Delaunay triangulations & Voronoi diagrams

Vissarion Fisikopoulos

Dept. of Informatics & Telecommunications, University of Athens

Computational Geometry, Spring 2025

Outline

1 Definition & Examples

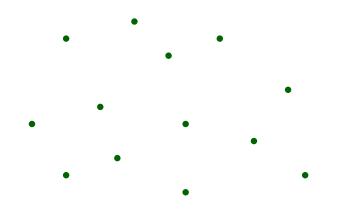
Outline

1 Definition & Examples

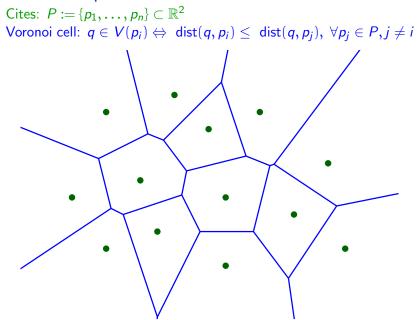
2 Properties

A classic example

Cites: $P := \{p_1, \ldots, p_n\} \subset \mathbb{R}^2$

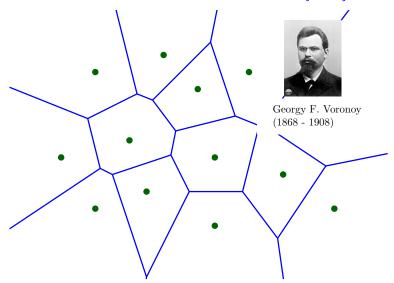


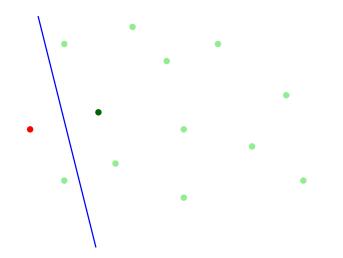
A classic example

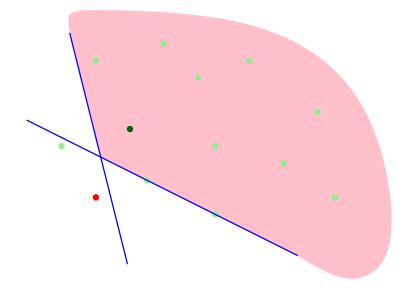


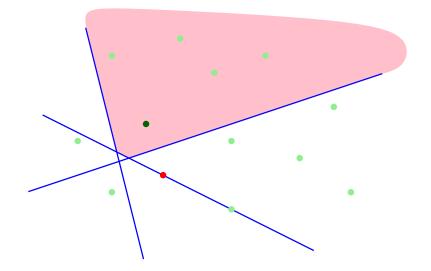
A classic example

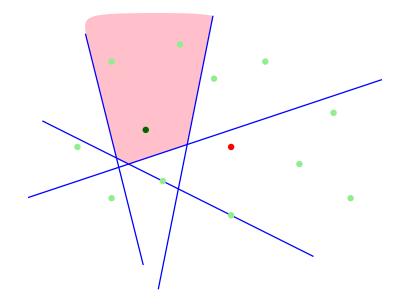
Cites: $P := \{p_1, \dots, p_n\} \subset \mathbb{R}^2$ Voronoi cell: $q \in V(p_i) \Leftrightarrow \operatorname{dist}(q, p_i) \leq \operatorname{dist}(q, p_i), \forall p_i \in P, j \neq i$

