Computational Geometry

Convexity and convex hull algorithms in general dimensions

Vissarion Fisikopoulos

Department of Informatics & Telecommunications National & Kapodistrian University of Athens

Spring 2025

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Contents

General Dimensional Polytopes

Famous polytopes Definitions Types of polytopes Complexity of Polyhedra

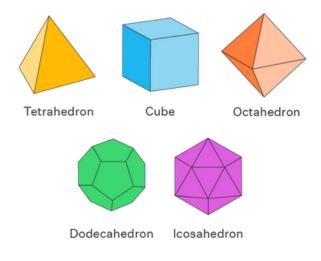
Convex Hull Algorithms

Beneath-Beyond Algorithm in 3-dimensions Beneath-Beyond for dD Convex Hull Gift Wrapping algorithm

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Platonic solids

one type of regular polygon



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Archimedian solids

different types of regular polygons

icosidodecahedron

truncated tetrahedron

truncated octahedron

truncated cube

truncated icosahedron

truncated dodecahedron

small rhombicuboctahedron

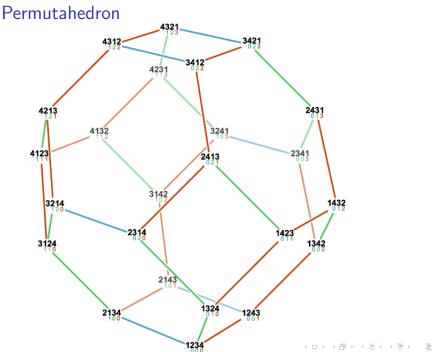
great rhombicuboctahedron

small great rhombicosidodecahedron rhombicosidodecahedron

snub cube

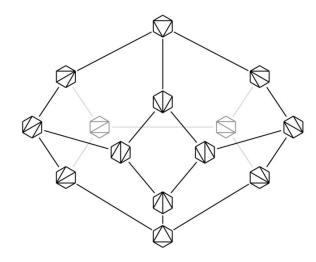
snub dodecahedron

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @



Associahedron

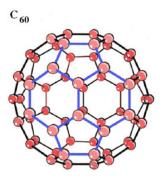
triangulations of convex polygon



・ロト ・四ト ・モト ・モト

æ

Fullerene

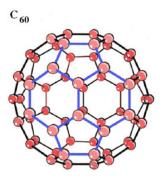


A convex polyhedron with 60 vertices and 32 faces (12 pentagons and 20 hexagons).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Nobel Prize in Chemistry, 1996.
- How many edges does it have?

Fullerene



- A convex polyhedron with 60 vertices and 32 faces (12 pentagons and 20 hexagons).
- Nobel Prize in Chemistry, 1996.
- How many edges does it have? (Hint: euler: v e + f = 2)

Contents

General Dimensional Polytopes

Famous polytopes Definitions

Types of polytopes Complexity of Polyhedra

Convex Hull Algorithms

Beneath-Beyond Algorithm in 3-dimensions Beneath-Beyond for dD Convex Hull Gift Wrapping algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperplanes as Point Sets Algebraic Definition

A hyperplane is defined as the set of points satisfying a linear equation:

$$f(x_1,...,x_d) = k_1 x_1 + \dots + k_d x_d + k_0 = 0, \quad k_i \in \mathbb{R}.$$
 (1)

Examples:

• Line:
$$\{(x_1, x_2) \mid 2x_1 - x_2 = 3\} \subset \mathbb{R}^2$$

- ▶ Plane: $\{(x_1, x_2, x_3) \mid x_1 + 2x_2 x_3 = -1\} \subset \mathbb{R}^3$
- ▶ Hyperplane: $\{(x_1, x_2, x_3, x_4) \mid x_1 + 2x_2 x_3 + 5x_4 = 1\} \subset \mathbb{R}^4$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Hyperplanes as Point Sets

Gradient Representation

Equivalently, a hyperplane can be described using the normal vector v and distance k/||v|| from the origin:

$$f = v \cdot (x_1, \ldots, x_d) + k_0. \tag{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Properties:

