Computational Geometry Convexity and convex hull algorithms

Vissarion Fisikopoulos

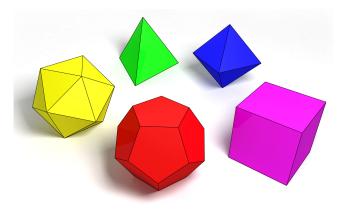
Department of Informatics & Telecommunications National & Kapodistrian University of Athens

Spring 2025

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why Convex Sets?

- The simplest generalization of linear sets, covering important problems and applications
- Optimization in convex sets (linear programming)
- Representation of complex objects



Computational Model

Real RAM (Random Access Machine):

- Exact representation, storage of real numbers in O(1) space
- Unit-time memory access
- \blacktriangleright Unit-time, absolute precision for basic operations in $\mathbb R$

Implementations:

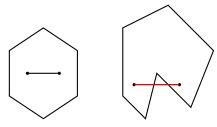
- A satisfactory implementation of the model is the CGAL library.
- Numerical errors in computational geometry can lead to incorrect results or cause program crashes.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition of Convex Hull

Definition (Convexity)

A set S is **convex** if and only if $a, b \in S \Rightarrow$ the line segment $(a, b) \subset S$.



Exercise

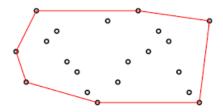
Equivalently, S is convex if and only if there exists a point $p \in S$ from which all points of S are visible, meaning they can be connected by a line segment lying entirely within S.

Convex Hull (CH) in Two Dimensions

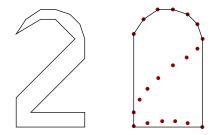
Definition (CH2)

- *n* points A_1, A_2, \ldots, A_n in \mathbb{R}^2 .
- The convex hull (CH) of a set of points is the smallest (area, perimeter, num of points) convex set (polygon) that contains all A_i.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



Convex Hull in 2 Dimensions



A non-convex polygon and the construction of the CH of points in the plane.

Combinations of Points

Remark

We often identify a point A with the vector (0, A), which is not (free), meaning it does not move in space.

Definition (Combinations of Points/Vectors A_i)

- Linear combination: $\lambda_1 A_1 + \cdots + \lambda_n A_n, \ \lambda_i \in \mathbb{R}.$
- Positive (conical) combination: $\lambda_1 A_1 + \cdots + \lambda_n A_n$, $\lambda_i \ge 0$.
- Affine combination: $\lambda_1 A_1 + \cdots + \lambda_n A_n$, $\sum_i \lambda_i = 1$.
- Convex combination: $\lambda_1 A_1 + \cdots + \lambda_n A_n$, $\sum_i \lambda_i = 1$, $\lambda_i \ge 0$.

Affine Combination

Remark

Given an affine combination of A_1, \ldots, A_n , the point

$$P = \lambda_1 A_1 + \dots + \lambda_n A_n, \quad \sum_i \lambda_i = 1.$$

Equivalently:

$$P = A_n + \lambda_1(A_1 - A_n) + \cdots + \lambda_{n-1}(A_{n-1} - A_n),$$

for any $\lambda_1, \ldots, \lambda_{n-1} \in \mathbb{R}$. If we set A_n as the origin $A_n = 0$, then P is a linear combination of A_1, \ldots, A_{n-1} .

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Combinations of Points: Example

Example (Combinations)

Let $A_1, A_2 \in \mathbb{R}^2$ be linearly independent:

- Linear: $\{\lambda_1 A_1 + \lambda_2 A_2 : \lambda_i \in \mathbb{R}\} = \mathbb{R}^2$.
- ► Positive: $\{\lambda_1 A_1 + \lambda_2 A_2, \lambda_i \ge 0\} = \text{cone of } A_1, A_2, \text{ with vertex at } (0, 0).$
- ► Affine combination: {λ₁A₁ + λ₂A₂ : λ₁ + λ₂ = 1} = line passing through A₁, A₂.
- Convex combination: $\{\lambda_1 A_1 + \lambda_2 A_2 : \lambda_1 + \lambda_2 = 1, \lambda_i \ge 0\} =$ line segment (A_1, A_2) .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties of the CH