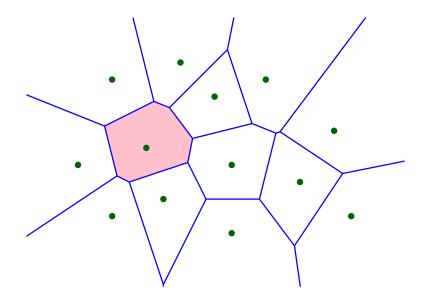












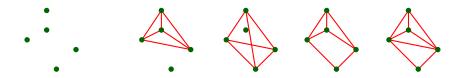
Voronoi diagrams

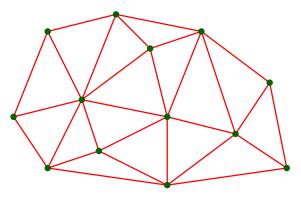
Terrain

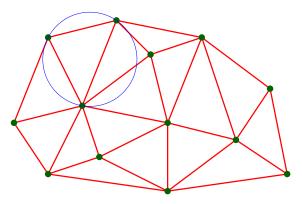
Triangulation

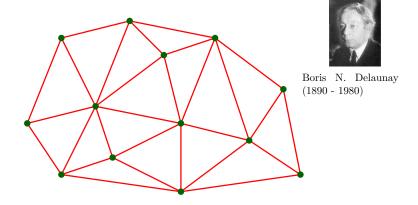
A triangulation of a point set $P \subset \mathbb{R}^2$ is a collection of subsets of P called cells s.t.

- The cells cover the convex hull of P
- Every pair of cells intersect at a (possibly empty) common face
- All cells are triangles





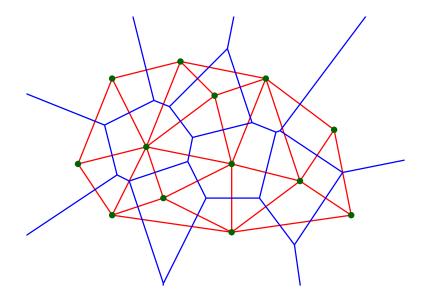




Delaunay Triangulation: dual of Voronoi diagram



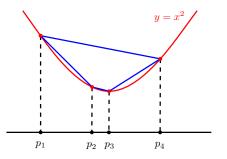
Delaunay Triangulation: dual of Voronoi diagram



Delaunay triangualtion: projection from parabola

Definition/Construction of Delaunay triangulation:

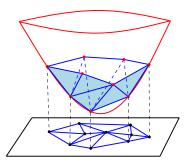
- Lift input points $p = (x) \in \mathbb{R}$ to $\widehat{p} = (x, x^2) \in \mathbb{R}^2$
- Compute the convex hull of the lifted points
- Project the lower hull to \mathbb{R}



Delaunay triangualtion: going a bit higher...

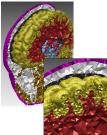
Definition/Construction of Delaunay triangulation:

- ▶ Lift input points $p = (x, y) \in \mathbb{R}^2$ to $\hat{p} = (x, x^2 + y^2) \in \mathbb{R}^3$
- Compute the convex hull of the lifted points
- Project the lower hull to $\mathbb R$



Applications

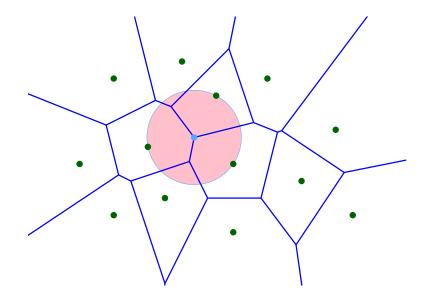
Nearest Neighbors Reconstruction Meshing



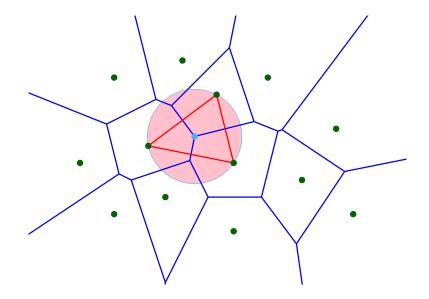
Outline

1 Definition & Examples

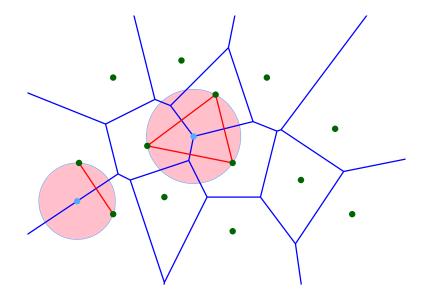
Main Delaunay property: empty sphere



Main Delaunay property: empty sphere



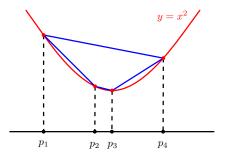
Main Delaunay property: empty sphere



Main Delaunay property: 1 picture proof

Thm (in \mathbb{R}): $S(p_1, p_2)$ is a Delaunay segment \Leftrightarrow its interior contains no p_i .