- If $k_0 = 0$, the hyperplane passes through the origin.
- Example: $v = (2, -1), k_0 = -3 \Rightarrow f = 2x_1 x_2 3$
- For $f(x_1,...,x_d) = k_1x_1 + \cdots + k_dx_d + k_0$:

$$\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_d}\right) = (k_1, \dots, k_d) = v$$

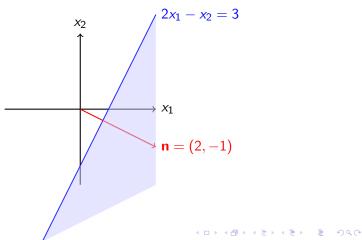
Halfspaces

A half-space is one side of a given hyperplane with dimension d.

$$\{(x_1,\ldots,x_d) \mid f(x_1,\ldots,x_d) \gtrsim 0\}.$$
 (3)

Examples:

• Half-plane: $\{(x_1, x_2) \mid 2x_1 - x_2 > 3\} \subset \mathbb{R}^2$

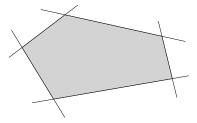


Convex Polytope (Definition 1)

as Intersection of Half-Spaces

- A convex polytope (polyhedron) is the intersection of a finite number of half-spaces.
- Expanding the set of half-spaces reduces or maintains the intersection size.
- Example: Any d = 2 convex polytope can be expressed as an intersection of half-planes.

イロト 不得 トイヨト イヨト



Convex Polytope (Definition 2)

Representation via Convex Combinations

Given points $A_1, \ldots, A_n \in \mathbb{R}^d$, the convex hull $CH(A_1, \ldots, A_n)$ is the smallest convex polytope containing these points.

- The vertices of *CH* belong to $\{A_1, \ldots, A_n\}$.
- Points in CH are convex combinations:

$$\lambda_1 P_1 + \dots + \lambda_k P_k, \quad \sum \lambda_i = 1, \lambda_i \ge 0.$$
 (4)

Carathéodory's Theorem: Any point in CH is a convex combination of at most d + 1 vertices.

Supporting Hyperplanes

Faces, Edges, and Facets

A supporting hyperplane of a polyhedron P intersects P but does not divide it into separate parts.

Face of polytope P is the intersection of a sup. hyperplane with P.

Common Faces:

- Vertex: 0-dimensional face.
- **Edge**: 1-dimensional face.
- **Facet**: (d-1)-dimensional face.
- **Ridge**: (d-2)-dimensional face.
- A *d*-dimensional polyhedron is considered a face of dimension *d*.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• The empty set \emptyset is a face of dimension -1.

Supporting Hyperplanes (Revisited)

Supporting Hyperplanes of Faces

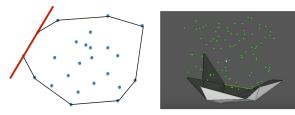
- Each facet has a unique supporting hyperplane, while other faces have infinitely many.
- For k = 0 (vertex), the set of supporting hyperplanes has dimension:
 - 1 in the plane (eliminates one angle),
 - 2 in three-dimensional space (eliminates two angles),
 - ▶ d − 1 in general.

2D

• The set of supporting hyperplanes of a k-face has dimension d - k - 1.

3D

∃ ↓ 4 ∃ ↓ ∃ √Q (~



Contents

General Dimensional Polytopes

Famous polytopes Definitions **Types of polytopes** Complexity of Polyhedra

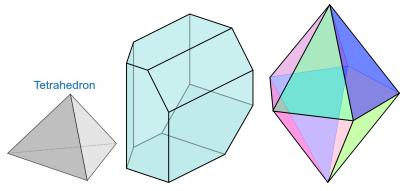
Convex Hull Algorithms

Beneath-Beyond Algorithm in 3-dimensions Beneath-Beyond for dD Convex Hull Gift Wrapping algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Types of Polytopes

- Simplex: A polytope with d + 1 affinely independent vertices.
- Simple Polytopes: Every vertex belongs to exactly *d* facets.
- Simplicial Polytopes: Each facet is a simplex.



