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We will not use the notion of yetacynuatiopol.
Here we include the uniqueness principle

f = Axf (%)

as a principle of judgmental equality.
vs y-conversion (Afppa 8.) T otowdAnote f : A — B undpyet éva

Ha—g(f) : A (applyf) =f
T0 omolo xavomolel TN oyéon

1a—g (A (b)) =refly ),
6mou (x: A)b(x): B
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I know nothing on Homotopy Theory...
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I'll just be a coq!

“there they laugh: they do not understand me; I am not the mouth

”
for these ears.
Also sprach Zarathustra: Ein Buch fiir Alle und Keinen, Friedrich Nietzsche

Thomas Pipilikas
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Why HoTT is hot?!

m 1986 “Algebraic Cycles and Higher K-theory” , by Spencer Bloch
contained a mistake (Lemma 1.1).

m 1989 “co-groupoids as a model for a homotopy category” , by Michael
Kapranov and Vladimir Voevodsky.

m 1993 A new proof of Lemma 1.1! It took many more years for it
to be accepted as correct.

m 1992/1993 “Cohomological Theory of Presheaves with Transfers.” , by
Vladimir Voevodsky.

The approach to Motivic Cohomology circumvented Bloch’s
lemma by relying on this paper.

Thomas Pipilikas
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Why HoTT is hot?!

m 1999/2000 “Cohomological Theory of Presheaves with Transfers.”
contained a mistake!!!

This story got me scared. Starting from 1993 multiple groups of
mathematicians studied the “Cohomological Theory” paper at sem-
inars and used it in their work and none of them noticed the mis-

take.
Vladimir Voevodsky

m 1998 “Homotopy types of strict 3-groupoids” , by Carlos Simpson
contained a counter example on “co-groupoids as a model for a

homotopy category” paper.
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m Mathematical research currently relies on a complex system of
mutual trust based on reputations.

m We are off to uncharted waters!

the only real long-term solution to the problems that I encountered
is to start using computers in the verification of mathematical rea-
soning.

Vladimir Voevodsky[3]
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Why HoTT is hot?!

m We need new proof verifiers!

The roadblock that prevented generations of interested mathemati-
cians and computer scientists from solving the problem of computer
verification of mathematical reasoning was the unpreparedness of
foundations of mathematics for the requirements of this task.
Viadimir Voevodskyl3]
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m Why Type Theory?!

...’ Eva mheovéxtnua tng yenong ¢ Pewplag TOmwY yio TNy %o-
TAoXEVY] TEOYPoUUdTWY elvon OTL efval BUVITOV Vo EXPEAGOUUE
1600 TIC TEOBLAYPAUPES 60O Xol To TEOYEAUUATe Héoa aTov (Blo
(POPUOALOUO. ...

Nuxdhoc Pryag

m The idea of Homotopy Type Theory arose around 2006 in
independent work by Awodey and Warren and Voevodsky, but it
was inspired by Hofmann and Streicher’s earlier groupoid
interpretation [2].

m In particular, Voevodsky constructed an interpretation of type
theory in Kan simplicial sets, and recognized that this
interpretation satisfied a further crucial property which he
dubbed univalence.
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Why HoTT is hot?!

m Coq, Agda...

m The first such library called "Foundations” was created by Vladimir
Voevodsky in 2010.

m HoTT Coq library and HoTT Agda library.

...many of the proofs described in this book (HoTT) were actually
first done in a fully formalized form in a proof assistant, and are
only now being “unformalized” for the first time — a reversal of
the usual relation between formal and informal mathematics. [1]




Homotopy

Letf, g : [[(x.a) P (x) be two sections of a type family P: A — U. A
homotopy from f to g is a dependent function of type

(F~g) =[]¢F(0)=g).
x:A
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Homotopy

Letf, g : [[(x.a) P (x) be two sections of a type family P: A — U. A
homotopy from f to g is a dependent function of type

(F~8) =110 =g).
x:A

Lemma (Lemma 2.4.3.)

Suppose H : f ~ g is a homotopy between functions f,g : A — B and let
p: x =4 y. Then we have

Thomas Pipilikas




We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refl,.
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We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) -H (x) := H (x)-ap, (refly) =apy (refly)-H (x)
H (x)- refly=refl, -H (x)



We may also draw this as a commutative diagram:

f(p)

f) f)

H(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) -H(x)

H (x)- ap, (refly) =apy (refly)-H (x)
H (x)- refly=refl, -H (x)
H(x) = H (x)



We may also draw this as a commutative diagram:

f(p)

fx) f)
H(x) H(y)
g(x) o) g(y)

proof of Lemma 2.4.3.

