Martin Lof Type Theory:
Univalence implies function extensionality

Thomas Pipilikas

INTER-INSTITUTIONAL GRADUATE PROGRAM “ALGORITHMS, LOGIC AND
DISCRETE MATHEMATICS”

Aoyue) cae Aracgers

2
&
z
-&
3
z
T
o
&
£
]
a
=

OCAUY

arar-wpni el

QO] guBIAALEB 1A

-]

Disclaimer

«O>» «F»r «E»

<

il
v

Ha

Disclaimer

«O>» «F»r «E»

<

il
v

Ha

We will not use the notion of yetacynuatiopol.
Here we include the uniqueness principle

f = Axf (%)

as a principle of judgmental equality.
vs y-conversion (Afppa 8.) T otowdAnote f : A — B undpyet éva

Ha—g(f) : A (applyf) =f
T0 omolo xavomolel TN oyéon

1a—g (A (b)) =refly),
6mou (x: A)b(x): B

I know nothing on Homotopy Theory...

)

I'll just be a coq!

Thomas Pipilikas

Univalence implies Function Extensionality

I know nothing on Homotopy Theory...

)

I'll just be a coq!

“there they laugh: they do not understand me; I am not the mouth

”
for these ears.
Also sprach Zarathustra: Ein Buch fiir Alle und Keinen, Friedrich Nietzsche

Thomas Pipilikas

Univalence implies Function Extensionality

Why HoTT is hot?!

m 1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

Thomas Pip:

Why HoTT is hot?!

m 1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

m 1989 “co-groupoids as a model for a homotopy category” , by Michael
Kapranov and Vladimir Voevodsky.

Thomas Pip:

Why HoTT is hot?!

m 1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

m 1989 “co-groupoids as a model for a homotopy category” , by Michael
Kapranov and Vladimir Voevodsky.

m 1993 A new proof of Lemma 1.1! It took many more years for it
to be accepted as correct.

Thomas Pip:

Why HoTT is hot?!

m 1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

m 1989 “co-groupoids as a model for a homotopy category” , by Michael
Kapranov and Vladimir Voevodsky.

m 1993 A new proof of Lemma 1.1! It took many more years for it
to be accepted as correct.

m 1992/1993 “Cohomological Theory of Presheaves with Transfers.” , by
Vladimir Voevodsky.

Thomas Pipilikas

Why HoTT is hot?!

m 1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

m 1989 “co-groupoids as a model for a homotopy category” , by Michael
Kapranov and Vladimir Voevodsky.

m 1993 A new proof of Lemma 1.1! It took many more years for it
to be accepted as correct.

m 1992/1993 “Cohomological Theory of Presheaves with Transfers.” , by
Vladimir Voevodsky.

The approach to Motivic Cohomology circumvented Bloch’s
lemma by relying on this paper.

Thomas Pipilikas

Why HoTT is hot?!

m 1999/2000 “Cohomological Theory of Presheaves with Transfers.”
contained a mistake!!!

Why HoTT is hot?!

m 1999/2000 “Cohomological Theory of Presheaves with Transfers.”
contained a mistake!!!

This story got me scared. Starting from 1993 multiple groups of
mathematicians studied the “Cohomological Theory” paper at sem-
inars and used it in their work and none of them noticed the mis-

take.
Vladimir Voevodsky

Thomas Pip:

Why HoTT is hot?!

m 1999/2000 “Cohomological Theory of Presheaves with Transfers.”
contained a mistake!!!

This story got me scared. Starting from 1993 multiple groups of
mathematicians studied the “Cohomological Theory” paper at sem-
inars and used it in their work and none of them noticed the mis-

take.
Vladimir Voevodsky

m 1998 “Homotopy types of strict 3-groupoids” , by Carlos Simpson
contained a counter example on “co-groupoids as a model for a

homotopy category” paper.

Thomas Pip:

Why HoTT is hot?!

m Mathematical research currently relies on a complex system of
mutual trust based on reputations.

Why HoTT is hot?!

m Mathematical research currently relies on a complex system of
mutual trust based on reputations.

m We are off to uncharted waters!

Why HoTT is hot?!

m Mathematical research currently relies on a complex system of
mutual trust based on reputations.

m We are off to uncharted waters!

the only real long-term solution to the problems that I encountered
is to start using computers in the verification of mathematical rea-
soning.

Vladimir Voevodsky[3]

Why HoTT is hot?!

m We need new proof verifiers!

Why HoTT is hot?!

m We need new proof verifiers!

The roadblock that prevented generations of interested mathemati-
cians and computer scientists from solving the problem of computer
verification of mathematical reasoning was the unpreparedness of
foundations of mathematics for the requirements of this task.
Viadimir Voevodskyl3]

Why HoTT is hot?!

m Why Type Theory?!

Why HoTT is hot?!

m Why Type Theory?!

...’ Eva mheovéxtnua tng yenong ¢ Pewplag TOmwY yio TNy %o-
TAoXEVY] TEOYPoUUdTWY elvon OTL efval BUVITOV Vo EXPEAGOUUE
1600 TIC TEOBLAYPAUPES 60O Xol To TEOYEAUUATe Héoa aTov (Blo

(POPUOALOUO. ...

Nuxdhoc Pryag

Why HoTT is hot?!

m Why Type Theory?!

...’ Eva mheovéxtnua tng yenong ¢ Pewplag TOmwY yio TNy %o-
TAoXEVY] TEOYPoUUdTWY elvon OTL efval BUVITOV Vo EXPEAGOUUE
1600 TIC TEOBLAYPAUPES 60O Xol To TEOYEAUUATe Héoa aTov (Blo
(POPUOALOUO. ...

Nuxdhoc Pryag

m The idea of Homotopy Type Theory arose around 2006 in
independent work by Awodey and Warren and Voevodsky, but it
was inspired by Hofmann and Streicher’s earlier groupoid
interpretation [2].

Why HoTT is hot?!

m Why Type Theory?!

...’ Eva mheovéxtnua tng yenong ¢ Pewplag TOmwY yio TNy %o-
TAoXEVY] TEOYPoUUdTWY elvon OTL efval BUVITOV Vo EXPEAGOUUE
1600 TIC TEOBLAYPAUPES 60O Xol To TEOYEAUUATe Héoa aTov (Blo
(POPUOALOUO. ...

Nuxdhoc Pryag

m The idea of Homotopy Type Theory arose around 2006 in
independent work by Awodey and Warren and Voevodsky, but it
was inspired by Hofmann and Streicher’s earlier groupoid
interpretation [2].

m In particular, Voevodsky constructed an interpretation of type
theory in Kan simplicial sets, and recognized that this
interpretation satisfied a further crucial property which he
dubbed univalence.

Why HoTT is hot?!

m Coq, Agda...

Why HoTT is hot?!

m Coq, Agda...

m The first such library called "Foundations” was created by Vladimir
Voevodsky in 2010.

Why HoTT is hot?!

m Coq, Agda...

m The first such library called "Foundations” was created by Vladimir
Voevodsky in 2010.

m HoTT Coq library and HoTT Agda library.

Why HoTT is hot?!

m Coq, Agda...

m The first such library called "Foundations” was created by Vladimir
Voevodsky in 2010.

m HoTT Coq library and HoTT Agda library.

...many of the proofs described in this book (HoTT) were actually
first done in a fully formalized form in a proof assistant, and are
only now being “unformalized” for the first time — a reversal of
the usual relation between formal and informal mathematics. [1]

Homotopy

Letf, g : [[(x.a) P (x) be two sections of a type family P: A — U. A
homotopy from f to g is a dependent function of type

(F~g) =[]¢F(0)=g).
x:A

Thomas Pip:

Homotopy

Letf, g : [[(x.a) P (x) be two sections of a type family P: A — U. A
homotopy from f to g is a dependent function of type

(F~8) =110 =g).
x:A

Lemma (Lemma 2.4.3.)

