STD_00500

STD 00701

1.2. Fil

: Name of signal relation with behaviour
STD_00600 :
: Preservation of slg:nnl name inside an entity ..
STD_00800 :
STD_00900 :

VHDL object naming convention
Name of clock signal ...

Name of reset signal ...
Label for process

VHDL file extension

File name c .
File name of an entity ...

[T S S S SR

STD_01000 -
STD_01100 :
STD 01200 :
STD_01300 :
STD_01400 -
STD_01500 :

STD_01600

STD 01700

STD_01800

STD_01900 :

STD_02000

STD 02100 :

2. Traceability
2.1. Versioning .

STD_02200
STD 02300 :
STD_02400

STD_02500
2.2. Reuse

STD_02600
STD 02700

STD_02800

STD 02900
STD_03000

Number of entities per file . -
Number of architectures in files .
Number of per line .
Number of ports d
Instantiation of
Entity ports convention .
Entity port sort ...
Entity special ports .
Primitive isolation ...
Indentation of source code
Indentation style ..
Compactness of VHDL source code

Version control in header of file
Copyright information in the header of file .
Creation information in the header of the file .
Functional information in the header of file

IEEE libraries p
Default language ..

Comment strategy
Comments for entity pons
Comments for objects decl

and s

STD_03100 :

Dead VHDL code

STD_03200
STD_03300
STD 03400

STD 03500 :

3.2. Reset

STD_03600 -
STD_03700 :
STD 03800 :
3.3. StateMachine .
STD_03900 -
STD_04000 :

: Buffer port type

Unused output ports mmpunems managemem

Top level ports
Record type for top level entity ports ...

Resel smm\'e level .
Reset assertion and d:.’assenmn
elements

State machine typs defn ion ..
State machine case enumeration cxympleuuu

Table of Contents

Page iii

CNES Rules

DESIGN AND VHDL HANDBOOK
FOR VLSI DEVELOPMENT

Version 2.2 2021-10-20

m-:k d.omam crossing
STD_04200 : Clock domain crossing handshake based
STD 04300 : Clock domain crossing FIFOs based .
STD_04400 : Clock management module ..
STD_04500 : Unsuitability of Clock Reasslgﬂmem
STD_04600 : Clock domain number in the design .
STD_04700 : Number of clock domains per modulescovimrenimrimisninnnnns
Clock edge sensitivity

: Edge detection best practice
STD_05000 : Sensitivity list for synchronous processes
ility management
STD_05200 : Qutput signal regisiration
3.6. Combinational S
STD_05300 : Sensitivity list for combinational processes .
STD_05400 : Unsuitability of internal tristate
STD_05500 : Unsuitability of latches
STD 05600 : Unsuitability of combinational faed.bu:ks
STD_05700 : Un: bility of gated clocks
3.7. Type
STD 05800 : Use of VHDL types in RTL design
STD_05900 : Range for integers
STD_06000 : Range direction for arrays
STD 06100 : Range direction for std_logic vector
STD_06200 : Management of numeric values ...
STD_06300 : Unsuitability of variables in RTL design
3.8. Reliability .

or mitigation strategy
STD_06500 : Counters end of counting
STD_06600 : Dimension of comparison elements
3.9, MiSCRLANEOUS ...t
STD_ 06700 : Unsuitability of wait slalcm:nl in RTL design
STD 06800 : 1 bility of signal i in sectio
STD_06900 : Unsuitability of procedures and functions in RTL design ..
STD_07000 : Maximum depths of nested objects

4. Simul
4.1. Miscellaneous

: Simulation ending
: Use of procedures and functions in testbenches ..
: Use of wait statement in testbenches ...

: Analyze comectness of VHDL .

dentification of active low signal .
: Unsuitability of frequency in clock name
: Unsuitability of pin number in sngnal ‘name
- Name of testbench entity ...
 Convention for signal naming ..
* Convention for constant naming ..
: Convention for process naming .
: Convention for generic ports
: Convention for custom type naming
: Identification of variable name .
: Identification of ports direction inside entity port name .

Version 2.2

DESIGN AND VHDL HANDBOOK.
FOR VLSI DEVELOPMENT

2021-10-20

CNE_01200 :
CNE_01300 :
CNE_01400 :
CNE_01500 :
CNE_01600 -

CNE_01700 :
CNE_01800 :
CNE 01900 :
CNE_02000 :
CNE_02100 :
CNE_02200 :

CNE_02300 :
CNE_02400 :

1.2, Fi e

Tdentification of process label
Identification of constant name ...
Identification of generic port name .
Identification of custom type name .
Identification of package element
Identification of rising edge detection signal
Idennﬁcannn of fallmg edge detection signal
d of d signals

Identification of Finite State Machine ...
Name of RTL an:hllectures
Name of confi entity

Preservation of clock name ..
F ion of reset name

CNE_02500 :
CNE 02600 :
CNE_02700 :

Length of entities name .
Length of signals name
Number of lines in file ..

: Software VHDL generator in header of file
: File name in the header of file
: Creation date in the header of file
: Project name in the header of file
: Author in the header of file ..
: Functional description in the header of file
: Naming convention in the header of file ...
« Functional limitation in the header of file ..
: Current version number in the header of file
: Author of modification(s) in the header of file .
: Version history in the header of file
: Reason(s) of modification(s) in the header of file
- Functional impact(s) of modifications in the header of file
: Functional description of modifications in the header of file
: Applicable license in header of file ... :
: Company coding in the header of file
: Company owner of code in the header of file

: Reset registers

: Finite State Machine single pracess based
: Finite State Machine two processes based ..

Finite State Machine coding style ..

115
. 115
116
17
17
118
118
119
120
121
121
121
123
123
123

: Use of clock signal

. 127

Multiplexor coding style
: Multiplexor single process based .
+ Multiplexor direct assertion based ..

127

R . 129
X : Hierarchical level of entity ... 129
CNE_05400 : Number of nested packages . . 130

CNE_05500 : Dimension of amay

4, Tmpl i
4.1. Analysis

CNE_06000 : GHDL Analysis messages reportsc........ S
Table of Contents Pagev

31

CNES Standard rules: Examples

STD_00300 : Name of reset signal

STD 00300 Name of reset signal Major
Revision 7/2020-04-23

Status / Engine |Implemented / ZamiaCad
Classification VLSI/ Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description The reset signal name includes "rst", "reset" or "clr".

