
Computational Geometry
Convexity and convex hull algorithms in general dimensions

Vissarion Fisikopoulos

Department of Informatics & Telecommunications
National & Kapodistrian University of Athens

Spring 2025



Contents

General Dimensional Polytopes
Famous polytopes
Definitions
Types of polytopes
Complexity of Polyhedra

Convex Hull Algorithms
Beneath-Beyond Algorithm in 3-dimensions
Beneath-Beyond for dD Convex Hull
Gift Wrapping algorithm



Platonic solids
one type of regular polygon



Archimedian solids
different types of regular polygons



Permutahedron



Associahedron
triangulations of convex polygon



Fullerene

▶ A convex polyhedron with 60 vertices and 32 faces (12
pentagons and 20 hexagons).

▶ Nobel Prize in Chemistry, 1996.

▶ How many edges does it have?

(Hint: euler: v − e + f = 2)



Fullerene

▶ A convex polyhedron with 60 vertices and 32 faces (12
pentagons and 20 hexagons).

▶ Nobel Prize in Chemistry, 1996.

▶ How many edges does it have? (Hint: euler: v − e + f = 2)



Contents

General Dimensional Polytopes
Famous polytopes
Definitions
Types of polytopes
Complexity of Polyhedra

Convex Hull Algorithms
Beneath-Beyond Algorithm in 3-dimensions
Beneath-Beyond for dD Convex Hull
Gift Wrapping algorithm



Hyperplanes as Point Sets
Algebraic Definition

A hyperplane is defined as the set of points satisfying a linear
equation:

f (x1, . . . , xd) = k1x1 + · · ·+ kdxd + k0 = 0, ki ∈ R. (1)

Examples:

▶ Line: {(x1, x2) | 2x1 − x2 = 3} ⊂ R2

▶ Plane: {(x1, x2, x3) | x1 + 2x2 − x3 = −1} ⊂ R3

▶ Hyperplane: {(x1, x2, x3, x4) | x1 + 2x2 − x3 + 5x4 = 1} ⊂ R4



Hyperplanes as Point Sets
Gradient Representation

Equivalently, a hyperplane can be described using the normal
vector v and distance k/ ∥v∥ from the origin:

f = v · (x1, . . . , xd) + k0. (2)

Properties:

▶ If k0 = 0, the hyperplane passes through the origin.

▶ Example: v = (2,−1), k0 = −3⇒ f = 2x1 − x2 − 3

▶ For f (x1, . . . , xd) = k1x1 + · · ·+ kdxd + k0:

∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)
= (k1, . . . , kd) = v



Halfspaces
A half-space is one side of a given hyperplane with dimension d .

{(x1, . . . , xd) | f (x1, . . . , xd) ⋛ 0}. (3)

Examples:
▶ Half-plane: {(x1, x2) | 2x1 − x2 > 3} ⊂ R2

x1

x2
2x1 − x2 = 3

n = (2,−1)



Convex Polytope (Definition 1)
as Intersection of Half-Spaces

▶ A convex polytope (polyhedron) is the intersection of a finite
number of half-spaces.

▶ Expanding the set of half-spaces reduces or maintains the
intersection size.

▶ Example: Any d = 2 convex polytope can be expressed as an
intersection of half-planes.



Convex Polytope (Definition 2)
Representation via Convex Combinations

Given points A1, . . . ,An ∈ Rd , the convex hull CH(A1, . . . ,An) is
the smallest convex polytope containing these points.

▶ The vertices of CH belong to {A1, . . . ,An}.
▶ Points in CH are convex combinations:

λ1P1 + · · ·+ λkPk ,
∑

λi = 1, λi ≥ 0. (4)

▶ Carathéodory’s Theorem: Any point in CH is a convex
combination of at most d + 1 vertices.



Supporting Hyperplanes
Faces, Edges, and Facets

A supporting hyperplane of a polyhedron P intersects P but does
not divide it into separate parts.

Face of polytope P is the intersection of a sup. hyperplane with P.

Common Faces:

▶ Vertex: 0-dimensional face.

▶ Edge: 1-dimensional face.

▶ Facet: (d − 1)-dimensional face.