Suppose H : f ~ g is a homotopy between functions f,g : A — B and let
p: x =4 y. Then we have

Thomas Pipilikas

We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refl,.

We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) - H (x)

We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) - H (x) H (x)- ap, (refly) =aps (refly)-H (x)

We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) -H (x) := H (x)-ap, (refly) =apy (refly)-H (x)
H (x)- refly=refl, -H (x)

We may also draw this as a commutative diagram:

f(p)

f) f)

H(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) -H(x)

H (x)- ap, (refly) =apy (refly)-H (x)
H (x)- refly=refl, -H (x)
H(x) = H (x)

We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) -H(x) H (x)-apg (refly) =aps (refly)-H (x)
H (x)- refly=refl, -H (x)
H

(x) = H (%)

which is inhabited by reflyy).

Quasi Inverse

Definitions

For a function f : A — B a quasi-inverse of f is a triple (g, «,) consisting of a
function g : B — A and homotopies & : f og ~idg and B : gof ~id4.

Quasi Inverse

Definitions

For a function f : A — B a quasi-inverse of f is a triple (g, «,) consisting of a
function g : B — A and homotopies & : f og ~idg and B : gof ~id4.
The type of quasi-inverses of f

Qlnv (f) :== Z ((fog ~idp) x (gof ~idy)).

q:B—A

Quasi Inverse

Definitions

For a function f : A — B a quasi-inverse of f is a triple (g, «,) consisting of a
function g : B — A and homotopies & : f og ~idg and B : gof ~id4.
The type of quasi-inverses of f

Qlnv (f) :== Z ((fog ~idp) x (gof ~idy)).

q:B—A
We also define the types
Linv () := > (gof ~ida)
q:B—>A
Rlnv (f) = Z (f o g ~idp)
q:B—A

of left inverses and right inverses to f , respectively.

Quasi Inverse

Definitions

For a function f : A — B a quasi-inverse of f is a triple (g, «,) consisting of a
function g : B — A and homotopies & : f og ~idg and B : gof ~id4.
The type of quasi-inverses of f

Qlnv (f) :== Z ((fog ~idp) x (gof ~idy)).

q:B—A
We also define the types
Linv () := > (gof ~ida)
q:B—>A
Rlnv (f) = Z (f o g ~idp)
q:B—A

of left inverses and right inverses to f , respectively.
We call f left invertible if LInv (f) is inhabited, and similarly right invertible
if RlInv (f) is inhabited.

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thomas Pipilikas

nction Extensionality

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f))
to have the following properties:

Thomas Pipilikas

nction Extensionality

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f))
to have the following properties:

QInv (f) — IsEquiv (f)

Thomas Pipilikas

nction Extensionality

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f))
to have the following properties:

QInv (f) — IsEquiv (f)
IsEquiv (f) — Qlnv (f)

Thomas Pipilikas

nction Extensionality

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f))
to have the following properties:

QInv (f) — IsEquiv (f)
IsEquiv (f) — Qlnv (f)

IsEquiv (f) is a mere proposition.

Thomas Pipilikas

nction Extensionality

Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f))
to have the following properties:

QInv (f) — IsEquiv (f)
IsEquiv (f) — Qlnv (f)
IsEquiv (f) is a mere proposition.
We will firstly use our well known definition of equivalence:

IsEquiv (f) := Llnv (f)x Rinv (f)

Thomas Pipilikas

Exercise (Exercise 2.10.)

Prove that X-types are “associative”, in that for any A : U and families
B:A—UandC: 3.4y B(x) —> U, we have

(ZZ C (pair(x,y)) (Z C(p)).
x:A y:B(x) P xay B()

Exercise (Exercise 2.10.)

Prove that X-types are “associative
B:A—UandC: 3.z B(x)

(Z 2, Clpair(xy)

x:A y:B(x)

hint

", in that for any A : U and families
— U, we have

) (5 c<p>).
P2 (x:a) B(¥)

Exercise (Exercise 2.10.)

Prove that X-types are “associative”, in that for any A : U and families
B:A—UandC: 3.4y B(x) —> U, we have

(Z Z (pair(x,y)) (Z C(p)).
x:A y:B(x) P:2(x:a) B()

hint

By induction for X-types

f =pair (a, pair (bﬂlcpair(u,ba))) — pair (pair(u, bﬂ)lcpair(u,b,,))
g :=pair(u,c,) — pair(pry (1), pair(pro (1),cy))

Univalence

m Nov. 1853; George Boole

https://www.gutenberg.org/files/15114/15114-pdf.pdf
http://www.irafs.org/materials/wld19/tarski_concept_truth_formalized_languages.pdf

Univalence

m Nov. 1853; George Boole

If instead of the proposition, “The sun shines,” we say, “It is true
that the sun shines,” we then speak not directly of things, but of
a proposition concerning things, viz., of the proposition, “The sun
shines.” And, therefore, the proposition in which we thus speak is
a secondary one. Every primary proposition may thus give rise to
a secondary proposition, viz., to that secondary proposition which
asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

https://www.gutenberg.org/files/15114/15114-pdf.pdf
http://www.irafs.org/materials/wld19/tarski_concept_truth_formalized_languages.pdf

Univalence

m Nov. 1853; George Boole

If instead of the proposition, “The sun shines,” we say, “It is true
that the sun shines,” we then speak not directly of things, but of
a proposition concerning things, viz., of the proposition, “The sun
shines.” And, therefore, the proposition in which we thus speak is
a secondary one. Every primary proposition may thus give rise to
a secondary proposition, viz., to that secondary proposition which
asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

m 1935; Alfred Tarski; Convention T:

("P” = "true”) ~ (P ~ true)

https://www.gutenberg.org/files/15114/15114-pdf.pdf
http://www.irafs.org/materials/wld19/tarski_concept_truth_formalized_languages.pdf

Univalence

m Nov. 1853; George Boole

If instead of the proposition, “The sun shines,” we say, “It is true
that the sun shines,” we then speak not directly of things, but of
a proposition concerning things, viz., of the proposition, “The sun
shines.” And, therefore, the proposition in which we thus speak is
a secondary one. Every primary proposition may thus give rise to
a secondary proposition, viz., to that secondary proposition which
asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

m 1935; Alfred Tarski; Convention T:

("P” = "true”) ~ (P ~ true)

“It is snowing” is a true sentence if and only if it is snowing
The Concept of Truth in Formalized Languages,Alfred Tarski

https://www.gutenberg.org/files/15114/15114-pdf.pdf
http://www.irafs.org/materials/wld19/tarski_concept_truth_formalized_languages.pdf

Univalence

m 1940; Alonzo Church (A Formulation of the Simple Theory of Types);

Univalence

m 1940; Alonzo Church (A Formulation of the Simple Theory of Types);
Propositional Extensionality:

(P=Q)~(P=Q),

where P, Q are propositions.

Thomas Pip:

Univalence

m 1940; Alonzo Church (A Formulation of the Simple Theory of Types);
Propositional Extensionality:

(P=Q)~(P=~Q),
where P, Q are propositions.

m 1998; Martin Hofmann and Thomas Streicher [2];
Uniqueness of Identity Proofs (UIP) is not inhabited,

Thomas Pip:

Univalence

m 1940; Alonzo Church (A Formulation of the Simple Theory of Types);
Propositional Extensionality:

(P=Q)~(P=~Q),
where P, Q are propositions.

m 1998; Martin Hofmann and Thomas Streicher [2];
Uniqueness of Identity Proofs (UIP) is not inhabited,
where UIA(A) stands for

If a1, ay are objects of type A then for any proofs p and q of the
proposition “ay equals ay” there is another proof establishing the
equality of p and q.