Simplices

Definition

d-**Simplex**: A convex polyhedron $CH(A_0, \ldots, A_d)$ such that the points $A_i \in \mathbb{R}^d$ are affinely independent, meaning $A_i - A_0$ are linearly independent.

Lemma

Each simplex has:

- $d + 1 = \binom{d+1}{d}$ facets, each defined by d vertices.
- $\binom{d+1}{2}$ edges: each pair of vertices defines an edge.
- Each k + 1 vertices define a k-simplex with ^{d+1} _{k+1} faces of dimension k.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Types of Convex Polyhedra

Definition **Simple Polyhedron**: A convex polyhedron where exactly d facets meet at each vertex.

Definition

Simplicial Polyhedron: A convex polyhedron where every facet is a simplex of dimension d - 1.

Lemma (Exercise)

- ▶ In the plane, every polygon is both simple and simplicial.
- The only simple and simplicial polyhedron in dimensions ≥ 3 is the simplex.
- Any polyhedron can be made simplicial by triangulating its facets.
- Find a i) simple (not simplicial) polytope, ii) simplicial (not simple) polytope, iii) not simple neither simplicial polytope

Contents

General Dimensional Polytopes

Famous polytopes Definitions Types of polytopes Complexity of Polyhedra

Convex Hull Algorithms

Beneath-Beyond Algorithm in 3-dimensions Beneath-Beyond for dD Convex Hull Gift Wrapping algorithm

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Upper Bound Theorem

Theorem (McMullen)

Any d-dimensional polyhedron with n vertices (or n facets) contains:

$$O\left(n^{\lfloor d/2 \rfloor}\right) \tag{5}$$

k-dimensional faces, for dimensions $k = 0, \ldots, d - 1$.

Corollary

- d = 2: O(n) edges and vertices.
- d = 3: O(n) facets, edges, and vertices.
- d = 4: $O(n^2)$ facets and edges for n vertices.

Computational Complexity Results

Corollary

The worst-case computational complexity for computing the convex hull of n points in \mathbb{R}^d is:

$$\Omega(n\log n + n^{\lfloor d/2 \rfloor}) \tag{6}$$

Corollary

The storage complexity of the adjacency graph of a polyhedron is:

$$\Omega(n^{\lfloor d/2 \rfloor}) \tag{7}$$

Cyclic Polytopes

A cyclic polytope C_d(n) is the convex hull of n points on the moment curve in R^d:

$$(x_1, x_1^2, x_1^3, \ldots, x_1^d), \ldots, (x_n, x_n^2, x_n^3, \ldots, x_n^d)$$

where $x_1 < x_2 < \cdots < x_n$ are distinct real numbers.

Key properties:

- Maximal Simpliciality: Every facet is a simplex.
- Upper Bound Theorem: Achieves the maximal number of faces for given n and d.

• Neighborly Property: Any $\lfloor d/2 \rfloor$ vertices form a face.

Examples of Cyclic Polytopes

Low-dimensional cases:

- $C_2(n)$: Convex *n*-gon in \mathbb{R}^2 .
- $C_3(n)$: A 3D convex polyhedron with triangular faces.
- $C_4(n)$: A 4D polytope with tetrahedral facets.

Numerical examples:

- C₂(6): Convex hexagon in ℝ² with points (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36).
- C₃(6): A 3D convex polyhedron with points
 (1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64), (5, 25, 125), (6, 36, 216).