▶ Ridge: (d − 2)-dimensional face.

▶ A d-dimensional polyhedron is considered a face of dimension
d .

▶ The empty set ∅ is a face of dimension −1.



Supporting Hyperplanes (Revisited)

Supporting Hyperplanes of Faces

▶ Each facet has a unique supporting hyperplane, while other
faces have infinitely many.

▶ For k = 0 (vertex), the set of supporting hyperplanes has
dimension:
▶ 1 in the plane (eliminates one angle),
▶ 2 in three-dimensional space (eliminates two angles),
▶ d − 1 in general.

▶ The set of supporting hyperplanes of a k-face has dimension
d − k − 1.



Contents

General Dimensional Polytopes
Famous polytopes
Definitions
Types of polytopes
Complexity of Polyhedra

Convex Hull Algorithms
Beneath-Beyond Algorithm in 3-dimensions
Beneath-Beyond for dD Convex Hull
Gift Wrapping algorithm



Types of Polytopes

▶ Simplex: A polytope with d + 1 affinely independent vertices.

▶ Simple Polytopes: Every vertex belongs to exactly d facets.

▶ Simplicial Polytopes: Each facet is a simplex.



Simplices

Definition
d-Simplex: A convex polyhedron CH(A0, . . . ,Ad) such that the
points Ai ∈ Rd are affinely independent, meaning Ai − A0 are
linearly independent.

Lemma
Each simplex has:

▶ d + 1 =
(d+1

d

)
facets, each defined by d vertices.

▶
(d+1

2

)
edges: each pair of vertices defines an edge.

▶ Each k + 1 vertices define a k-simplex with
(d+1
k+1

)
faces of

dimension k .



Types of Convex Polyhedra

Definition
Simple Polyhedron: A convex polyhedron where exactly d facets
meet at each vertex.

Definition
Simplicial Polyhedron: A convex polyhedron where every facet is
a simplex of dimension d − 1.

Lemma (Exercise)

▶ In the plane, every polygon is both simple and simplicial.

▶ The only simple and simplicial polyhedron in dimensions ≥ 3
is the simplex.

▶ Any polyhedron can be made simplicial by triangulating its
facets.

▶ Find a i) simple (not simplicial) polytope, ii) simplicial (not
simple) polytope, iii) not simple neither simplicial polytope



Contents

General Dimensional Polytopes
Famous polytopes
Definitions
Types of polytopes
Complexity of Polyhedra

Convex Hull Algorithms
Beneath-Beyond Algorithm in 3-dimensions
Beneath-Beyond for dD Convex Hull
Gift Wrapping algorithm



Upper Bound Theorem

Theorem (McMullen)

Any d-dimensional polyhedron with n vertices (or n facets)
contains:

O
(
n⌊d/2⌋

)
(5)

k-dimensional faces, for dimensions k = 0, . . . , d − 1.

Corollary

▶ d = 2: O(n) edges and vertices.

▶ d = 3: O(n) facets, edges, and vertices.

▶ d = 4: O(n2) facets and edges for n vertices.



Computational Complexity Results

Corollary

The worst-case computational complexity for computing the
convex hull of n points in Rd is:

Ω(n log n + n⌊d/2⌋) (6)

Corollary

The storage complexity of the adjacency graph of a polyhedron is:

Ω(n⌊d/2⌋) (7)



Cyclic Polytopes

▶ A cyclic polytope Cd(n) is the convex hull of n points on the
moment curve in Rd :

(x1, x
2
1 , x

3
1 , . . . , x

d
1 ), . . . , (xn, x

2
n , x

3
n , . . . , x

d
n )

where x1 < x2 < · · · < xn are distinct real numbers.
▶ Key properties:

▶ Maximal Simpliciality: Every facet is a simplex.
▶ Upper Bound Theorem: Achieves the maximal number of

faces for given n and d .
▶ Neighborly Property: Any ⌊d/2⌋ vertices form a face.



Examples of Cyclic Polytopes

▶ Low-dimensional cases:
▶ C2(n): Convex n-gon in R2.
▶ C3(n): A 3D convex polyhedron with triangular faces.
▶ C4(n): A 4D polytope with tetrahedral facets.