Thomas Pipilikas

Univalence

m 2006 - 2009; Vladimir Voevodsky Univalence

Univalence (aka UA)

For any A, B : U, the function
idtoeqv: (A =y B) — (A ~ B)

is an equivalence.

Thomas Pipilikas

nction Extensionality

Univalence

m 2006 - 2009; Vladimir Voevodsky Univalence

Univalence (aka UA)
For any A, B : U, the function
idtoeqv: (A =y B) — (A ~ B)

is an equivalence.
In particular, therefore, we have

(A=yB)~(A~B)

Thomas Pipilikas

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f,g : A — B the function

happly: (f = g) —]_[(f x) =g & (%))

is an equivalence.

Thomas Pip:

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f,g : A — B the function

happly: (f = g) —]_[(f x) =g & (%))

is an equivalence.
In particular happly has a quasi-inverse

funext: [[(f (x) = g (%)) — (f = 8.
x:A

Thomas Pip:

Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f,g : A — B the function

happly: (f = g) —]_[(f x) =g & (%))

is an equivalence.
In particular happly has a quasi-inverse

funext: [[(f (x) = g (%)) — (f = 8.
x:A

Naive functional extensionality:
If functions take equal values, then they are equal.

Thomas Pipilikas

We want to show that

UA implies FunExt

Thomas Pipilikas

Univalence implies Function Extensionality

Mere Propositions

A type P is a mere proposition if for all x,y : P we have x =p y.

Mere Propositions

A type P is a mere proposition if for all x,yy : P we have x =p v.
Specifically, for any P : U, the type IsProp(P) is defined to be

IsProp (P) := H (x=py).
x,y:P

Thomas Pip:

Mere Propositions

A type P is a mere proposition if for all x,yy : P we have x =p v.
Specifically, for any P : U, the type IsProp(P) is defined to be

IsProp (P) := H (x=py).
x,y:P

Lemma (Lemma 3.3.3 / Arjupo 45)

If P and Q are mere propositions such that P — Q and Q — P, then P ~ Q.

Thomas Pip:

Contractability

Definition

A type A is contractible, or a singleton, if there is 4 : A, called the
center of contraction, such thata = x for all x : A. We denote the
specified path a = x by contr,.

In other words, the type IsContr(A) is defined to be

IsContr(A) := Z 1_[(a=x).

a:A x:A

Contractability

Definition

A type A is contractible, or a singleton, if there is 4 : A, called the
center of contraction, such thata = x for all x : A. We denote the
specified path a = x by contr,.

In other words, the type IsContr(A) is defined to be

IsContr(A) := Y [(a =).

a:A x:A

Lemma (Lemma 3.11.8.)

Forany A and any a : A, the type) ;. (a = x) is contractible.

Contractability

Definition

A type A is contractible, or a singleton, if there is 2 : A, called the
center of contraction, such thata = x for all x : A. We denote the
specified path a = x by contry.

In other words, the type IsContr(A) is defined to be

IsContr(A) :=> . [[(a=1x).

a:A x:A

Lemma (Lemma 3.11.8.)

Forany A and any a : A, the type) ;. (a = x) is contractible.

Lemma (Lemma 3.11.9.)
Let P : A — U be a type family.
If each P(x) is contractible, then 3. o) P (x) is equivalent to A.

If A is contractible with center a, then 3.4y P (x) is equivalent to
P(a).

proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).

proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).
Now suppose pair (x,p) : X}(x.4) (@ = x);

proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).
Now suppose pair (x,p) : X}(y.4) (@ = x); we must show
pair (a, refl;) =pair (x, p).

proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).

Now suppose pair (x,p) : X}(y.4) (@ = x); we must show

pair (a, refl;) =pair (x, p).

By the characterization of paths in X-types (Theorem 2.7.2. / Oepnua
32), we know that for any w, w’ : 2i(xa) (@ = x), there is an
equivalence

(=) ~ Z transport(*=") (4, pry (w)) =pry (')
(q:pr1(w)=pry (w'))

proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).

Now suppose pair (x,p) : X}(y.4) (@ = x); we must show

pair (a, refl;) =pair (x, p).

By the characterization of paths in X-types (Theorem 2.7.2. / Oepnua
32), we know that for any w, w’ : 2i(xa) (@ = x), there is an
equivalence

(=) ~ Z transport(*=") (4, pry (w)) =pry (')
(q:pr1(w)=pry (w'))

Thus it suffices to exhibit g : 2 = x such that
transport(®==) (g, refl,) = p.

proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).

Now suppose pair (x,p) : X}(y.4) (@ = x); we must show

pair (a, refl;) =pair (x, p).

By the characterization of paths in X-types (Theorem 2.7.2. / Oepnua
32), we know that for any w, w’ : 2(x:A) (a = x), there is an
equivalence

(w=uw) ~ Z transport™=") (g, pr, (w)) =pr, (w').
(g:pr (w)=pry (w'))
Thus it suffices to exhibit g : 2 = x such that

transport(”:_) (g, refly) = p.
But we can take g := p in which case

transport(”zf) (g, refly) = p-refly L.2.11.2. / Aupo 24
=p L.2.11.4. / Afppa 15

Retract

If A is equivalent to B and A is contractible, then so is B.

Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

A retraction is a function r : A — B such that there exists a function
s: B — A, called its section, and a homotopy

€: H(y;g) (r(s(y) =yv)

Definition

Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

A retraction is a function r : A — B such that there exists a function
s: B — A, called its section, and a homotopy

€: [y (r(s(y) =y)=ros ~idy;

Definition

Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

A retraction is a function r : A — B such that there exists a function
s: B — A, called its section, and a homotopy

€: [y (r(s(y) =y)=ros ~idy;

then we say that B is a retract of A.

Definition

Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

Definition

A retraction is a function r : A — B such that there exists a function
s: B — A, called its section, and a homotopy

€: [y (r(s(y) =y)=ros ~idy;
then we say that B is a retract of A.

Lemma (Lemma 3.11.7.)
If B is a retract of A, and A is contractible, then so is B.

Thomas Pipilikas

s Function Extensionality

proof of Lemma 3.11.7.

Let aj : A be the center of contraction.

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction
E s : B — A the section

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction
E s : B — A the section

e H(y:B) (rs(y) =yv)

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction
E s : B — A the section

e H(y:B) (rs(y) =yv)

We claim that by := r (ag) : B is a center of contraction for B.

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction
E s : B — A the section
me:[[yp (W) =y

We claim that by := r (ag) : B is a center of contraction for B.

Letb: B;

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction
E s : B — A the section
me:[[yp (W) =y

We claim that by := r (ag) : B is a center of contraction for B.

Let b : B; weneed a pathp : by = b.

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,
m 7 : A — B the retraction
E s : B — A the section
me:[[yp (W) =y
We claim that by := r (ag) : B is a center of contraction for B.

Let b : B; weneed a pathp : by = b.
But we have € (b) : ros (b) = b and contrg,: ag = s (),

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,

m 7 : A — B the retraction

m s: B — A the section

me:[[yp (W) =y
We claim that by :=r (ag) : B is a center of contraction for B.
Let b : B; weneed a pathp : by = b.
But we have € (b) : ros (b) = b and contry,: ag = s (b), so by
composition

r (contrs(b)) = ap, <contrs(b)> 21 (ag) =ros(b)

proof of Lemma 3.11.7.