* Detailed Description:
A signal is considered as a "RESET" whenever it is used inside a clocked-process to initialize signals value to a known
state (most of the time zero) or mapped on a IP reset input.
If several reset signals are used, each reset is identified with a different name.
* Rationale:
The reset signal is critical. This signal needs to be easily found through the design.

* Good Example:

Extracted from STD 00300 good.vhd

i Reset n : in std logic: —-— Reset signal

CNES Standard rules: Examples

STD_00400 : Label for process

STD_00400 Label for process Minor
Revision 5/2020-04-23
Status / Engine |Implemented / ZamiaCad

Classification VLSI / Formatting / Naming

Application Field |General
Parent Rule STD_00100

Description Processes are identified by a label.

* Detailed Description:

No additional information.
* Rationale:

Labels improve readability of simulations, VHDL source code and synthesis logs.
* Good Example:

Extracted from STD 00400 good.vhd

-— LABELLED PROCESS
P FlipFlop : process(i Clock, i Reset n)

begin
if (i_Reset_n = '0') then
Q <= "0";
elsif (rising edge(i Clock)) then
Q <= 1 D:
end if; a

end process;

* Bad Example:

Extracted from STD 00400 bad.vhd

—— UNLABELLED PROCESS
process (i_Clock, i_Reset_n)

begin
if (i Reset n = '0') then
Q <= "0";
elsif (rising edge(i Clock)) then
Q <=1 D;
end 1f;

end process;

CNES Standard rules: Examples

ST D_O'] 600 : Ent|ty port sort Within an interface group, ports could then be sorted by direction (input, output, bidirectional).
* Rationale:

STD_ 01600 Entity port sort

Revision 6/2020-04-23 Ports grouped by external interfaces improves readability.

Status / Engine |Validated / None * Good Example:

Classification VLSI / Formatting / FileStructure Extracted from STD 01600 good.vhd

Application Field | General

Parent Rule STD 01500 entity STD 01600 good is
—-— We sort port by interfaces, with special peorts first
Description Entity ports are organized by interface. port (
-- Special signals:
* Detailed Description: i Clock : in std logic; —— Clock input
i Reset n : in std logic; —-— Reset input
. . -— First Mux:
Entity ports are grouped by external interfaces. 4z S oof Derres _ e A
i Bl : in std logic; -- second input
i sell : in std logic; —-— select input
o Q1 : out std logic; — Mux output
-- Second Mux:
i A2 : in std logic; -— first input
i B2 : in std logic; —-— second input
i sel2 : in std logic; —— select input
o Q2 : out std logic —— Mux output
)i
end STD 01600 good;

* Bad Example:

Extracted from STD 01600 bad.vhd

entity STD 01600 bad is
—— We sort port by name
port (
inl : in std logic; —— First Mux, first input
in2 : in std logic: -— Second Mux, first input
iBl : in std logic; -- First Mux, second input
i B2 : in std logic; —-— Second Mux, second input
i sell : in std logic; —-— First Mux, selector input
i sel2 : in std logic: -— Second Mux, selector input
i Clock : in std logic; —- Clock input
i Reset n : in std logic; -- Reset input
o Q1 : out std logic; -- First module output
o Q2 : out std logic —— Second module output
)i
end STD 01600 bad;

CNES Standard rules: Examples

STD 01700 : Entity special ports

STD 01700 Entity special ports Minor
Classification VLSI / Formatting / FileStructure

Application Field |General
Parent Rule STD 01500
Description Special ports are the first group of an entity.

* Detailed Description:
Special input ports like clock(s), reset and global enable are the first to be written in an entity.
* Rationale:

These special signals are important for the understanding of the module functionalities. Thus gathering them at the
beginning of an entity improves readability.

* Good Example:

Extracted from STD 01700 good.vhd

entity STD 01700 good is

port |
i Cleck : in std logic; -— Clock signal
i Reset n : in std logic; -- Reset signal
iD : in std logic; -- D Flip-Flop input signal
o Q : out std legic -- D Flip-Flop output signal

i
end STD 01700 good;

* Bad Example:

Extracted from STD 01700 bad.vhd

entity STD 01700 bad is

port
o Q : out std logic; -- D Flip-Flop output signal
iD : in std logic; -- D Flip-Flop input signal
i Cleck : in std logic; -— Clock signal
i Reset n : in std logic -- Reset signal

)i
end STD 01700 bad;

CNES Standard rules: Examples

STD_03600

: Reset sensitive level

Good Example:

Extracted from STD_03600_good vhd

STD_03600 Reset sensitive level Major
Revision 6/2020-04-23 st 1 1 registered

2 std lo 1 registered
Status / Engine | Implemented / ZamiaCad std_logic e output
Classification FPGA / Design / Reset) . . .)

rst Register : process(i Reset_n, i_Clock)
Application Field |General
3 if (i Reset n = '0") then
Parent Rule N/A D.T) <= "0v;
Description Every synchronous process uses the same reset activation level. elsif
+ Detailed Description: ol
end process;
No additional information. -

P_Second Register : process(i_Reset_n, i Clock)

+ Rationale:

In a FPGA, the reset signal is usually a high fan-out signal routed using a dedicated global signal routing track. Usin
both levels of the reset signal to asynchronously reset the flip-flops of the design results in the synthesis of the resc
signal itself and 1ts mverted version, which leads to the usage of 2 global dedicated routing tracks versus a single on
with one of the reset signal passing through an inverter in the FPGA fabric rendering the reset recovery timings closu
harder to meet for the FPGA EDA tools.

lock)) then

B not D r2;
end if;

end process;

o Q<=Dr

lend Behavioral;

Bad Example:

Extracted from STD_03600_bad vhd

1 registered 1
1 registered 2
—— Module cutput
— BReset signal

{active high)

i process(i Reset n, i Clock)

if (i Reset n = '0") then
Drl <= "0';
elsif (ris _edge(i_Clock)) then
Drl i D;

end if;
end process;

Reset <= not i Reset_n;

Second Register : process(Reset, i Clock)
ec = '1') then
<= '0':
ge(i Clock)) then

<= D rl;

D re <= D rl and not D_
end if:

end process;

CNES Standard

STD_03700 : Reset assertion and deassertion

STD_03700 Reset assertion and deassertion Major
Revision 7/2020-04-23

Status / Engine | Implemented / ZamiaCad

Classification VLSI/ Design / Reset

Application Field | General

Parent Rule N/A

Description Internal reset is asserted asynchronously and deasserted synchronously.

