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Volume computation problem

Given P a convex polytope in Rd compute the volume of P .

1. What is convex?

2. What is a polytope? How can we represent it?

3. How large is d? e.g. d = 2, 3, 50
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Easy cases: volume of elementary shapes

∣∣∣∣∣∣
1 2 1
3 6 1
6 1 1

∣∣∣∣∣∣ /2! = 11

∣∣∣∣2 5
4 0

∣∣∣∣ = 20

Some elementary polytopes (simplex, cube) have simple
determinantal formulas.
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Volume of elementary shapes and a conjecture

▶ What is the volume of the d-dimensional simplex, cube,
crosspolytope?

▶ Mahler volume = vol(P )vol(P ∗) (P ∗ is the polar dual)

▶ Mahler conjecture: the minimum possible Mahler volume is
attained by a hypercube
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Easy cases: planar polygons

A planar simple polygon with a positively oriented (counter clock
wise) sequence of points P1, . . . , Pn, Pi = (xi, yi), i = 1, . . . , n.

A =
1

2

n∑
i=1

(yi + yi+1)(xi − xi+1)

=
1

2

(
(y1 + y2)(x1 − x2) + · · ·+ (yn + y1)(xn − x1)

)
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Polytope Representations

A convex polytope P ⊆ Rd can be represented as the

1. convex hull of a pointset {p1, . . . , pn} (V-representation)

2. intersection of halfspaces {x ∈ Rd : Ax ≤ b}
(H-representation)

convex hull problem

vertex enumeration problem

Faces of polytopes: vertices, edges, . . . , facets
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Volume computation problem (revisited)

Given P a convex polytope in Rd compute the volume of P .
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Volume via triangulation

Algorithm: compute a triangulation of the input polytope, then
sum up the volumes of simplices.

Question: Which triangulation?

Problem: The size of the triangulation of n points could be
exponential in the dimension d i.e. O(n⌈d/2⌉)

Reference: Büeler, Enge, Fukuda - Exact Volume Computation
for Polytopes: A Practical Study
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Triangulation & sign decomposition methods
▶ Triangulation T (P ): vol(P ) =

∑
s∈T (P ) vol(s)

▶ Sign decomposition:
vol(P ) =

∑
v∈P vol(cone(v) ∩ e) sign(v)

sign(v) = (−1)#H

vol(p) = vol(ade) + vol(cbe)− vol(abe)− vol(cde)
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Implementations
▶ VINCI [Bueler et al’00], Latte [deLoera et al], Qhull [Barber

et al], LRS [Avis], Normaliz [Bruns et al]

▶ triangulation, sign decomposition methods

▶ cannot compute in high dimensions (e.g. > 15) in general
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Volume via (naive) Monte Carlo

Rejections techniques (sample from bounding box)

Question: how to sample points from a cube?

volume(unit cube) = 1
volume(unit ball) ∼ (c/d)d/2 –drops exponentially with d
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Uniform sampling from the simple shapes: hypersphere

▶ To sample uniformly from the boundary of a hypersphere of
radius r:

1. Sample d numbers g1, . . . , gd from N (0, 1).
2. The point v = r(g1, . . . , gd)/

√∑
g2i is uniformly distributed

on the surface of the d-dim hypersphere, of radius r and center
the origin.

▶ To pick a random direction through point p ∈ Rd, we sample
from the surface of a hypersphere centered at p.
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Uniform sampling from the simple shapes: hypersphere

▶ To sample uniformly from the interior of a hypersphere with
radius r:

1. Sample a point v ∼ U(∂Bd) and u ∼ U(0, 1).
2. The point p = ru1/dv is uniformly distributed in the interior of

the d-dim hypersphere, of radius r and center the origin.
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Uniform Sampling from the simplex
1. [Smith, Tromble: 2004]:

▶ Generate distinct: 0 = x0 < x1 < · · · < xd+1 = M ∈ N∗.

Return y: yi =
xi − xi−1

M
, i = 1, . . . , d+ 1. M : largest

integer.
▶ To guarantee distinct choice we use a variation of Bloom filter

(check membership in a set).
▶ Sampling one point takes O(d log d).