Let aj : A be the center of contraction. Let also,

m 7 : A — B the retraction

m s: B — A the section

me:[[yp (W) =y
We claim that by :=r (ag) : B is a center of contraction for B.
Let b : B; weneed a pathp : by = b.
But we have € (b) : ros (b) = b and contry,: ag = s (b), so by
composition

r (contrs(b)) = ap, <contrs(b)> 21 (ag) =ros(b)

thus
r (contrs(b)) € (b) :by =b.

We conclude that B is contractible with center of contraction by.

Contractible fibers

Definitions

The fiber (iva) of amap f : A — B over a point y : B is

fibs () =) (F (x) = y)-
x:A

Thomas Pipilikas

Contractible fibers

Definitions

The fiber (iva) of amap f : A — B over a point y : B is

fibs () =) (F (x) = y)-
x:A

In homotopy theory, this is what would be called the homotopy fiber of

f.

Thomas Pipilikas

Contractible fibers

Definitions

The fiber (iva) of amap f : A — B over a point y : B is

fibs () =) (F (x) = y)-
x:A

In homotopy theory, this is what would be called the homotopy fiber of

f.

Amapf: A — Bis contractible if for all y : B, the fiber fibs (y) is
contractible.

Thomas Pipilikas

Contractible fibers

Definitions

The fiber (iva) of amap f : A — B over a point y : B is

fibs () =) (F (x) = y)-
x:A

In homotopy theory, this is what would be called the homotopy fiber of

f.

Amapf: A — Bis contractible if for all y : B, the fiber fibs (y) is
contractible.
Thus the type IsContr (f) is defined to be

IsContr (f) := H IsContr (fibs (y)) .
y:B

Thomas Pipil

A Useful Lemma

We are going to need the following lemma.

A Useful Lemma

We are going to need the following lemma.

Lemma (Lemma 4.8.1.)

For any type family B : A — U, the fiber of pry: >} (x.4) B (x) — A over
a : Ais equivalent to B(a):

fibpr, (a) ~ B (a).

Thomas Pipilikas

proof of Lemma 4.8.1. We have

fibpr, () == >, (pry () =a)

”:Z(X:A) B(x)

proof of Lemma 4.8.1. We have
fibpr, (a) := Z (pr1 (u) =a)
”:Z(X:A) B(x)

~ (x =a) Ex. 2.10
x:A b:B(x)

proof of Lemma 4.8.1. We have

fibpr, (a) = Z (pn () = a)

proof of Lemma 4.8.1. We have

fibpr, (@) := > (pry (u) =a)
”Z(XA) (x)

Z x—a
b:B(x

proof of Lemma 4.8.1. We have

fibpr, () == >, (pry () =a)

”Z(XA) ()
~) Z (x = a) Ex. 2.10
x:Ab:B(x)
~3 Y B ()
x:Apx=a
~ B (a) (%)

(%) f :=pair(a, pair (by, refl;)) — pair (a, pair (refly, by))
g :=pair(a, pair(refly, by)) — pair(a, pair (b, refl;))

proof of Lemma 4.8.1. We have

fibpr, (@) := > (pry (u) =a)
u: Z(XA) (x)
~) Z (x = a) Ex. 2.10
x:A b:B(x)
~ Z B (X) (*)
x:Apx=a
~ B (a) (%)

(%) f :=pair(a, pair (by, refl;)) — pair (a, pair (refly, by))
g :=pair(a, pair(refly, by)) — pair(a, pair (b, refl;))

() f :=pair(a, pair(refl,, b,)) — by
g := b, — pair(a, pair (refly, by))

A function g : A — B is said to be a retract of a function f : X — Y if there is a diagram

A

gi f
B*>
S

>

T A

ig

<<

—

for which there are
a homotopy R : 705 ~idy
ahomotopy R’ : r’ o5’ ~idp
ahomotopy L: fos ~s'og
a homotopy K: gor ~ 71 of

for every a : A, a path H(a) witnessing the commutativity of the square

Equivalences

We have the following 3 approaches of the notion of equivalence.

Half Adjoint Equivalence (definition used in HoTT)
A function f : A — B is a half adjoint equivalence if thereare g : B — A
and homotopies 77 : gof ~idy and € : f o g ~idp such that there exists a
homotopy

T [[¢F () =e(f ().
x:A

Equivalences

We have the following 3 approaches of the notion of equivalence.

Half Adjoint Equivalence (definition used in HoTT)
A function f : A — B is a half adjoint equivalence if thereare g : B — A
and homotopies 77 : gof ~idy and € : f o g ~idp such that there exists a
homotopy

[(0) = e(f®))).
x:A
Thus we have a type ishae(f), defined to be

ishae(f) :==)’ D > TIeh@)=ef@)

(g:B—A) (1:gof ~ida) (€:fog~idp) x:A

Equivalences

We have the following 3 approaches of the notion of equivalence.

Half Adjoint Equivalence (definition used in HoTT)

A function f : A — B is a half adjoint equivalence if thereare g : B — A
and homotopies 77 : gof ~idy and € : f o g ~idp such that there exists a
homotopy

[(0) = e(f®))).
x:A
Thus we have a type ishae(f), defined to be

ishae(f) :==)’ D > TIeh@)=ef@)

(g:B—A) (1:gof ~ida) (€:fog~idp) x:A

Bi-invertible Map (the well known definition)

Equivalences

We have the following 3 approaches of the notion of equivalence.

Half Adjoint Equivalence (definition used in HoTT)

A function f : A — B is a half adjoint equivalence if thereare g : B — A
and homotopies 77 : gof ~idy and € : f o g ~idp such that there exists a
homotopy

[(0) = e(f®))).
x:A
Thus we have a type ishae(f), defined to be

ishae(f) :==)’ D > TIeh@)=ef@)

(g:B—A) (1:gof ~ida) (€:fog~idp) x:A

Bi-invertible Map (the well known definition)

Contractible Functions (the one used by Voevodsky)

We will mainly use the 1st definition of equivalence.

We will mainly use the 1st definition of equivalence.

But are those definitions equivalences?

We will mainly use the 1st definition of equivalence.

But are those definitions equivalences?

Theorem (Theorem 4.2.3.)
Forany f : A — B we have Qlnv (f) — IsHaE(f).

Thomas Pipilikas

implies Function Extensio

We will mainly use the 1st definition of equivalence.

But are those definitions equivalences?

Theorem (Theorem 4.2.3.)
Forany f : A — B we have Qlnv (f) — IsHaE(f).

The other direction is trivial. (Why?)

Thomas Pipilikas

Univalence implies Function Extensionality

proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).

proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).

We want to to provide a quadruple (¢',%',€’,) : IsHaE(f).

proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).

We want to to provide a quadruple (¢, 7’,€’,T) : IsHaE(f).
We define

mgi=g

m =

e = e(f(g (1) f (g (D)€ (b)

proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).

We want to to provide a quadruple (¢, 7’,€’,T) : IsHaE(f).
We define

mgi=g

m =

me = e(f(g0) T f (g (v)-eb)

proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).

We want to to provide a quadruple (¢, 7’,€’,T) : IsHaE(f).
We define
mgi=g
m =
me=e(f(g(b) T f (g (b)-e(d)
Let us brake €’ into pieces!
me(f(g(0)7 i fog(b) =fog(f(2(6))
m f(1(g®)):fog(f(g(b)=Ffog(b)
me(b):fogb)=0b

proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).
We want to to provide a quadruple (¢, 7’,€’,T) : IsHaE(f).
We define
mg =g
my =
me=e(f(g(b) T f (g (b)-e(d)
Let us brake €’ into pieces!
me(f (1) :fog(b) =fog(f(g (1))
m f(1(g®)):fog(f(g(b)=Ffog(b)
me(b):fogb)=0b
Thus €’ : fog (b) = b as wanted.