= Detailed Description:

If several clock domains are used then several reset signals are created to be deasserted synchronously with each
targeted clock domain.

- Figure:
" D Q D Qf— main reset n
> R > R
clk
reset_input n
reset_input n |
main reset n |
Rationale:

rules: Examples

Good Example:

Extracted from STD 03700 good.vhd

entity STD 03700 good is

port (
i _Clock : in std_legic; -- Cleock signal
i Reset Input n : in std legic; -- Reset input

o Main Reset_n : out std logic -- Global reset signal active low
)i

end STD 03700 _good;

architecture Behavioral of STD_03700_good is

signal Main Reset n : std _logic; -- Internal signal between FlipFlops
signal Main Reset n r : std logic; —— Assertion block output
begin - - -
P Reset Assert : process(i_Reset Input n, i Clock
begin
if (i_Reset Input n = '0') then
Main Reset_n = TR —— Output reset signal is active low

Main Reset n r <= '0';
elsif rising edge(i_Clock) then

Main Reset n = Tliz Since it is active low,

-— Reset is deasserted.
value is 1
Main Reset n r <= Main Reset n;
end if;
end process;

o_Main Reset n <= Main_Reset_n_r;
end Behavioral;

the inactive

Synchronous design uses the principle that all registers in a same clock domain leave the reset state at the same time.
Asynchronous assertion ensures that the design could be reset even if the input clock is not yet functional. Synchronous

deassertion ensures that the component startup sequence is reproducible and that the clock is ready and stable before
the deassertion of the reset inside the component. Doing so, if there is a glitch on the external reset, it will produce an
internal reset that is active at least one clock period and guarantees a correct reset of the internal logic.

37

CNES Standard rules: Examples

STD_03900 : State machine type definition

STD 03900 State machine type definition Major
Revision 5/2020-04-23

Status / Engine | Implemented / Yosys-ghdl

Classification VLSI/ Design / StateMachine

Application Field | General
N/A

FSM states are encoded using enumerated type.

Parent Rule

Description

» Detailed Description:

Other type of state machine definition like vectors or integer are forbidden.
+ Rationale:

Enumerated type to encode FSM states allows readability and reuse.
* Good Example:

Extracted from STD 03900 good.vhd

architecture Behavioral of STD_03900_good is

constant C_Length std_logic_vectoriii downto 0) := (others => '1");

—— How long we should count

type t_state is (init, loading, enabled, finished); —- Enumerated type
for state encoding

signal sm_State t_state; -- State signal

signal Raz std logic; -— Load the|
length value and initialize the counter

signal Enable std_logic; —— Counter enable signal

signal Length stdiloqicivector(.? downto 0); —— Counter length for counting

signal End Count std logic; -- End signal of counter

begin
—- A simple counter with loading length and enable signal
Counter:cCounter

port map (
i_Clock => i _Clock,
i Reset n => i Reset n,
i:Raz - => R;z, -
i_Enable => Enable,
i_Length => Length,
o_Done => End Count

1

-- FSM process controlling the counter.
i_stop),
—- load the length value, and wait for it to finish
P FSM:process(i Reset n, i Clock)
bggin - - -
if (i_Reset n='0') then
sm_State <= init;
Raz <= '0';

Start or stop

®

it in function of the input

(i_start]

Enable <= "'0
Count_Length <= (others=>"'0");
elsif (rising edge(i_Clock)) then
case sm State is
when init =>
—— Set the length wvalue
Length <= c_Length;
sm_State <= loading;
when loading =>
—— Load the counter and initialize it
Raz <= "1";
sm _State <= enabled;
when enabled =>
—— Start or stop counting depending on inputs until it
Raz <= '0";
if (Bnd_Count='0') then
—— The counter has not finished, wait
Enable <= 1 Start xor not i Stop;

finishes

sm State <= Enabled;

else

—-— The counter has finished, nothing else to do
Enable <= '0';
sm_State <= finished:

end if;

when others =
sm_State <= init:
end case;
end if;
end process;
lend Behavioral;

* Bad Example:

Extracted from STD 03900 bad.vhd

larchitecture Behavioral of STD_ 03900 bad is
constant ¢_Length : 5td_lagic_vec:or[3 downto 0) :=
signal sm State std_logic_wvector (3 downto 0)

(others => '1'");
-- State signal

signal Raz std _logic; -- Load the length value and initialize the counter
signal Enable std_logic; -- Counter enable signal
signal Length std logic vector (3 downto 0); -- Counter length for counting
signal End Count std_logic; -- End signal of counter
egin
—— A simple counter with loading length and enable signal
Counter : Counter
port map (
i Clock => i Clock,
i Reset n => i Reset n,
i Raz => Raz,

i Enable => Enable,

i Length => Length,

©o_Done => End Count

)z
--— FSM process controlling the counter. Start or stop it in function of the input
& i _stop),

—— load the length value, and wait for it to finish

P_FSM : process(i Reset n, i Clock)
begin
if (i Reset n = '0") then
sm_State <= "0001";
Raz <=
Enable <=
Count_Length <= (others=>"'0");
elsif (rising edge(i_Clock)) then
case sm State is
when "0001" =>
—— Set the length wvalue
Length <= c_Length;
sm_State "0010";
when "0010" =>

—— How long we should count

(i_start

38

CNES Standard rules: Examples

STD_04000 : State machine case enumeration completion

STD 04000 State machine case enumeration completion Major
Revision 6/2021-10-14

Status / Engine |Implemented / Yosys-ghdl

Classification VLSI/ Design / StateMachine

Application Field |General
Parent Rule N/A
Description VHDL code addresses all the defined states of the state machine.

* Detailed Description:

When all cases statement are not explicitly addressed in the VHDL code, an extra "when others" case will be added.
"when others" instruction handles the default condition when none of the previous case statements are met.

* Rationale:

State completion ensures deterministic behaviour between simulation and final design.

