
Computational Geometry
Convexity and convex hull algorithms

Vissarion Fisikopoulos

Department of Informatics & Telecommunications
National & Kapodistrian University of Athens

Spring 2025



Why Convex Sets?

▶ The simplest generalization of linear sets, covering important
problems and applications

▶ Optimization in convex sets (linear programming)

▶ Representation of complex objects



Computational Model

Real RAM (Random Access Machine):

▶ Exact representation, storage of real numbers in O(1) space

▶ Unit-time memory access

▶ Unit-time, absolute precision for basic operations in R

Implementations:

▶ A satisfactory implementation of the model is the CGAL
library.

▶ Numerical errors in computational geometry can lead to
incorrect results or cause program crashes.



Definition of Convex Hull

Definition (Convexity)

A set S is convex if and only if a, b ∈ S ⇒ the line segment
(a, b) ⊂ S .

Exercise
Equivalently, S is convex if and only if there exists a point p ∈ S
from which all points of S are visible, meaning they can be
connected by a line segment lying entirely within S .



Convex Hull (CH) in Two Dimensions

Definition (CH2)

▶ n points A1,A2, . . . ,An in R2.

▶ The convex hull (CH) of a set of points is the smallest (area,
perimeter, num of points) convex set (polygon) that contains
all Ai .



Convex Hull in 2 Dimensions

A non-convex polygon and the construction of the CH of points in
the plane.



Combinations of Points

Remark
We often identify a point A with the vector (0,A), which is not
(free), meaning it does not move in space.

Definition (Combinations of Points/Vectors Ai)

▶ Linear combination: λ1A1 + · · ·+ λnAn, λi ∈ R.
▶ Positive (conical) combination: λ1A1 + · · ·+ λnAn, λi ≥ 0.

▶ Affine combination: λ1A1 + · · ·+ λnAn,
∑

i λi = 1.

▶ Convex combination: λ1A1 + · · ·+ λnAn,
∑

i λi = 1, λi ≥ 0.



Affine Combination

Remark
Given an affine combination of A1, . . . ,An, the point

P = λ1A1 + · · ·+ λnAn,
∑
i

λi = 1.

Equivalently:

P = An + λ1(A1 − An) + · · ·+ λn−1(An−1 − An),

for any λ1, . . . , λn−1 ∈ R. If we set An as the origin An = 0, then
P is a linear combination of A1, . . . ,An−1.



Combinations of Points: Example

Example (Combinations)

Let A1,A2 ∈ R2 be linearly independent:

▶ Linear: {λ1A1 + λ2A2 : λi ∈ R} = R2.

▶ Positive: {λ1A1 + λ2A2, λi ≥ 0} = cone of A1,A2, with
vertex at (0, 0).

▶ Affine combination: {λ1A1 + λ2A2 : λ1 + λ2 = 1} = line
passing through A1,A2.

▶ Convex combination: {λ1A1 + λ2A2 : λ1 + λ2 = 1, λi ≥ 0} =
line segment (A1,A2).



Properties of the CH

Corollary

▶ The vertices P1, . . . ,Pk of the CH belong to the input set
A1, . . . ,An.

▶ The points of the CH are convex combinations of the vertices:
λ1P1 + · · ·+ λkPk ,

∑
i λi = 1, λi ≥ 0, and therefore also of

the Ai .

▶ Every convex combination of the Pi , or the Ai , belongs to the
CH.

Proposition (Carathéodory)

Every point of the CH is a convex combination of at most 3
vertices: λ1P1 + λ2P2 + λ3P3,

∑
i λi = 1, λi ≥ 0.



Intersection of halfspaces

An equivalent representation of a convex polygon P with k edges
is the intersection of k half-planes:

P =
k⋂

i=1

Hi

where Hi is the half-plane defined by the line of the i-th edge and
contains the remaining edges.
Conversely, any intersection of a finite number of half-planes is a
bounded convex polygon or an unbounded convex polygonal
region.



Orientation Predicate - CCW

▶ Predicate: A test for a geometric property. The output takes
discrete values (e.g., 2 or 3 values).

▶ The orientation predicate determines if three points
p0, p1, p2 ∈ R2 define a positive or negative turn (Right-Hand
Rule).



Orientation Predicate - CCW
Vectors vi = (p0, pi ), their rotation is:
▶ Negative if and only if v1 × v2 has 3rd coordinate < 0

(ClockWise, CW).
▶ Positive if and only if v1 × v2 has 3rd coordinate > 0

(CounterClockWise, CCW).
▶ Undefined if and only if v1 × v2 has 3rd coordinate = 0 (3

collinear pi meaning vi are parallel).

p0

p1

p2
CCW (+)

p2
CW (-)

p2
Collinear (0)



Computation of CCW

Lemma
The CCW of points pi = (xi , yi ) reduces to the sign of the
determinant:

det

[
x1 − x0 y1 − y0
x2 − x0 y2 − y0

]

Lemma
▶ The CCW computes on which side (half-plane) of the line

through p0, p1 the point p2 lies.

▶ The CCW computes the direction of the turn defined by the
points p0, p1, p2 in this order. The sign is positive if the turn
is counterclockwise, and zero if the three points are collinear.