Corollary

- The vertices P_1, \ldots, P_k of the CH belong to the input set A_1, \ldots, A_n .
- The points of the CH are convex combinations of the vertices: λ₁P₁ + · · · + λ_kP_k, ∑_i λ_i = 1, λ_i ≥ 0, and therefore also of the A_i.
- Every convex combination of the P_i, or the A_i, belongs to the CH.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proposition (Carathéodory)

Every point of the CH is a convex combination of at most 3 vertices: $\lambda_1 P_1 + \lambda_2 P_2 + \lambda_3 P_3$, $\sum_i \lambda_i = 1$, $\lambda_i \ge 0$.

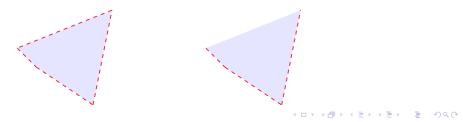
Intersection of halfspaces

An equivalent representation of a convex polygon P with k edges is the intersection of k half-planes:

$$P = \bigcap_{i=1}^{k} H_i$$

where H_i is the half-plane defined by the line of the *i*-th edge and contains the remaining edges.

Conversely, any intersection of a finite number of half-planes is a bounded convex polygon or an unbounded convex polygonal region.



Orientation Predicate - CCW

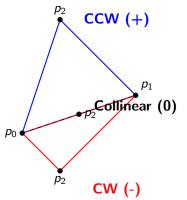
- Predicate: A test for a geometric property. The output takes discrete values (e.g., 2 or 3 values).
- The orientation predicate determines if three points p₀, p₁, p₂ ∈ ℝ² define a positive or negative turn (Right-Hand Rule).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Orientation Predicate - CCW

Vectors $v_i = (p_0, p_i)$, their rotation is:

- Negative if and only if v₁ × v₂ has 3rd coordinate < 0 (ClockWise, CW).
- Positive if and only if v₁ × v₂ has 3rd coordinate > 0 (CounterClockWise, CCW).
- Undefined if and only if v₁ × v₂ has 3rd coordinate = 0 (3 collinear p_i meaning v_i are parallel).



Computation of CCW

Lemma

The **CCW** of points $p_i = (x_i, y_i)$ reduces to the sign of the determinant:

$$\det \left[\begin{array}{ccc} x_1 - x_0 & y_1 - y_0 \\ x_2 - x_0 & y_2 - y_0 \end{array} \right]$$

Lemma

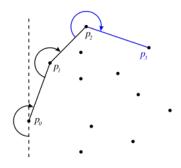
- The CCW computes on which side (half-plane) of the line through p₀, p₁ the point p₂ lies.
- The CCW computes the direction of the turn defined by the points p₀, p₁, p₂ in this order. The sign is positive if the turn is counterclockwise, and zero if the three points are collinear.

Gift Wrapping

Jarvis Algorithm

- Start with the leftmost point p_0 .
- Iterate over all points to find the one that minimizes the angle with the current edge
- At point p_k, select a candidate point u, then for each point x if CCW(p_k, u, x) > 0 update u with x

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

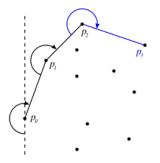


Wrapping Algorithm Complexity

▶ Initialization: O(n).

▶ Iterates h (#-CH-vertices) times, each step takes O(n).

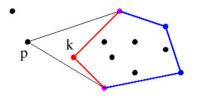
▶ Total time: *O*(*nh*).



Incremental Algorithm

The convex hull is updated with each new point.

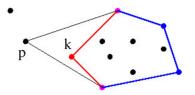
- Sorting points lexicographically.
- Setup:
 - Current point p; previous point k
 - red/blue edges: visible/non-visible edges of current hull
 - purple vertices: intersections of red/blue edges



Beneath-Beyond Algorithm

- lnput: *n* points in \mathbb{R}^2 , in general position.
- Output: Edge and vertex chain of the convex hull.
 - 1. Sort points lexicographically.
 - 2. Initialize convex polygon with three points.
 - 3. For each new point p, update the convex hull structure.
 - Examine the edges incident to k: is there a red one?
 - Coloring: Starting from a red edge, find all red edges and two blue edges, i.e., two purple vertices.
 - Replace the red edges with two new ones: each defined by p and a maroon vertex.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・



Complexity of Incremental Algorithm

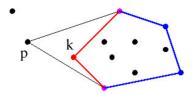
lnitialization: $O(n \log n)$.