CNES Standard rules: Examples

STD 04000 : State machine case enumeration completion

Good Example:

Extracted from STD 04000 good.vhd

architecture Behavioral of
constant c_Length

STD_04000_good is

std logic wvector (3 downto 0) := (others => "1');

-- How long we should count

type t_state i1s (init, loading, enabled, finished):; -- Enumerated type for state encoding
signal sm_State t_state; —— State signal
signal Raz std_legic; -- Load the length value and initialize the counter
signal Enable std logic; —- Counter enable signa
signal Count Length std _logic vector(3 downto 0); -- Counter length for counting
signal End Count std logic: —— End signal of counter
begin
-- A simple counter with loading length and enable signal
Counter : Counter
pert map (
i clock => i_cClock,
i_Reset_n => 1_Resst_n,
i_Raz => Raz,
i Enable Enable,
i Length => Count_Length,
o_Done => End Count

)i

—— FSM process controlling the Start or it in

& i_Stop).,
-- lecad the length walue,

counter. stop function of the input

and wait for it teo finish

P_FSM : process(i_Reset_n, i_Clock
begin
if (i_Reset n = '0') then
sm_State <= init;
Raz <= '0';
Enable <= '0"';:

(others=>'0"):
(rising_edge(i_Clock)) then
case sm_State is
when init =>
—- Set the length walue
Count_Length <= c_Length;

Count_Length <=
elsif

sm_State <= loading;
hen loading =>
—- Load the counter and initialize it
Raz <= '1';
sm_State <= enabled;
when enabled =>
-— Start or stop counting depending on inputs until it £inishes

Raz <= '0';
if (End Count = '0') then

—— The counter has not finished,

wait

Enable <= i_Start xor not i_Stop;
sm_State <= Enabled;
else
-— The counter has finished, nothing else to do
Enable <= '0';
sm_State <= finished;

end
when others =>
sm _State <= init;
end case;
end if;
end process;
lend Behavioral;

(i_start]

* Bad Example:

Extracted from STD_04000_bad.vhd

architecture Behavicral of STD 04000 bad is

constant c_Length std_l:gic_vectc:tS downto 0) := (others => 'l1'); -- How long we should count
type t_state is (init, loading, enabled, finished):; -- Enumerated type for state encoding
signal sm_State t_state; -- State signal

signal Raz std logic; -- Load the length value and initialize the counter

signal Enable std logic; -- Counter enable signa

Count_Lengtl std legic vector(3 downto 0); -— Counter length for counting

signal End Count std_logic; -- End signal of counter
begin
-- A simple counter with loading length and enable signal
Counter : Counter
port map (
i Cleck => i _cleck,

i Reset n =>

i Rese
Raz,
Enable,
Count_Length,
End_Count

-- FSM process controlling the function
& i_Stop),

-- load the length wvalue,

counter. Start or stop it in

and wait for it to finish

P_FSM : process(i Reset_n, i_Clock
begin
if (i_Reset n = '0') then
sm_State <= init;
Raz <= '0";
Enable <= '0';

Count_Length <= (others=>'0");
elsif (rising edge(i Clock)) th
case sm_State is
when init =>

-— Set the length wvalue

Count_Length <= c_1I

sm_State <= loading;
when loading =>

-— Load the counter and initialize it
Raz <= "1';
sm_State <= enabled;

when enabled =>

—— Start or stop counting depending on inputs until it finishes
Raz <= '0';
if (End Count = '0') then

—— The counter has not finished, wait

Enable <= i_start xor not i_Stop:
sm_State <= Enabled;
else
—— The counter has finished, nothing else to do
Enable <= '0';
sm_State <= finished;
end if;
——*** MISSING finished state of the FSM ***——

end case;
end if;
end process;
lend Behavioral;

of the input (i_

Start

CNES Standard rules: Examples

STD_04900 : Edge detection best practice Rising-edge defection ot e
|D_|sngm1,fm7mgﬂ ND | for_trig_t

sigaal_for_trig_r

STD 04900 Edge detection best practice Major
Revision 6/2020-04-23 = "
Status / Engine |Validated / None Falling-edge detection |>u D et
Classification VLSI/ Design / Synchronous I o d-\‘;‘s,gmhfm},g [oleitorme s [signal for wie 22 _for_
Application Field | General S L
Parent Rule N/A ok |_ FFI [?
Description Synchronous mechanisms are used for signal edge detection. Any edge detection
+ Detailed Description: 1P @ "_/ st o ofreminter | b oEmtres ‘_ID_ slgaal for_tg_se
b >
A specific mechanism is used in order to detect rising or falling edge input signal. ok |_] [FE2

This mechanism involves a real design clock, at least one D Flip-Flop to delay the signal, and combinational gate(s)
to select the edge.

clk

+ Rationale: signal_for_trig I

signal_for_trig 1

Flip-Flops clock input is dedicated to a clock signal. Thus, using it as a way to detect a signal edge (by using
rising_edge(...) or 'event attribute) may lead to the creation of a new clock domain for each signal edge detection signal_for_trig_r2
implemented in the design: this is not the purpose. M

signal for_trig_re

Good Example: signal_for_trig_fe

signal_for_trig_ae

1

Extracted from STD 04900 good.vhd

-- Registration process to be able to detect edges of signal A

P_Registration : process(i_Reset n, i Clock)
begin
if (i Reset n = '0") then

A rl <= "'0";
A r2 <= '0';
elsif (rising edge(i_Clock)) then
A rl <=1 &;
A r2 <= A rl;
end if;
end process;

—— Assign the outputs of the module:
o A re <= A rl and not A r2;
o A fe <= not A rl and A r2;
o A ae <= A rl mor A rZ;

end Behavioral;

41

STD_05200

STD 05200
Revision

Status / Engine
Classification
Application Field
Parent Rule

Description

NES Standard rules: Examples

: Output signal registration

Output signal registration Minor
6/2020-04-23

Implemented / Yosys-ghdl

VLSI / Design / Synchronous

General

N/A

All outputs signal from a top level entity are registered.

+ Detailed Description:

Combinational outputs at top level are forbidden. Those outputs belong to the timing domain in which they are generated
at top level. Whenever it is possible, use I/O blocks register instead of internal register for top level outputs.
Unless specified and approved, a combinational signal is never used directly as a top level output.

* Rationale:

All outputs of an integrated circuit are coming from output registers whenever possible and from regular registers when
not possible. The clock used is the same as the one used in the signal source clock domain. Doing so suppresses all
glitches on the outputs whenever a signal level change occurs and enables control of the clocks to outputs delays of the
circuit so that the time borrowed by any signal to propagate from its respective launching clock edge to its assigned
device output is controlled and less than a given maximum allowed time. With controlled clocks to outputs delays,
enough PCB propagation time and inputs to clocks delays is left for those outputs to be captured using the same clock

in a remote device.