We need to find T, s.t.

T(a):f (1 (a)) = € (a).

proof of the theorem (Cont’d)

From Lemma 2.4.3. we can easilly observe that

n(gof(a)) =gof(i(a).

1)

proof of the theorem (Cont’d)
From Lemma 2.4.3. we can easilly observe that

n(gof(a)) =gof(i(a).

Therefore,

fn@of(@))-e(f(a)=fog(fn(a))-e(f(a)
=e(f(gof(a))-f(n(a))

1
Lemma 2.4.3.

1)

proof of the theorem (Cont’d)

From Lemma 2.4.3. we can easilly observe that

n(gof (@) =gof(i(a). 1)

Therefore,

Fp(gof @))-e(f @) =Fog(f (7 @))€ (f (@) 1
— c(f(gof (@)-f (7(a) Lemma243.

where we used Lemma 2.4.3. as
mf—fogandg«idy
mH<—e¢
mx—fog(f(a) andy « f (a)
mp—fr@):fog(f(a)=rf(a)

Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)

Forany f : A — B, the type IsHaE (f) is a mere proposition.

Thomas Pipilikas

Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)
Forany f : A — B, the type IsHaE (f) is a mere proposition.

Theorem (Corollary 4.3.3. & Theorem 4.4.5.)

All three types IsHaE, Bilnv and IsContr are equivalent:

IsHaE ~ Bilnv ~IsContr

Thomas Pipilikas

lies Function Exi

Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)

Forany f : A — B, the type IsHaE (f) is a mere proposition.

Theorem (Corollary 4.3.3. & Theorem 4.4.5.)

All three types IsHaE, Bilnv and IsContr are equivalent:

IsHaE ~ Bilnv ~IsContr

Strategy of proof:
Bilnv (f) < IsHaE (f) and IsContr (f) < IsHaE (f) and
Bilnv (f), IsContr (f) are mere propositions (Lemma 3.3.3 / Afppa 45)

Thomas Pipilikas

lies Function Exi

Total Space

Definitions

m Given two type families P, Q : A — U, we refer to a function
f:]_[(x:A) (P (x) — Q(x)) as a fiberwise map or a fiberwise
transformation.

Total Space

Definitions

m Given two type families P, Q : A — U, we refer to a function
f:]_[(x:A) (P (x) — Q(x)) as a fiberwise map or a fiberwise
transformation.

m Such a map induces a function on total spaces

total (f) := Aw. pair(pry (w),f (pair(pry (w), pry (ZP(x) ZQ(x).
x:A

Total Space

Definitions

m Given two type families P, Q : A — U, we refer to a function
f:]_[(x:A) (P (x) — Q(x)) as a fiberwise map or a fiberwise
transformation.

m Such a map induces a function on total spaces

total (f) := Aw. pair(pry (w),f (pair(pry (w), pry (ZP(x) ZQ(x).
x:A

m We say that a fiberwise map f : [[(,.4) (P (x) = Q(x)) isa

fiberwise equivalence if each f(x) : (x) — Q(x) is an
equivalence.

Thomas Pipilikas

Total Space

Theorem (Theorem 4.7.6.)

Suppose that f is a fiberwise transformation between families P and Q over a
type A and let x : A and v : Q(x). Then we have an equivalence

fibrotal(s) (Pair (x,0)) = fibsy) (0).

Thomas Pipilikas

Total Space

Theorem (Theorem 4.7.6.)

Suppose that f is a fiberwise transformation between families P and Q over a
type A and let x : A and v : Q(x). Then we have an equivalence

fibotal(f) (pair(x,v)) =~ fibs(y) (v).

Theorem (Theorem 4.7.7.)

Suppose that f is a fiberwise transformation between families P and Q over a
type A. Then f is a fiberwise equivalence if and only if total (f) is an
equivalence.

Thomas Pipilikas

lies Function Exi

proof of the theorem 4.7.6.

We calculate:

fibeorairy (Pair(x,0)) :=). pair(pry (w),f (pair(pry (w),pry (w)))) = pair (x,0)
w3 (x:a) P(¥)

proof of the theorem 4.7.6.

We calculate:

fibeorairy (Pair(x,0)) :=). pair(pry (w),f (pair(pry (w),pry (w)))) = pair (x,0)
w:3 (x.a) P(¥)
~ Z Z pair (a,f (pair(a,u))) =pair(x,v) Ex.2.10.

a:A u:P(a)

proof of the theorem 4.7.6.

We calculate:

fibeorairy (Pair(x,0)) :=). pair(pry (w),f (pair(pry (w),pry (w)))) = pair (x,0)
w:3 (x.a) P(¥)
~ Z Z pair (a,f (pair(a,u))) =pair(x,v) Ex.2.10.
a:A u:P(a)
~ Z Z Z transport“=") (p,f (pair(a,u))) = v 0. 32.

a:A u:P(a) p:a=x

proof of the theorem 4.7.6.

We calculate:

fibeorairy (Pair(x,0)) :=). pair(pry (w),f (pair(pry (w),pry (w)))) = pair (x,0)
w:3 (x.a) P(¥)
~ Z Z pair (a,f (pair(a,u))) =pair(x,v) Ex.2.10.
a:A u:P(a)

Z Z transport“=") (p,f (pair(a,u))) = v 0. 32.

:P(a) pa=x

~)
@A u

~ Z Z Z transport(=") (p.f (pair(a,u))) = v
wAp

‘=X y:P(a)

proof of the theorem 4.7.6.

We calculate:

fibeorairy (Pair(x,0)) :=). pair(pry (w),f (pair(pry (w),pry (w)))) = pair (x,0)
w:3 (x.a) P(¥)
~ Z Z pair (a,f (pair(a,u))) =pair(x,v) Ex.2.10.
a:A u:P(a)
Z Z Z transport“=") (p,f (pair(a,u))) = v 0. 32.
@A u:P(a) pa=x
Z Z Z transport=") (p, f (pair (a,u1))) = v
a:Ap:a=xy:P(a)

Z f (pair(x,u)) =v ()
w:P(x

proof of the theorem 4.7.6.

We calculate:

fibeorairy (Pair(x,0)) :=). pair(pry (w),f (pair(pry (w),pry (w)))) = pair (x,0)
ZUIZ(X:A) P(x)
~ Z Z pair (a,f (pair(a,u))) =pair(x,v) Ex.2.10.
a:A u:P(a)
~ Z Z Z transport“=") (p,f (pair(a,u))) = v 0. 32.
a:A u:P(a) p:a=x
~ Z Z Z transport=") (p, f (pair (a,u1))) = v
a:Ap:a=xu:P(a)
~ Z f (pair(x,u)) =v (%)
u:P(x)

Efibf(x) (Z))

proof of the theorem 4.7.6. (Cont’d)

() 2> Y transport®=) (p,f (pair(a,u))) = v = sunt,pef (pair(x,u) = v
a:Ap:a=Xxuy:P(a)

By Lemma 3.11.8. 3 .4 (@ = x) is contractible with center of contraction

(a, refly).

proof of the theorem 4.7.6. (Cont’d)
Z Z Z transport (=) (p.f (pair(a, u))) = v ~ sumy.p)f (pair(x,u)) = v
a:Ap:a=Xxuy:P(a)
By Lemma 3.11.8. 3 .4 (@ = x) is contractible with center of contraction

(a, refly).
Let us assume that P : 3.4y (2 = x) — U, where

P (pair(a, transport ("= (p, (pair(a,u))) = v.
p))
uP(u)

proof of the theorem 4.7.6. (Cont’d)

