EOviko kat Kamodiotplako MNMavemotnuio ABnvwv
Tunuoa MAnpo@oplkng & TnAETIKOWVWVLIWV

[Mponyueveg MeBodol
[TpOYPOMMUATLOUOU

MMZ (M135.CS1E, M135.CS23B, M135.1C1E, moAawo: M117)

Functional Programming

Ap. Kwotag Zaidng (saiko@di.uoa.gr)


mailto:saiko@di.uoa.gr

Functional programming

The function is the dominant form of abstraction.



Key concepts

e Higher-order functions
e Lambdas (anonymous functions)

e Pure functions (referential transparency): functions
invoked with the same arguments return the same results
(no side-effects)

e Closures
e |mmutability (no state mutations)
e (Tail-)Recursion (instead of iteration)

e Function composition, partial functions & currying



Function

A language construct that

* names a block of code, which
o accepts some arguments

o returns a value

Function declaration

function sum(a, b) {
return a + b;

¥

All examples are in Javascript.



Higher-order function

Some languages treat a function as an ordinary value:

e it can be assigned to a variable,
e it can be passed as argument to another function,

* it can be returned by another function.

E.g. a callback, a promise then / catch / finally handler, etc.



Lambda function

An anonymous function, usually treated as a value (assigned
to variables, passed to other functions, etc)

Function expression (lambda)

const sum = function(a, b) {
return a + b;

s

Arrow function (lambda)

const sum = (a, b) => a + b;

lIFE

‘ ((aJ b) => a + b)(3) 4);




Pure function

e A function that, given an input, will always return the
same output.

e |t does not depend on any context / environment / state.

e |t has no side-effects (this is the actual equivalent to a
mathematical function).

X => X + X
(a, b) =>a + b

A pure function is deterministic. It can be easily parallelized. It
can be formally proved to be correct.



Non-pure functions

function(url, callback) => {
ajax.get(url).then(callback);

}

let x = 2;

function add(y) {
return y + X;

}




Closure

A function along with its outer lexical environment (the scope
in which it was defined).

e Free variables are allowed in the function body.

e They are bound to their outer lexical environment.

e The closure holds a "live" reference to its

scope/environment.



Example

let name = "John";

function sayHi() {
alert("Hi, " + name);

¥

nhame = "Pete";

sayHi();

From https://javascript.info (have a look, it's pretty neat).

10


https://javascript.info/

Another example

function makeCounter() {
let cnt = ©;

return function() {
return cnt++;

}
}
const inc = makeCounter();
inc(); //1

inc(); //2

11



The emphasis on functions leads to
the following shift (compared to
Imperative programming):

e argument passing (instead of variable assigning)

e (tail-)recursion (instead of iteration)

e immutability

* no looping

Examples

12


https://cs.lmu.edu/~ray/notes/functionalprogramming/

List operations (filter, map, fmap,
reduce, etc)

Javascript Arrays
Groovy Collections

13


https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html

Swiss army knife (reduce)

You can implement any list transformation with reduce.

list.reduce(accumulator function, initial value of accumulator)
accumulator function = (current value of accumulator, current element) => new value of accumulator

14



Currying

Transform the evaluation of a function that takes multiple
arguments into evaluating a sequence of functions, each with
a single argument.

const add = (x,y) => X + y;
const add2 = x =>y => X + Vy;

function add2(x) {
return function(y) { // closure here
return x + y;

}
¥

Invoke as add2(3)(4)

15



Partial functions

Currying allows us to pass the arguments at different points in
time (something like a function builder).

// a helper function
const authorize = (user, action) => action | null;

// an authentication filter
const user = new User(username);

const actionAuthorizer = authorize.curry(user);
// a partially applied function, returns a function with a single arg (the action)

// an authorization filter
const action = new Action("deleteEverything")
actionAuthorizer.apply(action);

Function currying in JS

16


https://javascript.info/currying-partials

Functors

A type that can be mapped over (has some sort of a map
function, a "Mappable")
according to the following laws:

1. Identity

‘ functor.map(x => x) === functor

2. Composition is chaining

‘ functor.map(x => f(g(x))) === functor.map(g).map(f)

17



What?

Functors abstract the container away and allow chaining.
Javascript arrays are functors.

Promises are functors.

Java streams are functors.

We can define a functor out of (almost) any value.

18



Example

class SingleValueFunctor {
constructor (value) {
this.value = value
}

map (f) {
return new SingleValueFunctor(f(this.value))
}

}

19



And much more

e Applicatives
e Monoids

e Monads
Not covered by this course.

A nice place to start reading more

20


http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