FPGA Matrix

output PAD with I/O buffer only

out

>3

out |lq \,‘ ' V
glitch free outputs:register all outputs
FPGA Matrix output PAD with [/O flip flop and
10 buffer
r~ B out
combinatorial | D @ —l >—{ g
]]
[logec
\ ._/J d
out
FPGA Matrix following by flip-flop output PAD with IO buffer only

w’ ¥

J mibi il \
[Ci Lk ek _D

z\&c\j}}

out

42

CNES Custom rules: Examples

CNE_00500 : Convention for signal naming

CNE_00500 Convention for signal naming Minor
Revision 5/2020-04-23
Status / Engine | Validated / None

Classification VLSI / Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description Each word that composes a signal name are clearly identified with an underscore.

* Detailed Description:

In order to separate words in signal name the following convention is applied: Name Of The Signal.
The separation by uppercase (NameOfTheSignal) is not used.

CNE_00600 : Convention for constant naming

CNE_00600 Convention for constant naming Minor
Revision 5/2020-04-23

Status / Engine |Validated / None

Classification VLSI/ Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description Each word that composes a constant name are clearly identified with an underscore.

* Detailed Description:

In order to separate words in a constant name the following convention is applied: Name Of The Constant.
The separation by uppercase (NameOfTheConstant) is not used.

CNES Custom rules: Examples

CNE_00700 : Convention for process naming

CNE_00700 Convention for process naming Minor
Revision 5/2020-04-23
Status / Engine |Validated / None

Classification VLSI/ Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description Each word that composes a process name are clearly identified with an underscore.

* Detailed Description:

In order to separate words in a process name the following convention is applied: Name Of The Process.
The separation by uppercase (NameOfTheProcess) is not used.

CNE_00800 : Convention for generic ports

CNE_00800 Convention for generic ports Minor
Revision 5/2020-04-23
Status / Engine | Validated / None

Classification VLSI/ Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description Each words that composes a generic port name are clearly identified with an underscore.

* Detailed Description:

In order to separate words in a generic port name the following convention is applied: Name Of The Generic.
The separation by uppercase (NameOfTheGeneric) is not used.

CNES Custom rules: Examples

CNE_01000 : Identification of variable name

CNE 01000 Identification of variable name Minor
Revision 5/2020-04-23
Status / Engine |Implemented / ZamiaCad

Classification VLSI / Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description The name of a variable use "v " prefix.

* Detailed Description:
No additional information.
+ Rationale:

When an unique naming convention is applied to the whole source files from the design, then the resulting code is
homogenized which increases readability. With this convention, designer will be able to track synthesis of variable and
especiallv identifv if a variable created some unwanted flio-flops.

CNES Custom rules: Examples

CNE_01900 : Identification of registered signals

CNE_01900 Identification of registered signals ‘Minor
Status / Engine | Validated / None

Classification VLSI / Formatting / Naming

Application Field | General
Parent Rule STD 00100

Description The suffix of a signal that is a registration of another one is: " r".

* Detailed Description:

The signal source is also included inside the signal name.

Thus, a signal that is clock delayed of a signal named My Signal is My Signal r.

If a small number of registration of a same signal is used (less or equal to 3), SIGNAL r can become SIGNAL rx
where x is the number of registration stage.

If a significant number of registration of a same signal is used, use an array for registration level instead of different
signals.

Good Example:

Extracted from CNE_01900_good.vhd

entity CNE 01900 good is

port (
i Reset n : in std logic: —— Reset signal
i Clock : in std logic; —-- Clock signal
iD : in std logic: —— Signal on which detect edges
o D re : out std logic -— Rising edge of My Sig

)7
end CNE_Ol900_g00d;

architecture Behavioral of CNE 01900 good is

signal D rl : std logic; -- i D registered 1 time
signal D r2 : std logic; -- i D registered 2 times
begin

-- Rising edge detection process
P detection: process(i Reset n, i Clock)
begin
1f (1 Reset n='0") then
Drl <= "'0';
D r2 <= '0';
elsif (rising edge(i Clock)) then
D rl <=1 D;
D r2 <= D rl;
end if;7 N
end process;

oD re <= D rl and not D r2;
end Behavioral;

46

CNES Custom rules: Examples

CNE_04800 : Finite State Machine two processes based

CNE_04800 Finite State Machine two processes based ‘Note
Revision 6/2020-04-23

Status / Engine |Validated / None

Classification VLSI/ Design / StateMachine

Application Field | General

Parent Rule CNE 04600

Description

FSM coding style use the two processes method.

* Detailed Description:

Good Example:

i outputs assertion.
Extracted from CNE_04800_good.vha

architecture Behavioral of CNE_04800_good is

constant c_Length : std logic vector(3 downto 0) := (others => '1'); -- How long we should count
type t state is (init, loading, enabled, finished); -- Enumerated
type for state encoding
signal sm_State t_state; -- State signal
signal sm Next_State : t_state; -- Next state

signal Raz std_logic; -- Load the
length value and initialize the counter

signal Enable std logic; -- Counter enable signal
signal Length : std logic_vector (3 downto 0); —— Counter length for counting
signal End Count : std logic -- End signal of counter

begin
Counter:pkg Counter
port map (

i _Clock => i Clock,

i Reset n => i Reset n,
i Raz => Raz,

i Enable => Enable,
i_Length => Length,
o_Done => End_Count

-- FSM process controlling the counter. Start or stop it in function of the input
& i_stop),
-- load the length value, and wait for it to finish

(i_start

-- Process registration

FSM coding style use one synchronous process for state registration and one asynchronous process for states and

Raz <= '0';
Enable <= '0';
Length <= c_Length; -- Set the length value
case sm State is
when init =>
sm Next State <= loading;
when loading =>
-- Load the counter and initialize it
Raz <= "1';
sm Next State <= enabled;
when enabled =>
—— Start or stop counting depending on inputs until it finishes
if (End Count='0") then
Enable <= i Start xor not 1 Stop;
Sm_Next_State <= enabled;
else
sm_Next State <= finished;
end if;
when others =>
sm Next State <= init;
end case;
end process;

end Behavioral;

P_FSM State Reg:process(i_Reset n,
begin
if (i_Reset n='0") then
sm_State <= init;
elsif (rising edge(i_Clock)) then
sm_State <= sm Next State;
end if;
end process;

i Clock)

-- Outputs assertion
P_FSM Output:process(sm_state, i_start, i_stop, End _Count)
begin

47

CNES Custom rules: Examples

CNE_01100 : Identification of ports direction inside entity port name

CNE_01100 Identification of ports direction inside entity port name Minor

Revision 6 /2020-04-23
Status / Engine | Validated / None

Classification VLSI / Formatting / Naming

Application Field General

Parent Rule STD 00100

Description Entity port name uses prefix to determine the port direction.