Z Z Z transport (=) (p.f (pair(a, u))) = v ~ sumy.p)f (pair(x,u)) = v

a:Ap:a=Xxuy:P(a)

By Lemma 3.11.8. 3 .4 (@ = x) is contractible with center of contraction

(a, refly).
Let us assume that P : 3.4y (2 = x) — U, where
P (pair(a,p)) Z transport(“=~ (p,f(pair(a,u))) = 0.
u:P(a)

By Lemma 3.11.9. and Exercise 2.10. we have that

proof of the theorem 4.7.6. (Cont’d)

Z Z Z transport (=) (p.f (pair(a, u))) = v ~ sumy.p)f (pair(x,u)) = v

a:Ap:a=Xxuy:P(a)

By Lemma 3.11.8. 3 .4 (@ = x) is contractible with center of contraction

(a, refly).
Let us assume that P : 3.4y (2 = x) — U, where
P (pair(a,p)) Z transport(“=~ (p,f(pair(a,u))) = 0.
u:P(a)

By Lemma 3.11.9. and Exercise 2.10. we have that

2 Z 2 transport (p,f (pair(a,u))) = v ~ Z transport (refly, f (pair(a, u))) = v

a:Ap:a=Xy:P(a) u:P(a)

proof of the theorem 4.7.6. (Cont’d)

Z Z Z transport=") (p, f (pair(a, 1)) = v ~ sumy.pex)f (pair (x, u))

a:Ap:a=Xxuy:P(a)

By Lemma 3.11.8. 3 .4 (@ = x) is contractible with center of contraction

(a, refly).
Let us assume that P : 3.4y (2 = x) — U, where
P (pair(a,p)) Z transport(“=~ (p,f(pair(a,u))) = 0.
u:P(a)

By Lemma 3.11.9. and Exercise 2.10. we have that
2 Z 2 transport (p,f (pair(a,u))) = v ~ Z transport (refl,, f (pair(a, u)))
a:Ap:a=Xy:P(a) u:P(a)

> flpair(x,u)) =0

u:P(x)

=0

=70

proof of the theorem 4.7.6. (Cont’d)

Z Z Z transport=") (p, f (pair(a, 1)) = v ~ sumy.pex)f (pair (x, u))

a:Ap:a=Xxuy:P(a)

By Lemma 3.11.8. 3 .4 (@ = x) is contractible with center of contraction

(a, refly).
Let us assume that P : 3.4y (2 = x) — U, where
P (pair(a,p)) Z transport(“=~ (p,f(pair(a,u))) = 0.
u:P(a)

By Lemma 3.11.9. and Exercise 2.10. we have that
2 Z 2 transport (p,f (pair(a,u))) = v ~ Z transport (refl,, f (pair(a, u)))
a:Ap:a=Xy:P(a) u:P(a)

> flpair(x,u)) =0

u:P(x)

=0

=70

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.

proof of the Theorem 4.7.7.
By Theorem 4.7.6 it follows for all x : A and v : Q(x) that
fibeotal(r) (Pair (x,v)) ~fibe(y) (v).
Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.

We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.

We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence

m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.
We can trivially observe that:

m f: [P (x) > Q(x) is a fiberwise equivalence

m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.

m Iff forall x : A, f (x) is contractible.

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.

We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence
m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.

m Iff forall x : A, f(x)is contractible.
m Iff forallx: Aand forallv e Q (x), fibs((v) is contractible.

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.
We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence
m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.
m Iff forall x : A, f (x) is contractible.
m Iff forallx: Aand forallv e Q (x), fibs((v) is contractible.
m Iff forall w: 3} .a) Q (%), fibiorays) (w) is contractible.

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.
We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence
m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.
m Iff forall x : A, f (x) is contractible.
m Iff forallx: Aand forallv e Q (x), fibs((v) is contractible.
m Iff forall w: 3} .a) Q (%), fibiorays) (w) is contractible.
m Iff total (f) is contractible.

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.
We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence
m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.
m Iff forall x : A, f (x) is contractible.
m Iff forallx: Aand forallv e Q (x), fibs((v) is contractible.
m Iff forall w: 3} .a) Q (%), fibiorays) (w) is contractible.
Iff total (f) is contractible.
Iff total (f) is an equivalence.

proof of the Theorem 4.7.7.

By Theorem 4.7.6 it follows for all x : A and v : Q(x) that

fibtotal(f) (pair(x, U)) Zflbf(x) (Z)) .

Equivalently, fibyyt,)r) (pair(x,v)) is contractible iff fiby(,) (v) is
contractible.
We can trivially observe that:
m f: [P (x) > Q(x) is a fiberwise equivalence
m Iffforallx: A, f(x):P(x) — Q(x) is an equivalence.
m Iff forall x : A, f (x) is contractible.
m Iff forallx: Aand forallv e Q (x), fibs((v) is contractible.
m Iff forall w: 3} .a) Q (%), fibiorays) (w) is contractible.
Iff total (f) is contractible.
Iff total (f) is an equivalence.

The Main Theorem

"I prefer Long Proofs to Short Proofs, the same way that I prefer
long walks in the woods to short ones”.

Vladimir Voevodsky (quoted by Avi Wigderson, Memorial Service for VV, Oct. 8, 2017, at IAS).

The Main Theorem

"I prefer Long Proofs to Short Proofs, the same way that I prefer
long walks in the woods to short ones”.

Vladimir Voevodsky (quoted by Avi Wigderson, Memorial Service for VV, Oct. 8, 2017, at IAS).

We will brake the proof into shorter proofs...

Weak Function Extensionality Principle

Definition (WFE)

The weak function extensionality principle asserts that there is a

function
H IsContr (P (x)) —IsContr (HP (x))
x:A xA

for any family P : A — U of types over any type A.

Thomas Pipilikas

Weak Function Extensionality Principle

Definition (WFE)

The weak function extensionality principle asserts that there is a

function
H IsContr (P (x)) —IsContr (HP (x))
x:A x:A

for any family P : A — U of types over any type A.

Lemma (Lemma 4.9.2.)

Assuming U is univalent, for any A,B, X : U and any e : A ~ B, there is an
equivalence
(X —A)~(X—B)

of which the underlying map is given by post-composition with the
underlying function of e.

Thomas Pipilikas

lies Function Exi

proof of the Lemma 4.9.2.

Lete: A ~ B. By induction we may assume thate := (f,, a), where
fe: A — Band a :IsEquiv (fe).

proof of the Lemma 4.9.2.

Lete: A ~ B. By induction we may assume thate := (f,, a), where
fe: A — Band a :IsEquiv (fe).

Let us assume the map given by post-composition with the
underlying function of e

)\(g:X—>A).gofe:(X—>A)—>(X—>B).

proof of the Lemma 4.9.2.

Lete: A ~ B. By induction we may assume thate := (f,, a), where
fe: A — Band a :IsEquiv (fe).

Let us assume the map given by post-composition with the
underlying function of e

)\(g:X—>A).gofe:(X—>A)—>(X—>B).

Ase: A ~ B, by UA we have that
idtoeqv: (A = B) — (A ~ B)

is an equuivalence and thus we may assume that e is of the form
idtoeqv (p), for some p : A = B; i.e.

e =idtoeqv (p) .

proof of the Lemma 4.9.2. (Cont’d)

By path induction, assuming p :=refl4, we have

X—X (

e =idtoeqv (refl4) = e =transport refly, —) = e =idy .

proof of the Lemma 4.9.2. (Cont’d)

By path induction, assuming p :=refl4, we have

X—X (

e =idtoeqv (refl4) = e =transport refly, —) = e =idy .