2. [Rubinstein, Melamed: 1998]:
▶ Generate independent unit-exponential random variables,

X1, · · · , Xd+1. Return Y ∈ Rd+1: Yi = Xi/
∑d+1

i=1 Xi.
▶ Sampling one point takes O(d).
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General Polytopes: Geometric Random Walks

▶ A Geometric Random Walk starts at some interior point and
at each step moves to a ”neighboring” point, chosen according
to some distribution depending only on the current point.

B

p

q

Figure: Steps of a ball walk.

Figure: Uniform target
distribution
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Useful questions and terminology

▶ Does the random walk converges asymptotically to
the target distribution? (Correctness)

▶ How fast does it converge?
(Equivalently) How many steps do we have to perform until
we get a point that is ϵ-close to a point draw from the target
distribution? (mixing time)

▶ Does the initial point of the walk affects the efficiency?
(warm start)

▶ What is the cost per step of the random walk?

▶ Do we assume anything about input polytope P? (isotropic
position, well rounded)
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Target probability distributions

Definition
Let π(x) ∝ e−f(x), where f : Rd → R is a convex function.
π(x) is called log-concave (LC) probability density.

▶ Let π(x) be restricted to convex body K ⊂ Rd.

▶ Special cases: Uniform, Gaussian, Exponential/Boltzmann.
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Ball walk

Ball Walk(K, p, δ, f): convex K ⊂ Rd, p ∈ P , radius δ, f :
Rd → R+

1. Pick a uniform random point x in B(p, δ).

2. return x with probability min

{
1, f(x)f(p)

}
;

return p with the remaining probability.

B

p

q

If the density is not restricted in K, then it is the Metropolis-Hastings

algorithm.
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Hit-and-Run

Hit and Run(K, p, f): convexK ⊂ Rd, point p ∈ P , f : Rd →
R+

1. Pick uniformly a line ℓ through p.

2. return a random point on the chord ℓ ∩K chosen from
the distribution πℓ,f restricted in K ∩ ℓ.

`

p

q

`

p q

▶ Q: How do we compute ℓ ∩K? Can we do it exactly?
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Billiard walk - Uniform case

BW(K, pi, τ, R) [Polyak’14]

1. Generate the length of the trajectory L = −τ ln η, η ∼ U(0, 1).

2. Pick a uniform direction v to define the trajectory. then the
direction becomes v ← v − 2⟨v, s⟩.

3. If the trajectory meets a boundary with internal normal
s, ||s|| = 1,

4. return the end of the trajectory as pi+1.
If the number of reflections exceeds R, then return pi+1 = pi.
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Hamiltonian Monte Carlo

▶ Similar to billiard walk but with non-linear trajectory

▶ Trajectory is defined by Hamiltonian dynamics simulated using
a time-reversible and volume-preserving numerical integrator
(typically the leapfrog integrator)

▶ Reflected: The trajectory stays inside K by using boundary
reflections.

▶ Riemannian: Using the barrier of K the trajectory is always
inside K.
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Mixing time experiment (uniform case)

▶ Uniform sampling from the hypercube [−1, 1]200 and projection to
R3.

▶ Rows: Ball Walk, Coordinate Directions Hit and Run, Random
Directions Hit and Run, Billiard Walk.

▶ Columns: walk length, {1, 50, 100, 150, 200}
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Complexity bounds

Year & Authors Random walk Mixing time∗ Distribution

[Smith: 1986] Hit-and-Run Õ(d3) any LC

[Berbee, Smith: 1987] Coordinate Hit-and-Run Õ(d10) any LC

[Lovasz,Simonovits’90] Ball walk Õ(d3) any LC

[Kannan,Narayanan’12] Dikin walk Õ(d2) uniform (H-polytope)
[Polyak,Dabbene’14] Billiard walk ?? uniform
[Afshar,Domke’15] Reflective HMC ?? any LC (polytopes)

[Lee,Vempala’16] Geodesic walk O(md3/4) uniform (H-polytope)

[Lee,Vempala’17] Remannian HMC Õ(md2/3) any LC (H-polytopes)

[Chen,Dwivedi,Wainwright,Yu’19] John walk Õ(d5/2) uniform (H-polytope)

[Chen,Dwivedi,Wainwright,Yu’19] Vaidya walk O(m1/2d3/2) uniform (H-polytope)

▶ Cost per sample: cost per step × mixing time (#steps).