By induction, we may assume p is refly.Then trivially we observe that

H (x)-g (refly) = f (refly) -H(x) H (x)-apg (refly) =aps (refly)-H (x)
H (x)- refly=refl, -H (x)
H

(x) = H (%)

which is inhabited by reflyy).
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Quasi Inverse

Definitions

For a function f : A — B a quasi-inverse of f is a triple (g, «, ) consisting of a
function g : B — A and homotopies & : f og ~idg and B : gof ~id4.
The type of quasi-inverses of f

Qlnv (f) :== Z ((fog ~idp) x (gof ~idy)).

q:B—A
We also define the types
Linv () := > (gof ~ida)
q:B—>A
Rlnv (f) = Z (f o g ~idp)
q:B—A

of left inverses and right inverses to f , respectively.
We call f left invertible if LInv (f) is inhabited, and similarly right invertible
if RlInv (f) is inhabited.
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Quasi Inverse vs Equivalence

Theorem (Theorem 4.1.3.)

Quasi Inverse is not a mere proposition.

Thus we need something stronger. We want equivalence (IsEquiv (f))
to have the following properties:

QInv (f) — IsEquiv (f)
IsEquiv (f) — Qlnv (f)
IsEquiv (f) is a mere proposition.
We will firstly use our well known definition of equivalence:

IsEquiv (f) := Llnv (f)x Rinv (f)

Thomas Pipilikas
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Prove that X-types are “associative”, in that for any A : U and families
B:A—UandC: 3.4y B(x) —> U, we have

(ZZ C (pair(x,y) ) ( Z C(p)).
x:A y:B(x) P xay B()
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Exercise (Exercise 2.10. )

Prove that X-types are “associative”, in that for any A : U and families
B:A—UandC: 3.4y B(x) —> U, we have

(Z Z (pair(x,y) ) ( Z C(p)).
x:A y:B(x) P:2(x:a) B()

hint

By induction for X-types

f =pair (a, pair (bﬂlcpair(u,ba))) — pair (pair(u, bﬂ)lcpair(u,b,,))
g :=pair(u,c,) — pair(pry (1), pair(pro (1),cy))
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Univalence

m Nov. 1853; George Boole

If instead of the proposition, “The sun shines,” we say, “It is true
that the sun shines,” we then speak not directly of things, but of
a proposition concerning things, viz., of the proposition, “The sun
shines.” And, therefore, the proposition in which we thus speak is
a secondary one. Every primary proposition may thus give rise to
a secondary proposition, viz., to that secondary proposition which
asserts its truth, or declares its falsehood.

An Investigation of the Laws of Thought, George Boole

m 1935; Alfred Tarski; Convention T:

("P” = "true”) ~ (P ~ true)

“It is snowing” is a true sentence if and only if it is snowing
The Concept of Truth in Formalized Languages,Alfred Tarski



https://www.gutenberg.org/files/15114/15114-pdf.pdf
http://www.irafs.org/materials/wld19/tarski_concept_truth_formalized_languages.pdf
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Univalence

m 1940; Alonzo Church (A Formulation of the Simple Theory of Types);
Propositional Extensionality:

(P=Q)~(P=~Q),
where P, Q are propositions.

m 1998; Martin Hofmann and Thomas Streicher [2];
Uniqueness of Identity Proofs (UIP) is not inhabited,
where UIA(A) stands for

If a1, ay are objects of type A then for any proofs p and q of the
proposition “ay equals ay” there is another proof establishing the
equality of p and q.

Thomas Pipilikas
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is an equivalence.
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Univalence

m 2006 - 2009; Vladimir Voevodsky Univalence

Univalence (aka UA)
For any A, B : U, the function
idtoeqv: (A =y B) — (A ~ B)

is an equivalence.
In particular, therefore, we have

(A=yB)~(A~B)

Thomas Pipilikas




Function Extensionality

What other kinds of extensionality implied by UA?




Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f,g : A — B the function

happly: (f = g) — ]_[(f x) =g & (%))

is an equivalence.