Thus we have

AMg:X—A)gofe=Ag:X—>A)goida= A(g: X — A) gofe =idx_.a)-(x-a)

which id(x_, 4)_(x—4) is an equivalence of (X — A) ~ (X — A).

Corollary (Corollary 4.9.3.)

Let P : A — U be a family of contractible types,

Thomas Pipilikas

implies Function Extensio

Corollary (Corollary 4.9.3.)

Let P : A — U be a family of contractible types, i.e.]],y IsContr (P (x)).
Then the projection pry: (Z(x: a) P (x)) — A is an equivalence.

Thomas Pipilikas

Univalence implies Function Exi

Corollary (Corollary 4.9.3.)

Let P : A — U be a family of contractible types, i.e.]],y IsContr (P (x)).
Then the projection pry: (Z(x: a) P (x)) — A is an equivalence.

Assuming U is univalent, it follows immediately that post-composition with
pry gives an equivalence

@ (A—>ZP(x)> ~ (A~ A).
x:A

Thomas Pipilikas

Univalence implies Function Exi

proof of the Corollary 4.9.3.

By Lemma 4.8.1, for prq: (Z(x:A) p (x)) — Aand x : A we have an

equivalence
fibpr, (x) ~ P (x).

proof of the Corollary 4.9.3.

By Lemma 4.8.1, for pry: . P(x)) > Aand x : A we have an
y (x:A)

equivalence
fibpr, (x) ~ P (x).

As for any x : A we have that P (x) is contractible, we get that pry is

contractible, or equivalently pr; is an equivalence of

(> P (x)) ~ A
(x:A)

proof of the Corollary 4.9.3.
By Lemma 4.8.1, for prq: (Z(x:A) p (x)) — Aand x : A we have an

equivalence
fibpr, (x) ~ P (x).

As for any x : A we have that P (x) is contractible, we get that pry is

contractible, or equivalently pr; is an equivalence of

(ZP&J:A
(x:A)

By Lemma 4.9.2. for X := A we have

(AeZP@):Mzm
x:A

as wanted.

UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe U, suppose that P : A — U is a family of
contractible types and let

o (A—>ZP(x)> ~(A~A).
x:A

Then | [(x.a) P (x) is a retract of fiby (ida).
As a consequence, | [.4y P (x) is contractible.

Thomas Pipilikas

lies Function Exi

UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe U, suppose that P : A — U is a family of
contractible types and let

o (A—>ZP(x)> ~(A~A).
x:A

Then | [(x.a) P (x) is a retract of fiby (ida).
As a consequence, | [.4y P (x) is contractible.

In other words, the univalence axiom implies the weak function
extensionality principle.

Thomas Pipilikas

lies Function Exi

proof of the Theorem 4.9.4.

We define the following functions:

proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg,)

proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg,)
Observe that it ¢ well defined:

proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg,)
Observe that it ¢ well defined:

mA(x:A). pair(x,f(x)):A— >, 4P ()

proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg,)
Observe that it ¢ well defined:

mA(x:A). pair(x,f(x)):A— >, 4P ()

m fiby (ida) = X zasy, Py # (2) =ida

proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [[P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [[P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

Observe that ¢ is well defined:
QA Z(x:A) P (x)

proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [[P (x)
xA
¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))
Observe that ¢ is well defined:

u g:A - Z(x:A)P(x)
mpa(g) =idg

proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [[P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

Observe that ¢ is well defined:
m g A= D eayP ()
mpa(g) =idg
= happly (p, =) : [[(xa) 2 () (¥) = x

proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [[P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

Observe that ¢ is well defined:
m g A= D eayP ()
mp:a(g) =idg
= happly (p, =) : [[(xa) 2 () (¥) = x
m happly (p,x), : P(x(g) (x)) — P (x)

proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [[P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

Observe that ¢ is well defined:
mg:A— 3Pk
mp:a(g) =ida
m happly (p, =) : [[(z.a) 2 () (x) =
m happly(p,x), : P(a(g) (x)) — P (x)
m Ax. happly(p,x), (pra(g (x))) : H(X:A) P (x)

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'
We have that

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'
We have that

poe(f) = (pair(A(x: A). pair(x,f (x)),refl;dA))

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A)P(x)‘
We have that
Yo (f) =y (pair(A(x: A). pair(x,f (x)),refli,))
A(x: A). happly (reflig,, x) (f (x))

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'
We have that

Yo (f) =y (pair(A(x:A). pair(x,f(x)),reflg,))
A(x: A). happly (reflig,, x), (f (%))
A

(x:A)f (%)

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'
We have that

¥ (pair (A (x: A). pair(x,f (x)), reflig,)
= A(x: A). happly (reflg,, x), (f (x))

A

f

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'
We have that

Yo (f) =y (pair(A(x:A). pair(x,f(x)),reflg,))
A(x: A). happly (reflig,, x), (f (%))
A

(x:A)f (%)

f

Thus] [(x.a) P (x) is a retract of fiby (id4).

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'

We have that
Yo (f) =1y (pair(A(x: A). pair(x,f (x)),reflig,)
= A(x: A). happly (reflg,, x), (f (x))
A (x: A) £ (1)
=/

Thus] [(x.a) P (x) is a retract of fiby (id4).
But from Corollary 4.9.3. fib, (id4) is contractible.

proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'

We have that
Yo (f) =1y (pair(A(x: A). pair(x,f (x)),reflig,)
= A(x: A). happly (reflg,, x), (f (x))
A (x: A) £ (1)
=/

Thus] [(x.a) P (x) is a retract of fiby (id4).
But from Corollary 4.9.3. fib, (id4) is contractible.

Therefore by Lemma 3.11.7. we conclude that fib, (id4) is contractible.
O

WEFE implies FunExt

Theorem (Theorem 4.9.5.)

Weak function extensionality implies the function extensionality Axiom.

Thomas Pipilikas

Univalence implies Function Extensionality

«0» «F» 4«

it
v
a
it

DA
ALMA.

WEFE implies FunExt

Theorem (Theorem 4.9.5.)

Weak function extensionality implies the function extensionality Axiom.

Thomas Pipilikas

Univalence implies Function Extensionality

«0» «F» 4«

it
v
a
it

DA
ALMA.

proof of Theorem 4.9.5.

We want to show that the type

H H H IsEquiv(happly (f,g))

AU PA-U 8] T .y P(%)

is inhabited.

proof of Theorem 4.9.5.

We want to show that the type

H H H IsEquiv(happly (f,g))

AU PA-U 8] T .y P(%)
is inhabited.
It suffices to show that
A (g : HP(X)> happly(F,8): [(F=8) — (F~8)
A 8 T(xay P(¥)

is a fiberwise equivalence.

proof of Theorem 4.9.5. (Cont’d)

Since a fiberwise map induces an equivalence on total spaces iff it is
fiberwise an equivalence by Theorem 4.7.7 , where we assume

A []ayP ()

mP(x)—f=g¢

mQ(x)—f~g
wf—Ag:]leaP(x)). happly(f,g)

it suffices to show that the function

tota'(A<g:HP(X)>-happly(f,g)>: X =9~ > (f~9)
x:A

&l T(xay P() &l [ay P(x)

is an equivalence.

proof of Theorem 4.9.5. (Cont’d)

By Lemma 3.11.8. we know that }| (g (f = g) is contractible.

T1ixa P(x))

proof of Theorem 4.9.5. (Cont’d)

By Lemma 3.11.8. we know that Z(

It suffices to show that the type); (g

Tlea) P(x)) (f ~ g)isalso

contractible.

proof of Theorem 4.9.5. (Cont’d)

By Lemma 3.11.8. we know that Z(

It suffices to show that the type); (8'1_[Px
‘1 I(x:A)

)) (f ~ g)isalso

contractible.