▶ The cost per step depends on the convex body.

▶ Hit-and-Run (HR): widely used & well studied.

▶ Coordinate Hit-and-Run (CDHR): seems more efficient than HR in
practice.

▶ Most existing software uses either CDHR or HR (H-polytopes).
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MCMC Convergence Diagnostics

How can we evaluate the quality of a sample obtained by a random
walk?

▶ [Convergence diagnostics for Markov chain Monte Carlo,
Vivekananda Roy, ’19].

▶ [Revisiting the Gelman-Rubin Diagnostic, Dootika Vats,
Christina Knudson, ’20].

A MCMC convergence diagnostic can also be used as a
termination criterion for sampling.

Examples: Effective Sample Size (ESS) and psrf (or Rhat)
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Convex bodies

▶ H-polytopes: system of linear inequalities

▶ V-polytopes: convex hull of point sets

▶ Minkowski sums of polytopes

▶ Spectrahedra: feasible sets of linear matrix inequalities



Geometric and algebraic oracles

▶ Membership oracle (Ball walk)

▶ Boundary (intersection) oracle (HnR)

▶ Reflection oracle (Billiard, ReHMC)

▶ Optimization oracle (Minkowski sums, Secondary polytopes)
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Explicit Polytope Representations

A convex polytope P ⊆ Rd can be represented as the

1. convex hull of a pointset {p1, . . . , pm} (V-representation)

2. intersection of halfspaces {h1, . . . , hn} (H-representation)

convex hull problem

vertex enumeration problem

Faces of polytopes: vertices, edges, . . . , facets
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Implicit Polytope Representation (Oracles)

Membership oracle

Given point y ∈ Rd, return yes if y ∈ P otherwise return no.

Boundary oracle

Given point y ∈ P and line ℓ goes through y return the points
ℓ ∩ ∂P

P P

y

`

y
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Problem complexity
Input: Polytope P := {x ∈ Rd | Ax ≤ b} A ∈ Rm×d, b ∈ Rm

Output: Volume of P

Complexity

▶ #P-hard for vertex and for halfspace repres. [DyerFrieze’88]

▶ open if both vertex (V-rep) & halfspace (H-rep)
representation is available

▶ no deterministic poly-time algorithm can compute the volume
with less than exponential relative error [Elekes’86]

▶ randomized poly-time approximation of volume of a convex
body with high probability and arbitrarily small relative
error [DyerFriezeKannan’91]
O∗(d23)→ O∗(m2dω−1/3) [LeeVempala’18],
O∗(md4.5 +md4) [MangoubiVishnoi’19]
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Randomized algorithms

Volume algorithms parts

1. Multiphase Monte Carlo (MMC)
e.g. Sequence of balls, Annealing of functions

2. Sampling via geometric random walks
e.g. grid-walk, ball-walk, hit-and-run, billiard walk

Notes:

▶ MMC (1) at each phase solves a sampling problem (2)

▶ geometric random walks are (most of the times) Marcov
chains where each ”event” is a d-dimensional point

▶ Algorithmic complexity is polynomial in d [Dyer, Frieze,
Kannan’91]
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Multiphase Monte Carlo

▶ Sequence of convex bodies C1 ⊇ · · · ⊇ Cm intersecting P ,
then:

vol(P ) = vol(Pm)
vol(Pm−1)

vol(Pm)
. . .

vol(P1)

vol(P2)

vol(P )

vol(P1)

where Pi = Ci ∩ P for i = 1, . . . ,m.
▶ Estimate ratios by sampling.
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Multiphase Monte Carlo

P0 = B(c, r)

B(c, ρ)

P

P1

▶ Sequence of k cocentric balls,
B0 = B(c, r) ⊆ P ⊆ B(c, ρ) = Bk

▶ Set Pi = P ∩Bi

▶ Estimate vol(P1)
vol(P0)

, vol(P2)
vol(P1)

. . . via sampling

▶ vol(P ) = vol(P0)
∏k

i=1
vol(Pi)

vol(Pi−1)

▶ How large is k?
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Multiphase Monte Carlo

P0 = B(c, r)

B(c, ρ)