Thomas Pip:




Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f,g : A — B the function

happly: (f = g) — ]_[(f x) =g & (%))

is an equivalence.
In particular happly has a quasi-inverse

funext: [ [ (f (x) = g (%)) — (f = 8.
x:A

Thomas Pip:




Function Extensionality

What other kinds of extensionality implied by UA?

Function Extensionality (aka FunExt)

For any A, B : U types and functions f,g : A — B the function

happly: (f = g) — ]_[(f x) =g & (%))

is an equivalence.
In particular happly has a quasi-inverse

funext: [ [ (f (x) = g (%)) — (f = 8.
x:A

Naive functional extensionality:
If functions take equal values, then they are equal.

Thomas Pipilikas




We want to show that

UA implies FunExt

Thomas Pipilikas

Univalence implies Function Extensionality
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Mere Propositions

A type P is a mere proposition if for all x,yy : P we have x =p v.
Specifically, for any P : U, the type IsProp(P) is defined to be

IsProp (P) := H (x=py).
x,y:P

Lemma (Lemma 3.3.3 / Arjupo 45 )

If P and Q are mere propositions such that P — Q and Q — P, then P ~ Q.

Thomas Pip:
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Definition

A type A is contractible, or a singleton, if there is 4 : A, called the
center of contraction, such thata = x for all x : A. We denote the
specified path a = x by contr,.

In other words, the type IsContr(A) is defined to be

IsContr(A) := Z 1_[ (a=x).

a:A x:A
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Contractability

Definition

A type A is contractible, or a singleton, if there is 2 : A, called the
center of contraction, such thata = x for all x : A. We denote the
specified path a = x by contry.

In other words, the type IsContr(A) is defined to be

IsContr(A) :=> . [[(a=1x).

a:A x:A

Lemma (Lemma 3.11.8.)

Forany A and any a : A, the type ) ;. (a = x) is contractible.

Lemma (Lemma 3.11.9.)
Let P : A — U be a type family.
If each P(x) is contractible, then 3. o) P (x) is equivalent to A.

If A is contractible with center a, then 3.4y P (x) is equivalent to
P(a).
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Now suppose pair (x,p) : X}(y.4) (@ = x); we must show

pair (a, refl;) =pair (x, p).

By the characterization of paths in X-types (Theorem 2.7.2. / Oepnua
32), we know that for any w, w’ : 2i(xa) (@ = x), there is an
equivalence

(=) ~ Z transport(*=") (4, pry (w)) =pry (')
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transport(®==) (g, refl,) = p.



proof of Lemma 3.11.8.

We choose as center of the contraction the point pair (a, refl;).

Now suppose pair (x,p) : X}(y.4) (@ = x); we must show

pair (a, refl;) =pair (x, p).

By the characterization of paths in X-types (Theorem 2.7.2. / Oepnua
32), we know that for any w, w’ : 2(x:A) (a = x), there is an
equivalence

(w=uw) ~ Z transport™=") (g, pr, (w)) =pr, (w').
(g:pr (w)=pry (w'))
Thus it suffices to exhibit g : 2 = x such that

transport(”:_) (g, refly) = p.
But we can take g := p in which case

transport(”zf) (g, refly) = p-refly L.2.11.2. / Aupo 24
=p L.2.11.4. / Afppa 15
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If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

A retraction is a function r : A — B such that there exists a function
s: B — A, called its section, and a homotopy

€: [y (r(s(y) =y)=ros ~idy;
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Definition




Retract

If A is equivalent to B and A is contractible, then so is B.
More generally, it suffices for B to be a retract of A.

Definition

A retraction is a function r : A — B such that there exists a function
s: B — A, called its section, and a homotopy

€: [y (r(s(y) =y)=ros ~idy;
then we say that B is a retract of A.

Lemma (Lemma 3.11.7.)
If B is a retract of A, and A is contractible, then so is B.

Thomas Pipilikas

s Function Extensionality
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Let aj : A be the center of contraction. Let also,

m 7 : A — B the retraction

m s: B — A the section

me:[[yp (W) =y
We claim that by :=r (ag) : B is a center of contraction for B.
Let b : B; weneed a pathp : by = b.
But we have € (b) : ros (b) = b and contry,: ag = s (b), so by
composition

r (contrs(b)) = ap, <contrs(b)> 21 (ag) =ros(b)

thus
r (contrs(b)) € (b) :by =b.

We conclude that B is contractible with center of contraction by.
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Contractible fibers

Definitions

The fiber (iva) of amap f : A — B over a point y : B is

fibs () = ) (F (x) = y)-
x:A

In homotopy theory, this is what would be called the homotopy fiber of

f.