 $C_2(6)$: Convex hexagon

 $(6, 6^2)$ $(5, 5^2)$ $(4|4^2)$ '<mark>₿</mark>2ו (3 (2,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Contents

General Dimensional Polytopes

Famous polytopes Definitions Types of polytopes Complexity of Polyhedra

Convex Hull Algorithms

Beneath-Beyond Algorithm in 3-dimensions

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Beneath-Beyond for dD Convex Hull Gift Wrapping algorithm

Beneath-Beyond Algorithm

General Framework

- 1. Given the convex hull of k points, insert a new point p.
- 2. Determine the position of *p* relative to the convex hull; ignore it if it is inside.
- 3. Otherwise, compute a *certificate* proving that *p* is an exterior point.
- 4. Use this certificate to update the convex hull (preserve part of the hull with *p*, remove another part).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Incremental Algorithm for Convex Hull in 3D

Input: *n* points in \mathbb{R}^3 , in general position. Output: The convex hull (e.g., as an adjacency graph).

- 1. Sort points lexicographically by decreasing x_1 : p_1, \ldots, p_n .
- 2. Initialization: Start with a tetrahedron from the four rightmost points.
- 3. For p_k , k = 5, ..., n:
 - Check facets incident to p_{k-1} : Identify any red facet.
 - Identify all red facets and purple edges.
 - Remove red facets, edges, vertices from the hull.
 - Insert new facets (edges) defined by p_k and purple edges (vertices).

4. Return the updated convex hull.

Correctness of the Beneath-Beyond Algorithm

Lemma (Predicate)

For each facet of the current polyhedron, the following conditions are equivalent:

- ► The facet is either blue or red.
- ▶ The facet is not visible / visible from the new point.
- The new point lies in the same / different half-space relative to the supporting plane of the facet.
- The sign of the orientation predicate for the facet vertices with the new point is the same / different compared to that with any point inside the current polyhedron.

Orientation Predicate

Lemma

The orientation of four points $p_i = (x_i, y_i, z_i)$, i = 0, ..., 3 reduces to the sign of the determinant:

$$\det \begin{bmatrix} 1 & x_0 & y_0 & z_0 \\ 1 & x_1 & y_1 & z_1 \\ 1 & x_2 & y_2 & z_2 \\ 1 & x_3 & y_3 & z_3 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

It is zero if and only if the four points are coplanar.

Complexity of the Beneath-Beyond Algorithm

Lemma

At each incremental step:

- The set of purple edges/vertices is topologically equivalent to a convex polygon.
- This polygon is a convex hull of at most n points, thus has size O(n).
- The set of new facets/edges corresponds one-to-one with the purple edges/vertices.

Overall Complexity for 3D Convex Hull Algorithm

- Initial sorting: $O(n \log n)$.
- Complexity depends on:
 - Total number of red facets/edges, bounded by the total number of constructed facets/edges O(n²).
 - Total number of red vertices $\leq n$.
 - Number of purple edges/vertices = O(n) per step.
 - Number of constructed facets/edges = O(n) per step.

• Overall complexity: $O(n^2)$.

Alternative: unsorted insertion, point location, randomized $O(n \log n)$

Generalization to Higher Dimensions

- New convex hull $C' = CH(C \cup \{p\})$.
- Facets of C split into two categories:

F = blue / red if p is in same / different half-space.

General position ensures p is not on a supporting hyperplane.

- Lower-dimensional faces split into:
 - Red: Intersection of only red facets.
 - Blue: Intersection of only blue facets.
 - Purple: Intersection of both red and blue facets.

Overall Complexity of Beneath-Beyond in dD

Theorem

Given n points in \mathbb{R}^d , the worst-case time complexity for constructing the convex hull is:

$$O(n \log n + n^{\lfloor (d+1)/2 \rfloor})$$

which is optimal only for even dimensions.

Theorem (Seidel)

Using randomized techniques, an expected time complexity of $O(n \log n + n^{\lfloor d/2 \rfloor})$ can be achieved.

Theorem (Chazell)

A more complicated deterministic version has time complexity of $O(n \log n + n^{\lfloor d/2 \rfloor})$ (worst-case optimal).

Gift Wrapping Approach

- n points in general position in ℝ^d: every d points define a hyperplane, and no d + 1 points lie on the same hyperplane.
- Data structure RACH stores known ridges for examination (one adjacent facet is known).
- Ridges are stored as $(F \{x\}, x)$ where:
 - F is the set of points defining a facet containing the ridge.

x is the vertex of the facet not in the ridge.