* Detailed Description:
Prefixes are:
"i_" for input port,
"o " for output port,
"b_" for bidirectional port.
* Rationale:
Indicating the port direction inside the port name improves readability.

* Good Example:

Extracted from CNE 01100 good.vhd

entity CNE 01100 good is

port (
i Clock : in std logic; —— Clock signal
i Reset n : in std logic; -- Reset signal
iD : in std logic; -— D Flip-Flop input signal
o Q : out std logic -—- D Flip-Flop output signal

) ;
end CNE 01100 good;

Automated Rule Checking

VHDLTool/Zamiacad-
Rulechecker

Zamiacad plugin rulechecker
(https://sourceforge.net/p/zamiacad/zamia-
eclipse-plugin/ci/master/tree/) eclipse plugin
clone including the rulechecker addon (need
zamiacad code to work)

A 11 ® 14 % 3 % 3 O

Contributors Issues Stars Forks

https://github.com/VHDLTool/Zamiacad-Rulechecker

) Product v Solutions ~ OpenSource ~ Pricing

Sign in

& VHDLTool / Zamiacad-Rulechecker rub L Notifica
<> Code (O Issues 14 Il Pullrequests () Actions [Projects 1 [0 wiki @ Security [~ Insights
Releases Tag: QF
Dec 15, 2020 V7.0.2 Loromt
[Qe
©
. Allow parameters for rules CNE_1000/1600/2100

correct zero line issu in STD_01800

Compare *

v Assets 4

Dzamiacad-7.02-plugin-update zip

D zamiacCAD_7.0.2 202012151749 jar

49

https://github.com/VHDLTool/Zamiacad-Rulechecker

Traditional VHDL design

* Features
— Many concurrent statements
— Many signals
— Few and small process statements
— No unified signal naming convention

— Coding is done at low RTL level:
* Assignments with logical expressions
* Only simple array data structures are used

* Problems
— Slow execution due to many signals and processes
— Dataflow coding difficult to understand
— Algorithm difficult to understand
— No distinction between sequential and combinational signals
— Difficult to identify related signals
— Large port declarations in entity headers

Abstract of synchronous digital system

* Two separate parts
— A combinational part
— A sequential part

Clk

51

Two-process method (J. Gaisler)

Two local signals are declared:

— register-in (rin)

— register-out (rout)
The full algorithm (g = f(d,r)) is performed in combinational process
Comb. process is sensitive to all input ports and register outputs r
The sequential process is only sensitive to the clock

Record types are used extensively
 Record in each module defines all the registers
e Records in Packages define port I/O

* Don’t have to fix every instantiation when a port map changes,
just update the record and everything still works!

Few signals, mostly in/out/state records
Variables
Functions / procedures are used extensively

Two-process VHDL entity

* From “A Structured VHDL Design Method” by lJiri Gaisler

* Only two processes combinational
(asynChronous) and Sequentia| Combinational

(registers) are used D o Q
> Q=4(D. 1 'S

* Complete algorithm can be coded
sequential in the combinational r rin = £.(D.)
process that outputs the internal
state and sequential process
registers the internal state and

rin

handles reset - -«
Clk

Sequential

* http://www.gaisler.com/doc/vhdI|2proc.pdf for a full write-up of the benefits of this style.

http://www.gaisler.com/doc/vhdl2proc.pdf

Two-process method: data types

The local signals r and rin are of composite type (record) and
include all registered values

All outputs are grouped into one entity-specific record type,
declared in a global interface package

Input ports are of output record types from other entities

A local variable of the registered type is declared in the
combinational processes to hold newly calculated values

Additional variables of any type can be declared in the
combinational process to hold temporary values

Example

use work.interface.all; begin
entity irqctrl is port (comb : process (sysif, r)
clk : in std_logic; variable v : reg_type;
rst : in std_logic; begin
sysif : in sysif_type; vV :=1r; v.irq := '0';
irgo : out irqctrl_type); for i in r.pend'range loop
end; v.pend := r.pend(i) or
(sysif.irq(i) and r.mask(i));
architecture rtl of irqctrl is v.irqg := v.irq or r.pend(i);
end loop;
type reg_type is record rin <= v;
irq : std_logic; irgo.irq <= r.irq;
pend : std_logic_vector(0 to 7); end process;

mask : std_logic_vector(0 to 7);

end record;
reg : process (clk)
signal r, rin : reg_type; begin
if rising edge(clk) then
r <= rin;
end if;
end process;

end architecture;

Two-process method: using records

type regl_type is record

* Useful to group related signals f1 : std_logic_vector(0 to 7);

f2 : std_logic_vector(0 to 7);
f3 : std_logic_vector(0 to 7);

* Nested records further improves end record;
readablllty type reg2_type is record

x1 : std_logic_vector(0 to 3);
. . x2 : std_logic_vector(0 to 3);
* Directly synthesizable x3 : std_logic_vector(0 to 3):

end record;

type reg_type is record

* Element name might be difficult
to find in synthesized netlist res? : ves?tupe,

end record;
variable v : regtype;

v.regl.f3 := “0011001100”;

type|l mul32 in type] is record entity mul32 is
op : std logic vector(downto 0); —-- operand 1 generic (
op2 : std logic vector(downto 0); —-- operand 2 tech : integer := 0;
flush : std logic; multype : integer range to = 0;
signed . Stdiloqic; pipe : integer range to = 0;
start . Std_logic; mac : integer range to = 05
mac . Std_logic . arch . integer range to = 0y

— o scantest: integer :=

acc : std logic vector(downto 0);):

1 —-y : std logic vector(7 downto 0); -- Y (MSB MAC register) port (
—-—asrl8 : std logic vector (31 downto 0); -- LSB MAC register rst : in std ulogic;