Amapf: A — Bis contractible if for all y : B, the fiber fibs (y) is
contractible.
Thus the type IsContr (f) is defined to be

IsContr (f) := H IsContr (fibs (y)) .
y:B

Thomas Pipil
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A Useful Lemma

We are going to need the following lemma.

Lemma (Lemma 4.8.1.)

For any type family B : A — U, the fiber of pry: >} (x.4) B (x) — A over
a : Ais equivalent to B(a):

fibpr, (a) ~ B (a).
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fibpr, () == >, (pry () =a)
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proof of Lemma 4.8.1. We have

fibpr, (@) := > (pry (u) =a)
u: Z(XA) (x)
~ ) Z (x = a) Ex. 2.10
x:A b:B(x)
~ Z B (X) (*)
x:Apx=a
~ B (a) (%)

(%) f :=pair(a, pair (by, refl;)) — pair (a, pair (refly, by))
g :=pair(a, pair(refly, by)) — pair(a, pair (b, refl;))

() f :=pair(a, pair(refl,, b,)) — by
g := b, — pair(a, pair (refly, by))



A function g : A — B is said to be a retract of a function f : X — Y if there is a diagram

A

gi f
B*>
S

>

T A

ig

<<

—

for which there are
a homotopy R : 705 ~idy
ahomotopy R’ : r’ o5’ ~idp
ahomotopy L: fos ~s'og
a homotopy K: gor ~ 71 of

for every a : A, a path H(a) witnessing the commutativity of the square
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We have the following 3 approaches of the notion of equivalence.

Half Adjoint Equivalence (definition used in HoTT)

A function f : A — B is a half adjoint equivalence if thereare g : B — A
and homotopies 77 : gof ~idy and € : f o g ~idp such that there exists a
homotopy

[ (0) = e(f®))).
x:A
Thus we have a type ishae(f), defined to be

ishae(f) :== )’ D > TIeh@)=ef@)

(g:B—A) (1:gof ~ida) (€:fog~idp) x:A

Bi-invertible Map (the well known definition)

Contractible Functions (the one used by Voevodsky)
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We will mainly use the 1st definition of equivalence.

But are those definitions equivalences?

Theorem (Theorem 4.2.3.)
Forany f : A — B we have Qlnv (f) — IsHaE(f).

The other direction is trivial. (Why?)

Thomas Pipilikas

Univalence implies Function Extensionality
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We define
mgi=g
m =
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proof of the Theorem 4.2.3.

Let (g,77,€) :Qlnv (f).
We want to to provide a quadruple (¢, 7’,€’,T) : IsHaE(f).
We define
mg =g
my =
me=e(f(g(b) T f (g (b)-e(d)
Let us brake €’ into pieces!
me(f (1) :fog(b) =fog(f(g (1))
m f(1(g®)):fog(f(g(b)=Ffog(b)
me(b):fogb)=0b
Thus €’ : fog (b) = b as wanted.

We need to find T, s.t.

T(a):f (1 (a)) = € (a).
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proof of the theorem (Cont’d)
From Lemma 2.4.3. we can easilly observe that

n(gof(a)) =gof(i(a).

Therefore,

fn@of(@))-e(f(a)=fog(fn(a))-e(f(a)
=e(f(gof(a))-f(n(a))

1
Lemma 2.4.3.

1)



proof of the theorem (Cont’d)

From Lemma 2.4.3. we can easilly observe that

n(gof (@) =gof(i(a). 1)

Therefore,

Fp(gof @))-e(f @) =Fog(f (7 @))€ (f (@) 1
— c(f(gof (@)-f (7(a) Lemma243.

where we used Lemma 2.4.3. as
mf—fogandg«idy
mH<—e¢
mx—fog(f(a) andy « f (a)
mp—fr@):fog(f(a)=rf(a)
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Equivalence of Equivalences :)

Theorem (Theorem 4.2.13.)

Forany f : A — B, the type IsHaE (f) is a mere proposition.

Theorem (Corollary 4.3.3. & Theorem 4.4.5.)

