
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών
Τμήμα Πληροφορικής & Τηλεπικοινωνιών

Προηγμένες Μέθοδοι
Προγραμματισμού

ΠΜΣ (M135.CS1E, M135.CS23B, M135.IC1E, παλαιό: M117)

Functional Programming

Δρ. Κώστας Σαΐδης (saiko@di.uoa.gr)

mailto:saiko@di.uoa.gr

Functional programming
The function is the dominant form of abstraction.

2

Key concepts
Higher-order functions

Lambdas (anonymous functions)

Pure functions (referential transparency): functions
invoked with the same arguments return the same results
(no side-effects)

Closures
Immutability (no state mutations)

(Tail-)Recursion (instead of iteration)

Function composition, partial functions & currying

3

Function
A language construct that

names a block of code, which
accepts some arguments

returns a value

Function declaration

function sum(a, b) {
 return a + b;
}

All examples are in Javascript.

4

Higher-order function
Some languages treat a function as an ordinary value:

it can be assigned to a variable,

it can be passed as argument to another function,

it can be returned by another function.

E.g. a callback, a promise then / catch / finally handler, etc.

5

Lambda function
An anonymous function, usually treated as a value (assigned
to variables, passed to other functions, etc)

Function expression (lambda)

const sum = function(a, b) {
 return a + b;
};

Arrow function (lambda)

const sum = (a, b) => a + b;

IIFE

((a, b) => a + b)(3, 4); 6

Pure function
A function that, given an input, will always return the
same output.

It does not depend on any context / environment / state.

It has no side-effects (this is the actual equivalent to a
mathematical function).

x => x + x
(a, b) => a + b

A pure function is deterministic. It can be easily parallelized. It
can be formally proved to be correct.

7

Non-pure functions
function(url, callback) => {
 ajax.get(url).then(callback);
}

let x = 2;

function add(y) {
 return y + x;
}

8

Closure
A function along with its outer lexical environment (the scope
in which it was defined).

Free variables are allowed in the function body.

They are bound to their outer lexical environment.

The closure holds a "live" reference to its
scope/environment.

9

Example
let name = "John";

function sayHi() {
 alert("Hi, " + name);
}

name = "Pete";

sayHi();

From https://javascript.info (have a look, it's pretty neat).

10

https://javascript.info/

Another example
function makeCounter() {
 let cnt = 0;

 return function() {

return cnt++;
 }
}

const inc = makeCounter();
inc(); //1
inc(); //2

11

The emphasis on functions leads to
the following shift (compared to
imperative programming):

argument passing (instead of variable assigning)

(tail-)recursion (instead of iteration)

immutability

no looping

Examples

12

https://cs.lmu.edu/~ray/notes/functionalprogramming/

List operations (filter, map, fmap,
reduce, etc)
Javascript Arrays
Groovy Collections

13

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://docs.groovy-lang.org/latest/html/groovy-jdk/java/util/Collection.html

Swiss army knife (reduce)
You can implement any list transformation with reduce.

list.reduce(accumulator function, initial value of accumulator)
accumulator function = (current value of accumulator, current element) => new value of accumulator

14

Currying
Transform the evaluation of a function that takes multiple
arguments into evaluating a sequence of functions, each with
a single argument.

const add = (x,y) => x + y;
const add2 = x => y => x + y;

function add2(x) {
 return function(y) { // closure here
 return x + y;
 }
}

Invoke as add2(3)(4)

15

Partial functions
Currying allows us to pass the arguments at different points in
time (something like a function builder).

// a helper function
const authorize = (user, action) => action | null;

// an authentication filter
const user = new User(username);
const actionAuthorizer = authorize.curry(user);
// a partially applied function, returns a function with a single arg (the action)

// an authorization filter
const action = new Action("deleteEverything")
actionAuthorizer.apply(action);

Function currying in JS

16

https://javascript.info/currying-partials

Functors
A type that can be mapped over (has some sort of a map
function, a "Mappable")
according to the following laws:

1. Identity

functor.map(x => x) === functor

2. Composition is chaining

functor.map(x => f(g(x))) === functor.map(g).map(f)

17

What?
Functors abstract the container away and allow chaining.

Javascript arrays are functors.

Promises are functors.

Java streams are functors.

We can define a functor out of (almost) any value.

18

Example
class SingleValueFunctor {
 constructor (value) {
 this.value = value
 }
 map (f) {
 return new SingleValueFunctor(f(this.value))
 }
}

19

And much more
Applicatives

Monoids
Monads

Not covered by this course.

A nice place to start reading more

20

http://adit.io/posts/2013-04-17-functors,_applicatives,_and_monads_in_pictures.html