Function FIND-OTHER-FACET

Input: Ridge R and vertex $c \notin R$, where $R \cup \{c\}$ forms a facet of the convex hull.

Output: A facet of the convex hull containing R and different from $R \cup \{c\}$.

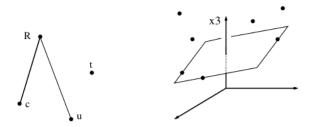
- 1. Select candidate point u not in $R \cup \{c\}$.
- 2. For each $t \notin R \cup \{c, u\}$:
 - If c and t are in different half-spaces relative to the hyperplane of R ∪ {u}, then update u ← t.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

3. Return facet $R \cup \{u\}$.

Complexity = O(n) calls to CCW, thus $O(nd^3)$.

Examples



- ► Execution of FIND-OTHER-FACET(R, c) in ℝ², where ridge R is a vertex.
- Finding the first facet of the convex hull in \mathbb{R}^3 (lower hull).

Initialization: Searching for a Supporting Hyperplane

Equation of a hyperplane:

 $k_1x_1 + \dots + k_{d-1}x_{d-1} + k_dx_d + \lambda, \quad k_1, \dots, k_d, \lambda \in \mathbb{Q}.$ (8)

- Searching for a facet non-parallel to the x_d-axis, meaning the hyperplane intersects the axis: k_d ≠ 0.
- Can be written as:

$$x_d = k_1 x_1 + \dots + k_{d-1} x_{d-1} + \lambda, \quad k_1, \dots, k_{d-1}, \lambda \in \mathbb{Q}.$$
 (9)

Such a facet exists if the volume of the convex hull is > 0 in R^d.

Constraints of the Supporting Hyperplane

• Each input point $p_i = (p_{i1}, p_{i2}, ..., p_{id})$ must satisfy:

$$k_1 p_{i1} + k_2 p_{i2} + \dots + k_{d-1} p_{i(d-1)} + \lambda \le p_{id}.$$
 (10)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Points satisfying equality lie on the facet; the rest are above it.

- If the convex hull is bounded, such a supporting facet defines the lower boundary.
- The hyperplane intersects the x_d-axis as high as possible by maximizing λ.

Exercise

Apply this initialization in two dimensions: which edge is computed?

Linear Program for Initializing Gift Wrapping

The first facet of the convex hull is found by solving the following linear program:

Linear Program

 $\begin{array}{ll} \text{Maximize} & \lambda \\ \text{subject to} & k_1p_{i1}+k_2p_{i2}+\dots+k_{d-1}p_{i,d-1}+\lambda \leq p_{i,d}, \quad \forall i=1,\dots,n. \\ & k_d=1. \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Wrapping Algorithm for Convex Hull

general dimension

Input: *n* points in \mathbb{R}^d in general position. Output: Convex hull representation.

- 1. Compute and print an initial facet F.
- 2. Initialize the RACH structure with ridges $(F \{x\}, x)$ for all $x \in F$.
- 3. While RACH has elements:
 - Let $(R, c) \in \mathsf{RACH}$.
 - Compute and print $F \leftarrow \text{FIND-OTHER-FACET}(R, c)$.
 - For each vertex $x \in F$:
 - If a ridge $(F \{x\}, y)$ exists in RACH, delete it.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

• Otherwise, insert $(F - \{x\}, x)$ into RACH.

Complexity of Gift Wrapping Algorithm

- Initial facet: Solving a linear program with n constraints in d dimensions, cost O(n) [Megiddo].
- Initializing RACH = O(d).
- Wrapping:
 - Searching and adding ridges in RACH O(log n^{⌊d/2}⌋) = O(d log n).
 - Each FIND-OTHER-FACET call takes $O(nd^3)$.
 - ▶ In a simplicial polyhedron, there are O(d) points per facet \Rightarrow cost $O(d^2 \log n)$.
 - Total time complexity = $O(nHd^3)$, where *H* is the number of facets.

Is it output-sensitive?