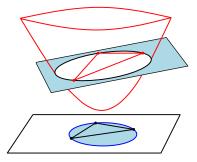
Proof. Delaunay segment $\Leftrightarrow (\hat{p_1}, \hat{p_2})$ edge of the Lower Hull \Leftrightarrow no $\hat{p_i}$ "below" $(\hat{p_1}, \hat{p_2})$ on the parabola \Leftrightarrow no p_i inside the segment (p_1, p_2) .



Main Delaunay property: 1 picture proof

Thm (in \mathbb{R}^2): $T(p_1, p_2, p_3)$ is a Delaunay triangle \Leftrightarrow the interior of the circle through p_1, p_2, p_3 (enclosing circle) contains no p_i .

Proof. Circle (p_1, p_2, p_3) contains no p_i in interior \Leftrightarrow plane of lifted $\hat{p}_1, \hat{p}_2, \hat{p}_3$ leaves all lifted \hat{p}_i on same halfspace \Leftrightarrow CCW $(\hat{p}_1, \hat{p}_2, \hat{p}_3, \hat{p}_i)$ of same sign for all *i*. Suffices to prove: p_i lies on Circle (p_1, p_2, p_3) $\Leftrightarrow \hat{p}_i$ lies on plane of $\hat{p}_1, \hat{p}_2, \hat{p}_3 \Leftrightarrow$ CCW $(\hat{p}_1, \hat{p}_2, \hat{p}_3, \hat{p}_i) = 0$.



Predicate InCircle

Given points p, q, r, $s \in \mathbb{R}^2$, point $s = (s_x, s_y)$ lies inside the circle through p, q, $r \Leftrightarrow$

$$\det \begin{pmatrix} p_x & p_y & p_x^2 + p_y^2 & 1\\ q_x & q_y & q_x^2 + q_y^2 & 1\\ r_x & r_y & r_x^2 + r_y^2 & 1\\ s_x & s_y & s_x^2 + s_y^2 & 1 \end{pmatrix} > 0,$$

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle $(p, q, r, s) = 0 \Leftrightarrow \exists$ circle through p, q, r, s. Proof. InCircle $(p, q, r, s) = 0 \Leftrightarrow CCW(\widehat{p}, \widehat{q}, \widehat{r}, \widehat{s}) = 0$

Triangulations of planar point sets

Thm. Let *P* be set of *n* points in \mathbb{R}^2 , not all collinear, k = # points on boundary of CH(*P*). Any triangulation of *P* has 2n - 2 - k triangles and 3n - 3 - k edges.

Proof. Hint: Euler

Triangulations of planar point sets

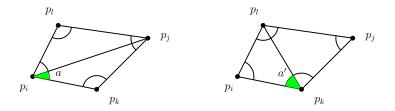
Thm. Let *P* be set of *n* points in \mathbb{R}^2 , not all collinear, k = # points on boundary of CH(*P*). Any triangulation of *P* has 2n - 2 - k triangles and 3n - 3 - k edges.

Proof.

- ▶ f: #facets (except ∞)
- ► e: #edges
- ▶ n: #vertices
- 1. Euler: f e + n = 1
- 2. Triangulation: 3f + k = 2e

Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles. Sort the 3m angles: $a_1 \leqslant a_2 \leqslant \cdots \leqslant a_{3m}$. $T_a := \{a_1, a_2, \dots, a_{3m}\}$. Edge $e = (p_i, p_j)$ is illegal $\Leftrightarrow \min_{1 \leqslant i \leqslant 6} a_i < \min_{1 \leqslant i \leqslant 6} a'_i$.



T' obtained from T by flipping illegal e, then $T'_a >_{lex} T_a$.

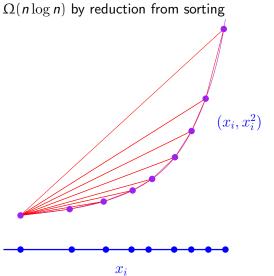
Flips yield triangualtion without illegal edges. The algorithm terminates (angles decrease), but is too slow.