Gift Wrapping

Jarvis Algorithm

▶ Start with the leftmost point p0.

▶ Iterate over all points to find the one that minimizes the angle
with the current edge

▶ At point pk , select a candidate point u, then for each point x
if CCW(pk , u, x) > 0 update u with x



Wrapping Algorithm Complexity

▶ Initialization: O(n).

▶ Iterates h (#-CH-vertices) times, each step takes O(n).

▶ Total time: O(nh).



Incremental Algorithm

▶ The convex hull is updated with each new point.

▶ Sorting points lexicographically.
▶ Setup:

▶ Current point p; previous point k
▶ red/blue edges: visible/non-visible edges of current hull
▶ purple vertices: intersections of red/blue edges



Beneath-Beyond Algorithm

▶ Input: n points in R2, in general position.
▶ Output: Edge and vertex chain of the convex hull.

1. Sort points lexicographically.
2. Initialize convex polygon with three points.
3. For each new point p, update the convex hull structure.

▶ Examine the edges incident to k: is there a red one?
▶ Coloring: Starting from a red edge, find all red edges and two

blue edges, i.e., two purple vertices.
▶ Replace the red edges with two new ones: each defined by p

and a maroon vertex.



Complexity of Incremental Algorithm

▶ Initialization: O(n log n).
▶ Finding red edge: O(1); total O(n).
▶ Coloring all red edges < # all created edges < 2n.
▶ Updating convex hull: O(1); total O(n).

▶ Total time: O(n log n).



Beneath-and-Beyond predicates

Ordering of the x-coordinates, i.e., deciding whether
xi < xj ∈ R, is determined by the sign of the determinant:

det

[
xi 1
xj 1

]
Edge coloring (A,B) with respect to a new point P: - The edge
is red/blue if and only if the line through it places P and the
existing convex polygon in different/same half-planes. -
Equivalently, if and only if the two (nonzero) signs

sign det

Ax Ay 1
Bx By 1
Px Py 1

 , sign det

Ax Ay 1
Bx By 1
Qx Qy 1


differ/are equal, where Q is any point in the existing convex
polygon.



Lower Bound on Convex Hull Complexity

Key Observations:

▶ Convex hull computation has the same lower bound as sorting.

▶ Reduction: Given numbers x1, . . . , xn, construct points
(xi , x

2
i ).

▶ These points lie on a convex parabola; their convex hull gives
a sorted order.

▶ Sorting has a lower bound of Ω(n log n)

x

y



Convex Hull Algorithms

▶ 1970: Gift wrapping (Jarvis march) — O(nh)

▶ 1972: Graham scan — O(n log n)

▶ 1977: Quickhull — Expected O(n log n), worst-case O(n2)

▶ 1977: Divide and conquer (Merge hull) — O(n log n)

▶ 1979: Monotone chain (Andrew’s algorithm) — O(n log n)

▶ 1984: Incremental convex hull algorithm — O(n log n)

▶ 1986: Kirkpatrick–Seidel algorithm — O(n log h)

▶ 1996: Chan’s algorithm — O(n log h)



Convex Hull Algorithms

Summary:

▶ Algorithms range from O(nh) to optimal O(n log h)
complexity.

▶ Divide and conquer, Graham scan, and monotone chain are
widely used O(n log n) methods.

▶ Chan’s algorithm and Kirkpatrick–Seidel algorithm achieve
optimal output-sensitive performance.



Akl–Toussaint Heuristic
Reducing the Number of Points for Convex Hull Computation

▶ Selecting an initial set of extreme points (e.g., the four points
with min/max x and y coordinates).

▶ Discarding any point that lies inside the quadrilateral formed
by these extreme points.



References

Books:

▶ F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction, Springer, 1985.

▶ M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Computational Geometry: Algorithms and
Applications, Springer, 2008.

▶ J. O’Rourke, Computational Geometry in C, Cambridge University Press, 1998.

Papers:

▶ S. G. Akl and G. T. Toussaint, ”A fast convex hull algorithm,” Information Processing Letters, 1978.

▶ R. L. Graham, ”An efficient algorithm for determining the convex hull of a finite planar set,” IPL, 1972.

▶ T. M. Chan, ”Optimal output-sensitive convex hull algorithms in two and three dimensions,” Discrete &
Computational Geometry, 1996.

Online Resources:

▶ https://en.wikipedia.org/wiki/Convex_hull

▶ https://www.cgal.org/ (CGAL Library)

▶ https://www.boost.org/doc/libs/release/libs/geometry/doc/html/geometry/reference/

algorithms/convex_hull.html (Boost.Geometry)

▶ A History of Linear-time Convex Hull Algorithms for Simple Polygons

https://en.wikipedia.org/wiki/Convex_hull
https://www.cgal.org/
https://www.boost.org/doc/libs/release/libs/geometry/doc/html/geometry/reference/algorithms/convex_hull.html
https://www.boost.org/doc/libs/release/libs/geometry/doc/html/geometry/reference/algorithms/convex_hull.html
https://cgm.cs.mcgill.ca/~athens/cs601/

	Computational Model
	Convex Hull in Two Dimensions
	Orientation Predicate - CCW
	Convex Hull Algorithms
	Incremental Convex Hull Algorithm