-end record; clk rin s L_i_w.l_t_)t;u_c_:;

holdn : in std ulogic;

type [hul32 out type] is record muli in Jul32 in type;
ready : std logic; mulo : out gull Tout_tvme;
nready : std logic; testen : in std ulogic := '0';
icc : std logic vector(3 downto 0); -- ICC s testrst : im std ulogic := '
result : std logic vector(downto 0); —— mul result eéd;

-end record;

56

Hierarchical design

Grouping of signals makes code readable and shows the direction of the dataflow

use work.interface.all;

entity cpu is port (
clk : in std_logic;
rst : in std_logic;
mem_in : in mem_in_type;
mem_out : out mem_out_type);

end;

Clk, rst

architecture rtl of cpu is
signal cache_out : cache_type;
signal proc_out : proc_type;
signal mctrl _out : mctrl_type;

begin

u0 : proc port map
(clk, rst, cache_out, proc_out);

ul : cache port map
(clk, rst, proc_out, mem_out cache_out);

’ u2 : mctrl port map
(clk, rst, cache_out, mem_in, mctrl_out,

mem_out);

Memory

end architecture;
57

Dataflow vs. two-process comparison

Two-process method Dataflow coding

* Add field in interface record type * Add port in entity declaration

* Add port to sensitivity list (input)
Adding ports * Add port in component declaration

* Add signal to port map of component
» Add definition of signal in parent

* Add field in register record type * Add two signal declaration (d & q)

» Add g-signal in sensitivity list

Adding registers » Add driving signal in comb. process
* Add driving statement in seq. process
» Put a breakpoint on first line of * Analyze how the signal(s) of interest are
combination process and step generated
Debugging forward * Put a breakpoint on each process or con-
* New signal values visible in current statment in the path
local variable v » New signal value not immediately visible
* Trace the r-signal (state) « Find all signals that are used to implement
* Automatic propagation of added registers
Tracing or deleted record elemenets * Trace all found signals

* Re-iterate after each added or deleted sig-
nal

58

Coding Style Example — Simple Counter

entity Counter is

generic (

TPD G : time := 1 ns); -- Simulated propagation delay
port (

clk : in sl;

rst : in sl;

max : in slv (7 downto 0);

count : out slv (7 downto 0);

rollover : out sl);

end entity Counter;

architecture rtl of Counter is

-- Record containing all register elements
type RegType is record

count : slv (7 downto 0);

rollover : sl;

end record RegType;

-- Initial and reset values for all register elements
constant REG INIT C : RegType := (

count => (others => '0"),

rollover => '0"');

-- Output of registers. (The Q output)
signal r : RegType := REG INIT C;

-- Combinatorial input to registers (The D input)

signal rin : RegType;
begin

-- Boilerplate sequential process
-- Assign rin to r on rising edge of clk to create registers
seq : process (clk) is begin
if (rising edge(clk)) then
r <= rin after TPD G;

end if;

*Source: 'SLAC Firmware Standard Library’

end process seq;

-- Main module logic
-- Generates rin based on r and any module inputs

comb : process (max, r, rst) is

variable v : RegType;

begin

-- Initialize v with current value of all registers

v o= 1;
-- Set register values for next rising edge
v.count := r.count + 1;

v.rollover := '0';

-- Override above assignments when max reached

if (r.count = max) then
v.count := (others => '0');
v.rollover := '1';

end if;

—-- Synchronous reset
-- Override all above assignments and apply init values
if (rst = '1') then

v := REG INIT C;

end if;

-— Assign final state of local variable to rin signal
-- Registers will assume these values on next rising edge

rin <= v;

-— Assign registered signals to outputs
count <= r.count;

rollover <= r.rollover;

end process comb;

end architecture rtl;

o o/

file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html
file:///H:/projects/StdLib/doxygen/html/classCounter.html
file:///H:/projects/StdLib/doxygen/html/classCounter_1_1rtl.html

Coding Style Example — UART BRG*

entity UartBrg is

generic (
CLK FREQ G : real = 125.0E6; -- Default 125 MHz
BAUD RATE G integer := 115200; -— Default 115.2 kbps
MULTIPLIER G integer := 16);

port (
clk : in sl;
rst : in s1;
baudClkEn out sl);

end entity UartBrg;

architecture rtl of UartBrg is

constant CLK DIV C integer := integer (CLK FREQ G /
real (BAUD RATE G * MULTIPLIER G)) - 1;

type RegType is record
count
baudClkEn : sl;
end record RegType;

integer;

constant REG _INIT C RegType := (
count => 0,
baudClkEn => '0");

signal r RegType := REG INIT C;

signal rin Regtype;

*Source: 'SLAC Firmware Standard Library’

begin
comb : process (r, rst) is
variable v RegType;
begin
v 1= r;
v.count = r.count + 1;

v.baudClkEn '0';
if (r.count = CLK DIV C) then

v.count := 05
v.baudClkEn := '1"';
end if;
if (rst = '1l') then
v := REG_INIT C;
end if;
rin <= v;
baudClkEn <= r.baudClkEn;
end process;
seq : process (clk) is
begin
if (rising edge(clk)) then
r <= rin;
end if;
end process;

end architecture rtl;

60

Coding Style Example — FSMs

Simple case-statement implementation
Maintains current state
Both combinational and registered

architecture rtl of mymodule is

type state type is (first, second, last);

type reg type is record
state : state type:
drive std logic;
end record;

output possible signal r, rin : reg_type;
begin
comb process(....,)
variable v reqg type;
begin
vV o= r;
case r.state is
when first =>
if cond0 then v.state := second; end if;
when second =>
if condl then v.state := first;
elsif cond2 then v.state := last; end if;
when others =>
v.drive := '1l’; v.state := first;
end case;
1if reset = ’1’ then v.state := first; end if;
modout.cdrive <= v.drive; —— combinational output
modout.rdrive <= r.drive; -- registered output

end process;

61

Procedure Example

procedure updateCount (

v : 1nout RegType;
max : 1in slv (7 downto 0)) 1is
begin

if (v.count = max) then
v.count := (others => ‘0');
v.rollover := ‘17/;

else
v.count := v.count + 1;
v.rollover := ‘0’;

end if;

end procedure;