P

P1

▶ B(c, 2i/d), i = α, α+ 1, . . . , β,
α = ⌊d log r⌋, β = ⌈d log ρ⌉

▶ Pi := P ∩B(c, 2i/d), i = α, α+ 1, . . . , β,
Pα = B(c, 2α/d) ⊆ B(c, r)

▶ k = d log(ρ/r) where ρ/r is the
”sandwitching ratio”

Using sampling the polytope can be transformed into ”near
isotropic position” such that ρ/r = O(d) [Lovász et al.’97]
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Complexity [KannanLS’97]

Assuming B(c, 1) ⊆ P ⊆ B(c, ρ), the volume algorithm returns an
estimation of vol(P ), which lies between (1− ϵ)vol(P ) and
(1 + ϵ)vol(P ) with probability ≥ 3/4, making

O∗(d5)

oracle calls, where ρ is the radius of a bounding ball for P .

Techniques:
Isotropic sandwitching: O∗(

√
d) and ball walk.

Runtime steps

▶ generates d log d balls

▶ generate N = 400ϵ−2d log d random points in each ball ∩P
▶ each point is computed after O∗(d3) random walk steps
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Multiphase Monte Carlo: general case

Let a sequence of functions {f0, . . . , fm}, fi : Rd → R. Then,

vol(P ) =

∫
P
dx =

∫
P
fm(x)dx

∫
P fm−1(x)dx∫
P fm(x)dx

· · ·
∫
P f0(x)dx∫
P f1(x)dx

∫
P dx∫

P f0(x)dx

Then select fi s.t.,

▶ The number of phases, m, is as small as possible.

▶ Each integral ratio can be efficiently estimated by sampling
from π ∝ fi restricted to P (using geometric random walks).

▶ There is a closed formula for
∫
P fm(x)dx.

complexity = #phases × #points per phase × cost per point
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State-of-the-art
Theory:

Authors-Year Complexity Algorithm
(oracle steps)

[Dyer, Frieze, Kannan’91] O∗(d23) Seq. of balls + grid walk
[Kannan, Lovasz, Simonovits’97] O∗(d5) Seq. of balls + ball walk + isotropy
[Lovasz, Vempala’03] O∗(d4) Annealing + hit-and-run
[Cousins, Vempala’15] O∗(d3) Gaussian cooling (* well-rounded)

[Lee, Vempala’18] O∗(Fd
2
3 ) Hamiltonian walk (** H-polytopes)

Software:

1. [Emiris, F’14] Sequence of balls + coordinate hit-and-run

2. [Cousins, Vempala’16] Gaussian cooling + hit-and-run

3. [Chalikis, Emiris, F’20] Convex body annealing + billiard walk

Notes:

▶ (2) is (theory + practice) faster than (1)

▶ (1),(2) efficient only for H-polytopes

▶ (3) efficient also for V-,Z-polytope, non-linear convex bodies
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Birkhoff polytopes

▶ Given the complete bipartite graph Kn,n = (V,E) a perfect
matching is M ⊆ E s.t. every vertex meets exactly one
member of M

▶ S ⊆ E, χS
e = {1 if e ∈ S, 0 otherwise}

▶ Bn = conv{χM | M is a perfect matching of Kn,n}

▶

▶ # faces of B3: 6, 15, 18, 9; vol(B3) = 9/8

▶ there exist formulas for the volume [deLoera et al ’07] but
values only known for n ≤ 10 after 1yr of parallel computing
[Beck et al ’03]
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Volumes and counting

▶ Given n elements & partial order; order polytope PO ⊆ [0, 1]n

coordinates of points satisfies the partial order
c

a

b a, b, c

partial order: a < b

3 linear extensions: abc, acb, cab

▶ # linear extensions = volume of order polytope · n!
[Stanley’86]

▶ Counting linear extensions is #P-hard [Brightwell’91]



Volume computation Sampling Volume revisited (randomized) Polytopes and Applications

Volumes and counting

▶ Given n elements & partial order; order polytope PO ⊆ [0, 1]n

coordinates of points satisfies the partial order
c

a

b a, b, c

partial order: a < b

3 linear extensions: abc, acb, cab

▶ # linear extensions = volume of order polytope · n!
[Stanley’86]