Outline

Definition & Examples

2 Properties

Lower bound

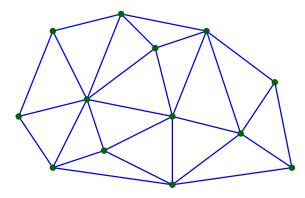


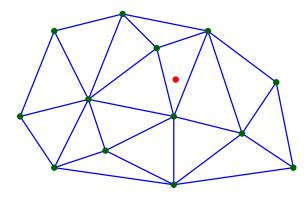
Theorem. Let P be a set of points $\in \mathbb{R}^2$. A triangulation \mathcal{T} of P has no illegal edge $\Leftrightarrow \mathcal{T}$ is a Delaunay triangulation of P.

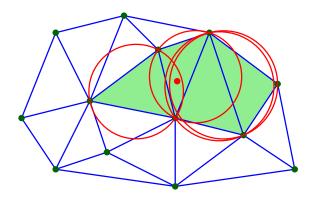
Cor. Constructing the Delaunay triangulation is a fast (optimal) way of maximizing the min angle.

Algorithms in \mathbb{R}^2 .

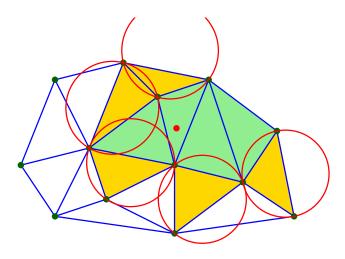
- Lift, CH3, project the lower hull: $O(n \log n)$ - Incremental algorithm: $O(n \log n) \exp$.- Construct the Voronoi diagram (sweep): $O(n \log n)$ - Divide + Conquer: $O(n \log n)$

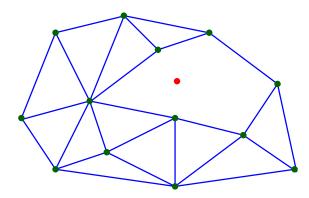




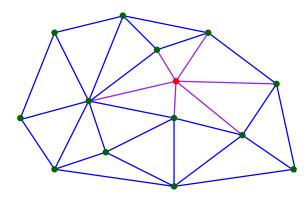


Find triangles in conflict





Delete triangles in conflict



Triangulate hole

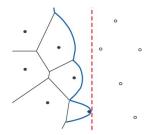
Fortune's Algorithm for Voronoi Diagram

Key Idea:

- Constructs the Voronoi diagram in $O(n \log n)$ time.
- Uses a sweep line (moving left-right) and a beach line (a sequence of parabolic arcs).

Data Structures:

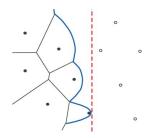
- Event (priority) Queue: Stores site events (new point) and circle events (Voronoi vertex formation).
- Beach Line: A balanced binary tree maintaining active arcs.



Algorithm Steps

Step 1: Process Site Events

- When encountering a new point, a new parabola is created.
- ► The beach line updates to reflect the new parabolic region.
- Step 2: Process Circle Events
 - ▶ When three arcs meet, a Voronoi vertex is formed.
 - ► The middle arc disappears, and the diagram updates.
- Step 3: Maintain Beach Line
 - ► The beach line evolves dynamically as new points appear.
 - Stored in a balanced tree for efficient updates.



Algorithm Steps

Step 1: Process Site Events

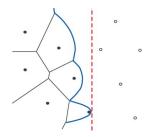
- ▶ When encountering a new point, a new parabola is created.
- The beach line updates to reflect the new parabolic region.

Step 2: Process Circle Events

- ▶ When three arcs meet, a Voronoi vertex is formed.
- The middle arc disappears, and the diagram updates.

Step 3: Maintain Beach Line

- ► The beach line evolves dynamically as new points appear.
- Stored in a balanced tree for efficient updates.



Algorithm Steps

Step 1: Process Site Events

- When encountering a new point, a new parabola is created.
- The beach line updates to reflect the new parabolic region.

Step 2: Process Circle Events

- ▶ When three arcs meet, a Voronoi vertex is formed.
- The middle arc disappears, and the diagram updates.

Step 3: Maintain Beach Line

- ► The beach line evolves dynamically as new points appear.
- Stored in a balanced tree for efficient updates.