Comb : process (r, max) 1is
variable v := RegType;
begin
vV 1= r;

updateCount (v) ;
rin <= v;
end process;

*Source: 'SLAC Firmware Standard Library’

Packages

* Packages are very useful for sharing constants,
typedefs, functions and procedures

* With the “two-process” coding style, functions and
procedures become very easy to use
— Can abstract complex logic to avoid code repetition

— Procedures used when a logic block has more than one
output, or needs to read and update a variable

Two-process method: Benefits

Sequential coding is well known and understood
Algorithms easily extracted

Easy to extend

Readability = Maintainability

Fast simulation

Easier debugging and verification

No simulation/synthesis discrepancies

Two-process method : Examples

 Example: Current NOEL-V integer pipeline

— 2 processes

* Combinational, 2200 lines
* Clocked, 60 lines

e 53/22 procedures/functions, ~5000 lines
(not counting generic ones from other files)

— 17 in port signals
— 13 out port signals
— 4 local signals (+12 for disassembler)
* Thein/out ports connect to separate modules for:

caches, register file, branch prediction, IRQ, debug,
mul/div.

*Source: Gaisler

Two-process method : Examples

 Example: Current NOEL-V cache controller and MMU

— 3 processes
e Combinational, 3500 lines
* Two clocked, one assignment each (+debug)

* 10/45 procedures/functions, ~1500 lines
(not counting generic ones from other files)

— 12 in port sighals
— 4 out port signals
— 4 local signals (+2 for debug)
* The in/out ports connect to: AHB bus, caches, integer
pipeline.
 Both LEONS (Sparc) and NOEL-V (RISC-V)!

*Source: Gaisler

Two-process method : Examples

 Example: First half of the execute stage

ex flush :='0";

if wb fence i ="1" or vuwb.flushall = '1' or x_branch = '1' then
ex_flush :="1";

end if;

ex_branch flush :='0";

if wb fence i ="1" or vvwb.flushall = '1' then
ex_branch flush :="1%

end if;

ex_forwarding(...); -- Lane 0

ex_forwarding(...); -- Lane 1

branch_unit(...);
jump_ex_forwarding(...);
jump_unit(...);

alu_execute(...); -- ALUO
alu_execute(...); -- ALU1
ex_stdata_forwarding(...);
mul_gen(...);
for i in 0 to ISSUEWAYS-1 loop
ex_xc(i) = re.ctrl(i).xc;
ex_xc_cause(i) := re.ctrl(i).cause;
ex_xc_tval(i) = re.ctrl(i).tval;
end loop;

*Source: Gaisler

Two-process method : Examples

 Example: Detail of the execute stage

-- Forwarding Lane 1 ----=-========mmmmmm oo

ex_forwarding(r,
1,
re.forw(1),
ex_alu_opi(1),
ex_alu_op2(1)
);

--in : Registers

--in :lane 1

--in : Forwarded from Memory
-- out : Output op1 from Mux
-- out : Output op2 from Mux

- Branch Upit ——— ————————

branch_unit(ex_alu_op1(1),
ex_alu_op2(1),
re.ctrl(1).valid,
r.e.ctrl(1).branch.valid,
re.ctrl(1).inst(14 downto 12),
r.e.ctrl(1).branch.addr,
r.e.ctrl(1).branch.naddr,
r.e.ctrl(1).branch.taken,
re.ctrl(1).pc,
ex_branch_valid,
ex_branch_mis,
ex_branch_addr,
ex_branch_xc,
ex_branch_cause,
ex_branch_tval

*Source: Gaisler

--in : Forwarded Opl1

--in : Forwarded Op2

--in : Enable/Valid Signal
--in : Branch Valid Signal
--in : Inst funct3

--in : Branch Target Address
--in : Branch Next Address
--in : Prediction

-—in :PCIn

-- out : Branch Valid

-- out : Branch Outcome

-- out : Branch Address

-- out : Branch Exception

-- out : Exception Cause

-- out : Exception Value

68

	Slide 1
	Slide 2: DO-254 and DO-178C Standards
	Slide 3: VHDL coding for DO-254 and DO-178C Compliance
	Slide 4: DO-254 UG Positioning Paper
	Slide 5: DO-254 UG Positioning Paper
	Slide 6: DO-254 Category: Coding Practices (CP)
	Slide 7: DO-254 Category : Coding Practices (CP)
	Slide 8: DO-254 Category : Coding Practices (CP)
	Slide 9: DO-254 Category : Coding Practices (CP)
	Slide 10: DO-254 Category : Coding Practices (CP)
	Slide 11: DO-254 Category : Clock Domain Crossing (CDC)
	Slide 12: DO-254 Category : Safe Synthesis (SS)
	Slide 13: DO-254 Category : Safe Synthesis (SS)
	Slide 14: DO-254 Category : Safe Synthesis (SS)
	Slide 15: DO-254 Category : Safe Synthesis (SS)
	Slide 16: DO-254 Category : Safe Synthesis (SS)
	Slide 17: DO-254 Category : Safe Synthesis (SS)
	Slide 18: DO-254 Category : Safe Synthesis (SS)
	Slide 19: DO-254 Category : Safe Synthesis (SS)
	Slide 20: DO-254 Category : Safe Synthesis (SS)
	Slide 21: DO-254 Category : Safe Synthesis (SS)
	Slide 22: DO-254 Category : Safe Synthesis (SS)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Automated Rule Checking
	Slide 30: CNES Rules
	Slide 31: CNES Rules
	Slide 32: CNES Standard rules: Examples
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49: Automated Rule Checking
	Slide 50: Traditional VHDL design
	Slide 51: Abstract of synchronous digital system
	Slide 52: Two-process method (J. Gaisler)
	Slide 53: Two-process VHDL entity
	Slide 54: Two-process method: data types
	Slide 55: Example
	Slide 56: Two-process method: using records
	Slide 57: Hierarchical design
	Slide 58: Dataflow vs. two-process comparison
	Slide 59: Coding Style Example – Simple Counter
	Slide 60: Coding Style Example – UART BRG*
	Slide 61: Coding Style Example – FSMs
	Slide 62: Procedure Example
	Slide 63: Packages
	Slide 64: Two-process method: Benefits
	Slide 65: Two-process method : Examples
	Slide 66: Two-process method : Examples
	Slide 67: Two-process method : Examples
	Slide 68: Two-process method : Examples