?!

proof of Theorem 4.9.5. (Cont’d)

By Lemma 3.11.8. we know that Z((f = g) is contractible.

& (xa) P(x))

It suffices to show that the type2<

8 (xa) P(x)) (f ~g)isalso

contractible.

?!

“A technical argument by a trusted author, which is hard to check
and looks similar to arguments known to be correct, is hardly ever
checked in detail”

Vladimir Voevodsky [3]

Our Lemma

Suppose function f : A — B. If the types A, B are contractible, then f is an
equivalence.

Our Lemma

Suppose function f : A — B. If the types A, B are contractible, then f is an
equivalence.

proof of Lemma

Leta: A and b : B the corresponding centers of contraction;

Our Lemma

Suppose function f : A — B. If the types A, B are contractible, then f is an
equivalence.

proof of Lemma

Leta : A and b : B the corresponding centers of contraction; i.e.

m « :IsContr (A) and a :=prq (a)
m S :IsContr (B) and b :=prq (B)

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B.

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define

py=p lay i fa) =y

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define
pyi=p gy if (@) =y,
Thus (a, py) fib (y).

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define

py=p lay i fa) =y

Thus (a, py) :fibs (y). We want to show that (g, py) is center of
retraction of fibs (y).

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define

py=p lay i fa) =y

Thus (a, py) :fibs (y). We want to show that (g, py) is center of
retraction of fibs (y).

Let w :fibs (y).

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define

py=p lay i fa) =y

Thus (a, py) :fibs (y). We want to show that (g, py) is center of
retraction of fibs (y).

Let w :fibs (y). By induction for X-types we may assume that

w:= (a,p).
We want to show that (a,p,) = (2,p’).

proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define

py=p lay i fa) =y

Thus (a, py) :fibs (y). We want to show that (g, py) is center of
retraction of fibs (y).

Let w :fibs (y). By induction for X-types we may assume that

w:= (a,p).
We want to show that (a,p,) = (2,p’).
By Theorem 2.7.2. it suffices to show that

Z transportf PAY) (k,py) =7

k:a=a’

proof of Lemma (Cont’d)

We have pr; (a) (') :a =d'.

proof of Lemma (Cont’d)
We have pr; (a) (') :a =d'.

By path induction we may assume a’ := g,

proof of Lemma (Cont’d)
We have pr; (a) (') :a =d'.

By path induction we may assume a’ := g, thus it suffices to show
that)
transport/iPr(¥) (refla,py) =p' =py =7

proof of Lemma (Cont’d)
We have pr; (a) (') :a =d'.

By path induction we may assume a’ := g, thus it suffices to show
that)
transport/iPr(¥) (refla,py) =p' =py =7

By path induction we may assume also thaty := f (a).

proof of Lemma (Cont’d)
We have pr; (a) (') :a =d'.

By path induction we may assume a’ := g, thus it suffices to show
that)
transport/iPr(¥) (refla,py) =p' =py =7

By path induction we may assume also that y := f (a). Thus it
suffices to show that

Pra) = P =reflyq) =reflyg)
which is inhabited by reflreﬂf @

proof of Theorem 4.9.5. (Cont’d)

Now by Theorem 2.15.7 / Oedpnua 58 (aka AC) we get that

Z (f ~ g) is a retract of n Z (f (x) = u)
(8:H<m> P(x)) (x:A) (u:P(x))

(Without using FunExt).

proof of Theorem 4.9.5. (Cont’d)

Now by Theorem 2.15.7 / Oedpnua 58 (aka AC) we get that

Z (f ~ g) is aretract of n Z (f (x) =

(g:HWA) P(x)) (x:A) (u:P(x))
(Without using FunExt).

By Lemma 3.11.8. we can observe that [,.4) Xu:p(x)) (f (¥
product of contractible types.

=u)isa

proof of Theorem 4.9.5. (Cont’d)

Now by Theorem 2.15.7 / Oedpnua 58 (aka AC) we get that

Z (f ~ g) is aretract of n Z (f (x) =

(g:HWA) P(x)) (x:A) (w:P(x))
(Without using FunExt).
By Lemma 3.11.8. we can observe that [[,.4) 2up(x)) (f (x) = u) isa

product of contractible types.

Thus by WFE we get that [[(;.4) 2u:p(x)) (f (x) = w).

proof of Theorem 4.9.5. (Cont’d)

Now by Theorem 2.15.7 / Oedpnua 58 (aka AC) we get that

Z (f ~ g) is aretract of n Z (f (x) =

(sT1m 09 (58) o)
(Without using FunExt).
By Lemma 3.11.8. we can observe that [[,.4) 2up(x)) (f (x) = u) isa

product of contractible types.
Thus by WFE we get that [[(;.4) 2u:p(x)) (f (x) = w).

Therefore, by Lemma 3.11.7. we have that }; (T P) (f~g)is

also contractible, as wanted.

This proof was discovered by the one and only Vladimir Voevodsky!

https://ncatlab.org/nlab/files/BauerLumsdaineUnivalence.pdf

This proof was discovered by the one and only Vladimir Voevodsky!

He proved it using Coq!

https://ncatlab.org/nlab/files/BauerLumsdaineUnivalence.pdf

This proof was discovered by the one and only Vladimir Voevodsky!

He proved it using Coq!

Proot.
3 (fun p = snd (projT1 p),
intros
ccxists (existT _ (existT (fun (y : A x A) > fst 2y snd) (5.2) (idpath 2))).
ineros ([[u v] p]

simpl in x b x
induction g as o]
induction p as (1
apply idpath.

Defines

Suppose maps £ g : A

Because cta d e

2 B) (Yo fzga)—= (- g)

funz i A= cxistT (funzy = fst 2y ~ snd 2y) (f = [3) (idpath (f))
tunz: A= existT (tun 2y = fst 2y ~ snd 2y) (] 5 9 2) (p 7).

ntial (src B) A).

ntial (try B) A)

taweq A B)

path-via (proj1 trg_c
path_via (proj 1 trg_comp
apply map.

apply weq.injective with (w = sre. compose).

apply idpath.
Defined.

And that is all, thank you

A Coq proof that Univalence Axioms implies Functional Extensionality
Andrej Bauer, Peter LeFanu Lumsdaine

https://ncatlab.org/nlab/files/BauerLumsdaineUnivalence.pdf

Bibliography

[§ The Univalent Foundations Program, Homotopy Type Theory:
Univalent Foundations of Mathematics,
https:/ /homotopytypetheory.org/book/. Institute for Advanced
Study, 2013.

[§ Martin Hofmann and Thomas Streicher. The groupoid
interpretation of type theory. In Giovanni Sambin and Jan M. Smith,
editors, Twenty-five years of constructive type theory (Venice, 1995),
volume 36 of Oxford Logic Guides, pages 83-111. Oxford
University Press, New York, 1998.

[Viadimir Voevodsky. UNIVALENT FOUNDATIONS , Institute for
Advanced Study Princeton, NJ March 26, 2014

https://www.researchgate.net/publication/2858048_The_Groupoid_Interpretation_of_Type_Theoryhttps://www.researchgate.net/publication/2858048_The_Groupoid_Interpretation_of_Type_Theory
https://www.researchgate.net/publication/2858048_The_Groupoid_Interpretation_of_Type_Theoryhttps://www.researchgate.net/publication/2858048_The_Groupoid_Interpretation_of_Type_Theory
https://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/2014_IAS.pdf
https://www.youtube.com/watch?v=zw6NcwME7yI&feature=emb_logo