All three types IsHaE, Bilnv and IsContr are equivalent:

IsHaE ~ Bilnv ~IsContr

Strategy of proof:
Bilnv (f) < IsHaE (f) and IsContr (f) < IsHaE (f) and
Bilnv (f), IsContr (f) are mere propositions (Lemma 3.3.3 / Afppa 45 )

Thomas Pipilikas

lies Function Exi
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Total Space

Definitions

m Given two type families P, Q : A — U, we refer to a function
f: ]_[(x:A) (P (x) — Q(x)) as a fiberwise map or a fiberwise
transformation.

m Such a map induces a function on total spaces

total (f) := Aw. pair(pry (w),f (pair(pry (w), pry ( ZP(x) ZQ(x).
x:A

m We say that a fiberwise map f : [ [(,.4) (P (x) = Q(x)) isa

fiberwise equivalence if each f(x) : (x) — Q(x) is an
equivalence.

Thomas Pipilikas




Total Space

Theorem (Theorem 4.7.6.)

Suppose that f is a fiberwise transformation between families P and Q over a
type A and let x : A and v : Q(x). Then we have an equivalence

fibrotal(s) (Pair (x,0)) = fibsy) (0).

Thomas Pipilikas




Total Space

Theorem (Theorem 4.7.6.)

Suppose that f is a fiberwise transformation between families P and Q over a
type A and let x : A and v : Q(x). Then we have an equivalence

fibotal(f) (pair(x,v)) =~ fibs(y) (v).

Theorem (Theorem 4.7.7.)

Suppose that f is a fiberwise transformation between families P and Q over a
type A. Then f is a fiberwise equivalence if and only if total (f) is an
equivalence.

Thomas Pipilikas

lies Function Exi
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w:3 (x.a) P(¥)
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We calculate:

fibeorairy (Pair(x,0)) := ). pair(pry (w),f (pair(pry (w),pry (w)))) =  pair (x,0)
ZUIZ(X:A) P(x)
~ Z Z pair (a,f (pair(a,u))) =pair(x,v) Ex.2.10.
a:A u:P(a)
~ Z Z Z transport“=") (p,f (pair(a,u))) = v 0. 32.
a:A u:P(a) p:a=x
~ Z Z Z transport=") (p, f (pair (a,u1))) = v
a:Ap:a=xu:P(a)
~ Z f (pair(x,u)) =v (%)
u:P(x)

Efibf(x) (Z))
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We will brake the proof into shorter proofs...
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Definition (WFE)

The weak function extensionality principle asserts that there is a

function
H IsContr (P (x)) —IsContr (HP (x))
x:A x:A

for any family P : A — U of types over any type A.

Lemma (Lemma 4.9.2.)

Assuming U is univalent, for any A,B, X : U and any e : A ~ B, there is an
equivalence
(X —A)~(X—B)

of which the underlying map is given by post-composition with the
underlying function of e.

Thomas Pipilikas

lies Function Exi
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Lete: A ~ B. By induction we may assume thate := (f,, a), where
fe: A — Band a :IsEquiv (fe).

Let us assume the map given by post-composition with the
underlying function of e

)\(g:X—>A).gofe:(X—>A)—>(X—>B).

Ase: A ~ B, by UA we have that
idtoeqv: (A = B) — (A ~ B)

is an equuivalence and thus we may assume that e is of the form
idtoeqv (p), for some p : A = B; i.e.

e =idtoeqv (p) .



proof of the Lemma 4.9.2. (Cont’d)

By path induction, assuming p :=refl4, we have
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By path induction, assuming p :=refl4, we have

X—X (

e =idtoeqv (refl4) = e =transport refly, —) = e =idy .

Thus we have

AMg:X—A)gofe=Ag:X—>A)goida= A(g: X — A) gofe =idx_.a)-(x-a)

which id(x_, 4)_(x—4) is an equivalence of (X — A) ~ (X — A).
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Corollary (Corollary 4.9.3.)

Let P : A — U be a family of contractible types, i.e. ] ],y IsContr (P (x)).
Then the projection pry: (Z(x: a) P (x)) — A is an equivalence.

Assuming U is univalent, it follows immediately that post-composition with
pry gives an equivalence

@ (A—>ZP(x)> ~ (A~ A).
x:A

Thomas Pipilikas

Univalence implies Function Exi
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By Lemma 4.8.1, for prq: (Z(x:A) p (x)) — Aand x : A we have an

equivalence
fibpr, (x) ~ P (x).
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proof of the Corollary 4.9.3.
By Lemma 4.8.1, for prq: (Z(x:A) p (x)) — Aand x : A we have an

equivalence
fibpr, (x) ~ P (x).