▶ Numerical examples:
▶ C2(6): Convex hexagon in R2 with points

(1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36).
▶ C3(6): A 3D convex polyhedron with points

(1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64), (5, 25, 125), (6, 36, 216).



C2(6): Convex hexagon

(1, 12)

(2, 22)

(3, 32)

(4, 42)

(5, 52)

(6, 62)

(1, 12, 13)(2, 22, 23)

(3, 32, 33)

(4, 42, 43)

(5, 52, 53)

(6, 62, 63)



Contents

General Dimensional Polytopes
Famous polytopes
Definitions
Types of polytopes
Complexity of Polyhedra

Convex Hull Algorithms
Beneath-Beyond Algorithm in 3-dimensions
Beneath-Beyond for dD Convex Hull
Gift Wrapping algorithm



Beneath-Beyond Algorithm
General Framework

1. Given the convex hull of k points, insert a new point p.

2. Determine the position of p relative to the convex hull; ignore
it if it is inside.

3. Otherwise, compute a certificate proving that p is an exterior
point.

4. Use this certificate to update the convex hull (preserve part of
the hull with p, remove another part).



Incremental Algorithm for Convex Hull in 3D

Input: n points in R3, in general position.
Output: The convex hull (e.g., as an adjacency graph).

1. Sort points lexicographically by decreasing x1: p1, . . . , pn.

2. Initialization: Start with a tetrahedron from the four
rightmost points.

3. For pk , k = 5, . . . , n:
▶ Check facets incident to pk−1: Identify any red facet.
▶ Identify all red facets and purple edges.
▶ Remove red facets, edges, vertices from the hull.
▶ Insert new facets (edges) defined by pk and purple edges

(vertices).

4. Return the updated convex hull.



Correctness of the Beneath-Beyond Algorithm

Lemma (Predicate)

For each facet of the current polyhedron, the following conditions
are equivalent:

▶ The facet is either blue or red.

▶ The facet is not visible / visible from the new point.

▶ The new point lies in the same / different half-space relative
to the supporting plane of the facet.

▶ The sign of the orientation predicate for the facet vertices
with the new point is the same / different compared to that
with any point inside the current polyhedron.



Orientation Predicate

Lemma
The orientation of four points pi = (xi , yi , zi ), i = 0, . . . , 3 reduces
to the sign of the determinant:

det


1 x0 y0 z0
1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3

 .

It is zero if and only if the four points are coplanar.



Complexity of the Beneath-Beyond Algorithm

Lemma
At each incremental step:

▶ The set of purple edges/vertices is topologically equivalent to
a convex polygon.

▶ This polygon is a convex hull of at most n points, thus has
size O(n).

▶ The set of new facets/edges corresponds one-to-one with the
purple edges/vertices.



Overall Complexity for 3D Convex Hull Algorithm

▶ Initial sorting: O(n log n).
▶ Complexity depends on:

▶ Total number of red facets/edges, bounded by the total
number of constructed facets/edges O(n2).

▶ Total number of red vertices ≤ n.
▶ Number of purple edges/vertices = O(n) per step.
▶ Number of constructed facets/edges = O(n) per step.

▶ Overall complexity: O(n2).

Alternative: unsorted insertion, point location, randomized
O(n log n)



Generalization to Higher Dimensions

▶ New convex hull C ′ = CH(C ∪ {p}).
▶ Facets of C split into two categories:

▶ F = blue / red if p is in same / different half-space.

▶ General position ensures p is not on a supporting hyperplane.
▶ Lower-dimensional faces split into:

▶ Red: Intersection of only red facets.
▶ Blue: Intersection of only blue facets.
▶ Purple: Intersection of both red and blue facets.



Overall Complexity of Beneath-Beyond in dD

Theorem
Given n points in Rd , the worst-case time complexity for
constructing the convex hull is:

O(n log n + n⌊(d+1)/2⌋)

which is optimal only for even dimensions.

Theorem (Seidel)

Using randomized techniques, an expected time complexity of
O(n log n + n⌊d/2⌋) can be achieved.