- Finding red edge: O(1); total O(n).
- Coloring all red edges < # all created edges < 2n.

(日) (四) (日) (日) (日)

• Updating convex hull: O(1); total O(n).

Total time: $O(n \log n)$.



Beneath-and-Beyond predicates

Ordering of the x-coordinates, i.e., deciding whether $x_i < x_j \in \mathbb{R}$, is determined by the sign of the determinant:

$$\det \begin{bmatrix} x_i & 1 \\ x_j & 1 \end{bmatrix}$$

Edge coloring (A, B) with respect to a new point P: - The edge is red/blue if and only if the line through it places P and the existing convex polygon in different/same half-planes. - Equivalently, if and only if the two (nonzero) signs

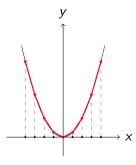
sign det
$$\begin{bmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ P_x & P_y & 1 \end{bmatrix}$$
, sign det $\begin{bmatrix} A_x & A_y & 1 \\ B_x & B_y & 1 \\ Q_x & Q_y & 1 \end{bmatrix}$

differ/are equal, where Q is any point in the existing convex polygon.

Lower Bound on Convex Hull Complexity

Key Observations:

- Convex hull computation has the same lower bound as sorting.
- Reduction: Given numbers x₁,..., x_n, construct points (x_i, x_i²).
- These points lie on a convex parabola; their convex hull gives a sorted order.
- Sorting has a lower bound of $\Omega(n \log n)$



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Convex Hull Algorithms

- ▶ 1970: Gift wrapping (Jarvis march) O(nh)
- > 1972: Graham scan $O(n \log n)$
- ▶ 1977: **Quickhull** Expected $O(n \log n)$, worst-case $O(n^2)$
- ▶ 1977: Divide and conquer (Merge hull) $O(n \log n)$
- ▶ 1979: Monotone chain (Andrew's algorithm) O(n log n)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- 1984: Incremental convex hull algorithm O(n log n)
- 1986: Kirkpatrick–Seidel algorithm O(n log h)
- ▶ 1996: Chan's algorithm $O(n \log h)$

Convex Hull Algorithms

Summary:

- Algorithms range from O(nh) to optimal O(n log h) complexity.
- Divide and conquer, Graham scan, and monotone chain are widely used O(n log n) methods.
- Chan's algorithm and Kirkpatrick–Seidel algorithm achieve optimal output-sensitive performance.

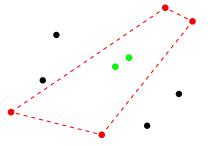
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Akl-Toussaint Heuristic

Reducing the Number of Points for Convex Hull Computation

- Selecting an initial set of extreme points (e.g., the four points with min/max x and y coordinates).
- Discarding any point that lies inside the quadrilateral formed by these extreme points.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで



References

Books:

- F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer, 1985.
- M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and Applications, Springer, 2008.
- J. O'Rourke, Computational Geometry in C, Cambridge University Press, 1998.

Papers:

- S. G. Akl and G. T. Toussaint, "A fast convex hull algorithm," Information Processing Letters, 1978.
- R. L. Graham, "An efficient algorithm for determining the convex hull of a finite planar set," IPL, 1972.
- T. M. Chan, "Optimal output-sensitive convex hull algorithms in two and three dimensions," Discrete & Computational Geometry, 1996.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Online Resources:

- https://en.wikipedia.org/wiki/Convex_hull
- https://www.cgal.org/ (CGAL Library)
- https://www.boost.org/doc/libs/release/libs/geometry/doc/html/geometry/reference/ algorithms/convex_hull.html (Boost.Geometry)
- A History of Linear-time Convex Hull Algorithms for Simple Polygons