As for any x : A we have that P (x) is contractible, we get that pry is

contractible, or equivalently pr; is an equivalence of

(ZP&J:A
(x:A)

By Lemma 4.9.2. for X := A we have

(AeZP@):Mzm
x:A

as wanted.



UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe U, suppose that P : A — U is a family of
contractible types and let

o (A—>ZP(x)> ~(A~A).
x:A

Then | [(x.a) P (x) is a retract of fiby (ida).
As a consequence, | [ .4y P (x) is contractible.

Thomas Pipilikas

lies Function Exi



UA implies WFE

Theorem (Theorem 4.9.4.)

In a univalent universe U, suppose that P : A — U is a family of
contractible types and let

o (A—>ZP(x)> ~(A~A).
x:A

Then | [(x.a) P (x) is a retract of fiby (ida).
As a consequence, | [ .4y P (x) is contractible.

In other words, the univalence axiom implies the weak function
extensionality principle.

Thomas Pipilikas

lies Function Exi



proof of the Theorem 4.9.4.

We define the following functions:



proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg, )



proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg, )
Observe that it ¢ well defined:



proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg, )
Observe that it ¢ well defined:

mA(x:A). pair(x,f(x)):A— >, 4P ()



proof of the Theorem 4.9.4.

We define the following functions:
Section

¢: || P(x) —fiba(ida)

(x:A)

@ (f) :=pair(A (x: A). pair(x,f (x)), reflg, )
Observe that it ¢ well defined:

mA(x:A). pair(x,f(x)):A— >, 4P ()

m fiby (ida) = X zasy, Py # (2) =ida
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Retraction

 ofiby (ida) — [ [P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

Observe that ¢ is well defined:
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proof of the Theorem 4.9.4. (Cont’d)

Retraction

 ofiby (ida) — [ [P (x)
x:A

¥ (pair(g,p)) := A (x: A). happly (p, x), (pr2(g (¥)))

Observe that ¢ is well defined:
mg:A— 3Pk
mp:a(g) =ida
m happly (p, =) : [ [(z.a) 2 () (x) =
m happly(p,x), : P(a(g) (x)) — P (x)
m Ax. happly(p,x), (pra(g (x))) : H(X:A) P (x)
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Letf : H(X:A) P(x)'
We have that
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Letf : H(X:A) P(x)'
We have that

¥ (pair (A (x: A). pair(x,f (x)), reflig, )
= A(x: A). happly (reflg,, x), (f (x))

A

f
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Letf : H(X:A) P(x)'
We have that

Yo (f) =y (pair(A(x:A). pair(x,f(x)),reflg,))
A(x: A). happly (reflig,, x), (f (%))
A

(x:A)f (%)
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We have that
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proof of the Theorem 4.9.4. (Cont’d)

Letf : H(X:A) P(x)'

We have that
Yo (f) =1y (pair(A(x: A). pair(x,f (x)),reflig, )
= A(x: A). happly (reflg,, x), (f (x))
A (x: A) £ (1)
=/

Thus ] [(x.a) P (x) is a retract of fiby (id4).
But from Corollary 4.9.3. fib, (id4) is contractible.

Therefore by Lemma 3.11.7. we conclude that fib, (id4) is contractible.
O
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Theorem (Theorem 4.9.5.)

Weak function extensionality implies the function extensionality Axiom.
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Univalence implies Function Extensionality

«0» «F» 4«

it
v
a
it

DA
ALMA.



WEFE implies FunExt

Theorem (Theorem 4.9.5.)

Weak function extensionality implies the function extensionality Axiom.

Thomas Pipilikas

Univalence implies Function Extensionality

«0» «F» 4«

it
v
a
it

DA
ALMA.



proof of Theorem 4.9.5.

We want to show that the type

H H H IsEquiv(happly (f,g))
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proof of Theorem 4.9.5.