Theorem (Chazell)

A more complicated deterministic version has time complexity of
O(n log n + n⌊d/2⌋) (worst-case optimal).



Gift Wrapping Approach

▶ n points in general position in Rd : every d points define a
hyperplane, and no d + 1 points lie on the same hyperplane.

▶ Data structure RACH stores known ridges for examination
(one adjacent facet is known).

▶ Ridges are stored as (F − {x}, x) where:
▶ F is the set of points defining a facet containing the ridge.
▶ x is the vertex of the facet not in the ridge.



Function FIND-OTHER-FACET

Input: Ridge R and vertex c ̸∈ R, where R ∪ {c} forms a facet of
the convex hull.
Output: A facet of the convex hull containing R and different from
R ∪ {c}.
1. Select candidate point u not in R ∪ {c}.
2. For each t ̸∈ R ∪ {c, u}:

▶ If c and t are in different half-spaces relative to the hyperplane
of R ∪ {u}, then update u ← t.

3. Return facet R ∪ {u}.
Complexity = O(n) calls to CCW, thus O(nd3).



Examples

▶ Execution of FIND-OTHER-FACET(R, c) in R2, where ridge
R is a vertex.

▶ Finding the first facet of the convex hull in R3 (lower hull).



Initialization: Searching for a Supporting Hyperplane

▶ Equation of a hyperplane:

k1x1 + · · ·+ kd−1xd−1 + kdxd + λ, k1, . . . , kd , λ ∈ Q. (8)

▶ Searching for a facet non-parallel to the xd -axis, meaning the
hyperplane intersects the axis: kd ̸= 0.

▶ Can be written as:

xd = k1x1 + · · ·+ kd−1xd−1 + λ, k1, . . . , kd−1, λ ∈ Q. (9)

▶ Such a facet exists if the volume of the convex hull is > 0 in
Rd .



Constraints of the Supporting Hyperplane

▶ Each input point pi = (pi1, pi2, ..., pid) must satisfy:

k1pi1 + k2pi2 + · · ·+ kd−1pi(d−1) + λ ≤ pid . (10)

▶ Points satisfying equality lie on the facet; the rest are above it.

▶ If the convex hull is bounded, such a supporting facet defines
the lower boundary.

▶ The hyperplane intersects the xd -axis as high as possible by
maximizing λ.

Exercise
Apply this initialization in two dimensions: which edge is
computed?



Linear Program for Initializing Gift Wrapping

▶ The first facet of the convex hull is found by solving the
following linear program:

Linear Program

Maximize λ

subject to k1pi1 + k2pi2 + · · ·+ kd−1pi ,d−1 + λ ≤ pi ,d , ∀i = 1, . . . , n.

kd = 1.



Wrapping Algorithm for Convex Hull
general dimension

Input: n points in Rd in general position.
Output: Convex hull representation.

1. Compute and print an initial facet F .

2. Initialize the RACH structure with ridges (F − {x}, x) for all
x ∈ F .

3. While RACH has elements:
▶ Let (R, c) ∈ RACH.
▶ Compute and print F ← FIND-OTHER-FACET(R, c).
▶ For each vertex x ∈ F :

▶ If a ridge (F − {x}, y) exists in RACH, delete it.
▶ Otherwise, insert (F − {x}, x) into RACH.



Complexity of Gift Wrapping Algorithm

▶ Initial facet: Solving a linear program with n constraints in d
dimensions, cost O(n) [Megiddo].

▶ Initializing RACH = O(d).
▶ Wrapping:

▶ Searching and adding ridges in RACH
O(log n⌊d/2⌋) = O(d log n).

▶ Each FIND-OTHER-FACET call takes O(nd3).
▶ In a simplicial polyhedron, there are O(d) points per facet ⇒

cost O(d2 log n).
▶ Total time complexity = O(nHd3), where H is the number of

facets.
▶ Is it output-sensitive?


	General Dimensional Polytopes
	Famous polytopes
	Definitions
	Types of polytopes
	Complexity of Polyhedra

	Convex Hull Algorithms
	Beneath-Beyond Algorithm in 3-dimensions
	Beneath-Beyond for dD Convex Hull
	Gift Wrapping algorithm


