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Georgy F. Voronoy
(1868 - 1908)
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Voronoi diagrams



Triangulation

A triangulation of a point set P ⊂ R2 is a collection of subsets of
P called cells s.t.

▶ The cells cover the convex hull of P

▶ Every pair of cells intersect at a (possibly empty) common face

▶ All cells are triangles



Delaunay Triangulation

The Delaunay triangulation is the unique triangulation where no
point in P lies inside the circumcircle of any triangle.
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The Delaunay triangulation is the unique triangulation where no
point in P lies inside the circumcircle of any triangle.

Boris N. Delaunay
(1890 - 1980)
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Delaunay triangualtion: projection from parabola

Definition/Construction of Delaunay triangulation:

▶ Lift input points p = (x) ∈ R to p̂ = (x , x2) ∈ R2

▶ Compute the convex hull of the lifted points

▶ Project the lower hull to R

y = x2

p1 p2 p3 p4



Delaunay triangualtion: going a bit higher. . .

Definition/Construction of Delaunay triangulation:

▶ Lift input points p = (x , y) ∈ R2 to p̂ = (x , x2+y2) ∈ R3

▶ Compute the convex hull of the lifted points

▶ Project the lower hull to R



Nearest Neighbors
Reconstruction
Meshing

Applications
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Main Delaunay property: empty sphere
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Main Delaunay property: 1 picture proof

Thm (in R): S(p1, p2) is a Delaunay segment ⇔ its interior
contains no pi .

Proof. Delaunay segment ⇔ (p̂1, p̂2) edge of the Lower Hull⇔ no p̂i “below” (p̂1, p̂2) on the parabola⇔ no pi inside the segment (p1, p2).

y = x2

p1 p2 p3 p4



Main Delaunay property: 1 picture proof

Thm (in R2): T (p1, p2, p3) is a Delaunay triangle ⇔ the interior of
the circle through p1, p2, p3 (enclosing circle) contains no pi .

Proof. Circle(p1, p2, p3) contains no pi in interior⇔ plane of lifted p̂1, p̂2, p̂3 leaves all lifted p̂i on same halfspace⇔ CCW(p̂1, p̂2, p̂3, p̂i ) of same sign for all i .
Suffices to prove: pi lies on Circle(p1, p2, p3)⇔ p̂i lies on plane of p̂1, p̂2, p̂3 ⇔ CCW(p̂1, p̂2, p̂3, p̂i ) = 0.



Predicate InCircle

Given points p, q, r , s ∈ R2, point s = (sx , sy ) lies inside the circle
through p, q, r ⇔

det


px py p2x + p2y 1
qx qy q2x + q2y 1
rx ry r2x + r2y 1
sx sy s2x + s2y 1

 > 0,

assuming p, q, r in clockwise order (otherwise det < 0).

Lemma. InCircle(p, q, r , s) = 0 ⇔ ∃ circle through p, q, r , s.
Proof. InCircle(p, q, r , s) = 0 ⇔ CCW (p̂, q̂, r̂ , ŝ) = 0



Triangulations of planar point sets

Thm. Let P be set of n points in R2, not all collinear,
k = #points on boundary of CH(P). Any triangulation of P has
2n − 2− k triangles and 3n − 3− k edges.

Proof. Hint: Euler



Triangulations of planar point sets

Thm. Let P be set of n points in R2, not all collinear,
k = #points on boundary of CH(P). Any triangulation of P has
2n − 2− k triangles and 3n − 3− k edges.

Proof.

▶ f: #facets (except ∞)

▶ e: #edges

▶ n: #vertices

1. Euler: f − e + n = 1

2. Triangulation: 3f + k = 2e



Delaunay maximizes the smallest angle

Let T be a triangulation with m triangles.
Sort the 3m angles: a1 ⩽ a2 ⩽ · · · ⩽ a3m. Ta := {a1, a2, . . . , a3m}.
Edge e = (pi , pj) is illegal ⇔ min1⩽i⩽6 ai < min1⩽i⩽6 a

′
i .

pl

pk

pj

pi

pl

pk

pj

pi

a a′

T ′ obtained from T by flipping illegal e, then T ′
a >lex Ta.

Flips yield triangualtion without illegal edges.
The algorithm terminates (angles decrease), but is too slow.
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Lower bound

Ω(n log n) by reduction from sorting

(xi, x
2
i )

xi



Delaunay triangulation

Theorem. Let P be a set of points ∈ R2. A triangulation T of P
has no illegal edge ⇔ T is a Delaunay triangulation of P.

Cor. Constructing the Delaunay triangulation is a fast (optimal)
way of maximizing the min angle.

Algorithms in R2.
– Lift, CH3, project the lower hull: O(n log n)
– Incremental algorithm: O(n log n) exp., O(n2) worst
– Construct the Voronoi diagram (sweep): O(n log n)
– Divide + Conquer: O(n log n)



Incremental Delaunay
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Incremental Delaunay

Find triangles in conflict



Incremental Delaunay



Incremental Delaunay

Delete triangles in conflict



Incremental Delaunay

Triangulate hole



Fortune’s Algorithm for Voronoi Diagram
Key Idea:

▶ Constructs the Voronoi diagram in O(n log n) time.

▶ Uses a sweep line (moving left-right) and a beach line (a
sequence of parabolic arcs).

Data Structures:

▶ Event (priority) Queue: Stores site events (new point) and
circle events (Voronoi vertex formation).

▶ Beach Line: A balanced binary tree maintaining active arcs.



Algorithm Steps
Step 1: Process Site Events

▶ When encountering a new point, a new parabola is created.
▶ The beach line updates to reflect the new parabolic region.

Step 2: Process Circle Events
▶ When three arcs meet, a Voronoi vertex is formed.
▶ The middle arc disappears, and the diagram updates.

Step 3: Maintain Beach Line
▶ The beach line evolves dynamically as new points appear.
▶ Stored in a balanced tree for efficient updates.
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