▶ Counting linear extensions is #P-hard [Brightwell’91]



Volume computation Sampling Volume revisited (randomized) Polytopes and Applications

Volumes and counting

▶ Given n elements & partial order; order polytope PO ⊆ [0, 1]n

coordinates of points satisfies the partial order
c

a

b a, b, c

partial order: a < b

3 linear extensions: abc, acb, cab

▶ # linear extensions = volume of order polytope · n!
[Stanley’86]

▶ Counting linear extensions is #P-hard [Brightwell’91]



Volume computation Sampling Volume revisited (randomized) Polytopes and Applications

Minkowski sum

The Minkowski sum of two convex sets P and Q is:

P +Q = {p+ q | p ∈ P, q ∈ Q}

Volume of zonotopes (sums of segments) is used to test methods
for order reduction which is important in several areas:
autonomous driving, human-robot collaboration and smart grids
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Mixed volume
Let P1, P2, . . . , Pd be polytopes in Rd then the mixed volume is

M(P1, . . . , Pd) =
∑

I⊆{1,2,...,d}

(−1)(d−|I|) ·Vol(
∑
i∈I

Pi)

where the sum is the Minkowski sum.

Example

For d = 2: M(P1, P2) = Vol(P1 + P2)−Vol(P1)−Vol(P2)

P1 P2 P1 + P2
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Applications
Computing integrals for AI

▶ In Weighted Model Integration (WMI), given is a SMT
formula and a weight function, then we want to compute the
weight of the SMT formula.

▶ e.g. SMT formula:

(A & (X > 20) | (X > 30)) & (X < 40)

Boolean formula + comparison operations. Let X has a
weight function of w(X) = X2 and w(A) = 0.3.

▶ WMI answers the question of the weight of this formula i.e.
integration of a weight function over convex sets.

▶ [P.Z.D. Martires et al.2019]

https://arxiv.org/pdf/2001.04566v1.pdf
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Applications in finance
Portfolio analysis

▶ The set of portfolios (investments in a collection of stocks) is
a simplex.

▶ Constraints on investments yield a general polytope.

▶ Portfolios with same volatility (the degree of variation of a
trading price series over time) lie on an ellipsoid.

Randomized geometric tools for anomaly detection in stock markets

[Bachelard,Chalkis,F,Tsigaridas’23]
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Applications in structural biology
[Chalkis,F, Tsigaridas, Zafeiropoulos]

▶ Metabolic networks model the reactions of metabolites in an
organim or system.

▶ Each reaction has a flow or rate called flux.

▶ The set of states of the network where fluxes are in balance
(rate of production = rate of consumption) is a convex
polytope.

▶ Sampling from polytope yield probability densities for reaction
fluxes (example: thioredoxin)
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Current and future state
https://github.com/GeomScale

Problem current future description

volume computation ✓
8 algo. / thousands

of dimensions / fastest
practical estimation

sampling distributions

uniform / gaussian/ Exp ✓
4 algo. / thousands

of dimensions

log-concave densities ✓
HMC /

Langevin Diffusion

sparsity ✓
lazy rounding /

reflection walks (HMC & billiard)
convex optimization

Semidefinite
✓

special cases better than SDPA /
Programming working to improve

Linear
✓

goal: best
Programming open source

multivariate integration
simple MC

✓
hundreds

integration of dimensions
importance

✓
goal: best open

sampling source approximation

Preprocessing ✓
6 rounding algo. /

4 MCMC diagnostics

https://github.com/GeomScale
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More open problems and future directions

▶ MCMC integration/volume with guarantees in practice
(needed in ML/weighted model integration)

▶ Exploit sparsity (Vempala et al. - crHMC, Chen et al. -
PolytopeWalk)

▶ Sampling on the boundary (applications in finance/biology)

▶ Ranomized SDP/LP solver

▶ Applications to counting problems (e.g. # LE)

▶ More efficient volume (reHMC)
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GeomScale org

C++ library: sampling, integration/volume from convex
bodies

Python interface with extra utilities for metabolic network
analysis (FBA, copulas, visualization)

R interface with extra utilities for finance (portfolio
analysis)

————————————————————————————
NumFOCUS Affiliated Project.

Support from an open source community.
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