We want to show that the type

H H H IsEquiv(happly (f,g))

AU PA-U 8] T .y P(%)
is inhabited.
It suffices to show that
A (g : HP(X)> happly(F,8): [ (F=8) — (F~8)
A 8 T(xay P(¥)

is a fiberwise equivalence.



proof of Theorem 4.9.5. (Cont’d)

Since a fiberwise map induces an equivalence on total spaces iff it is
fiberwise an equivalence by Theorem 4.7.7 , where we assume

A []ayP ()

mP(x)—f=g¢

mQ(x)—f~g
wf—Ag:]leaP(x)). happly(f,g)

it suffices to show that the function

tota'(A<g:HP(X)>-happly(f,g)>: X =9~ > (f~9)
x:A

&l T(xay P() &l [ ay P(x)

is an equivalence.
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By Lemma 3.11.8. we know that Z(

It suffices to show that the type); (8'1_[ Px
‘1 I(x:A)

)) (f ~ g)isalso

contractible.
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proof of Theorem 4.9.5. (Cont’d)

By Lemma 3.11.8. we know that Z( (f = g) is contractible.

& (xa) P(x))

It suffices to show that the type2<

8 (xa) P(x)) (f ~g)isalso

contractible.

?!

“A technical argument by a trusted author, which is hard to check
and looks similar to arguments known to be correct, is hardly ever
checked in detail”

Vladimir Voevodsky [3]
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equivalence.
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Our Lemma

Suppose function f : A — B. If the types A, B are contractible, then f is an
equivalence.

proof of Lemma

Leta : A and b : B the corresponding centers of contraction; i.e.

m « :IsContr (A) and a :=prq (a)
m S :IsContr (B) and b :=prq (B)
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proof of Lemma (Cont’d)

As B is contractible there are
mp:b=f(a)
m gy :=prp(B)(y): b=y, foranyy:B.

Let us fix y : B. We define

py=p lay i fa) =y

Thus (a, py) :fibs (y). We want to show that (g, py) is center of
retraction of fibs (y).

Let w :fibs (y). By induction for X-types we may assume that

w:= (a,p).
We want to show that (a,p,) = (2,p’).
By Theorem 2.7.2. it suffices to show that

Z transportf PAY) (k,py) =7

k:a=a’
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proof of Lemma (Cont’d)
We have pr; (a) (') :a =d'.

By path induction we may assume a’ := g, thus it suffices to show
that )
transport/iPr(¥) (refla,py) =p' =py =7

By path induction we may assume also thaty := f (a).



proof of Lemma (Cont’d)
We have pr; (a) (') :a =d'.

By path induction we may assume a’ := g, thus it suffices to show
that )
transport/iPr(¥) (refla,py) =p' =py =7

By path induction we may assume also that y := f (a). Thus it
suffices to show that

Pra) = P =reflyq) =reflyg)
which is inhabited by reflreﬂf @
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Z (f ~ g) is a retract of n Z (f (x) = u)
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(Without using FunExt).
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Now by Theorem 2.15.7 / Oedpnua 58 (aka AC) we get that

Z (f ~ g) is aretract of n Z (f (x) =
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(Without using FunExt).
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proof of Theorem 4.9.5. (Cont’d)

Now by Theorem 2.15.7 / Oedpnua 58 (aka AC) we get that

Z (f ~ g) is aretract of n Z (f (x) =

(sT1m 09 (58) o)
(Without using FunExt).
By Lemma 3.11.8. we can observe that [ [ ,.4) 2up(x)) (f (x) = u) isa

product of contractible types.
Thus by WFE we get that [ [(;.4) 2u:p(x)) (f (x) = w).

Therefore, by Lemma 3.11.7. we have that }; ( T P ) (f~g)is

also contractible, as wanted.
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This proof was discovered by the one and only Vladimir Voevodsky!

He proved it using Coq!

Proot.
3 (fun p = snd (projT1 p),
intros
ccxists (existT _ (existT (fun (y : A x A) > fst 2y  snd ) (5.2) (idpath 2)) ).
ineros ([[u v] p]

simpl in x b x
induction g as o]
induction p as (1
apply idpath.

Defines

Suppose maps £ g : A

Because cta d e

2 B) (Yo fzga)—= (- g)

funz i A= cxistT (funzy = fst 2y ~ snd 2y) (f = [ 3) (idpath (f ))
tunz: A= existT (tun 2y = fst 2y ~ snd 2y) (] 5 9 2) (p 7).

ntial (src B) A).

ntial (try B) A)

taweq A B)

path-via (proj1 trg_c
path_via (proj 1 trg_comp
apply map.

apply weq.injective with (w = sre. compose).

apply idpath.
Defined.

And that is all, thank you

A Coq proof that Univalence Axioms implies Functional Extensionality
Andrej Bauer, Peter LeFanu Lumsdaine



https://ncatlab.org/nlab/files/BauerLumsdaineUnivalence.pdf
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