
Computational Geometry
Polytopes, optimization and beyond

Vissarion Fisikopoulos

Department of Informatics & Telecommunications
National & Kapodistrian University of Athens

Spring 2025



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

What is Linear Programming?

Definition
A linear programming problem asks for a vector x that maximizes
or minimizes a given linear function, among all vectors x that
satisfy a given set of linear inequalities.

Standard Form:
maximize cTx

subject to Ax ≤ b

x ≥ 0

where x ∈ Rn, c ∈ Rn, A ∈ Rm×n, b ∈ Rm
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Example: Minimizing Cost of a Nutritional Mix

▶ A doctor wants to mix two foods to meet vitamin
requirements.

▶ At least 8 units of vitamin A and 10 units of vitamin C are
needed.

▶ Food I: 2 units of A, 1 unit of C per kg, costs $5/kg.

▶ Food II: 1 unit of A, 2 units of C per kg, costs $7/kg.

Let: x = kg of Food I, y = kg of Food II

Minimize Z = 5x+ 7y

Subject to 2x+ y ≥ 8 (Vitamin A)

x+ 2y ≥ 10 (Vitamin C)

x ≥ 0, y ≥ 0
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Geometry of LP

The set of all feasible points of an LP is called the feasible region.
The feasible region is a polytope.

▶ What is the dimension of this polytope?

▶ How many facets does this polytope have?

▶ Does an LP have always a (unique) solution? What are the
polytopes for those edge cases?
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Finding Extreme Points in V-polytopes

▶ A finite set of points {x1, x2, . . . , xm} ⊂ Rn

▶ Identify which points are extreme points of the convex hull:

P = conv(x1, x2, . . . , xm)

▶ For each point xi, solve the LP:

Find λj for j ̸= i

such that xi =
∑
j ̸=i

λjxj∑
j ̸=i

λj = 1, λj ≥ 0

▶ Redundancy removal in H-polytopes via duality
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Maximum Inscribed Ball in an H-Polytope

▶ Find the largest Euclidean ball contained in a polytope P
defined by linear inequalities.

▶ P = {x ∈ Rn | aTi x ≤ bi, i = 1, . . . ,m}
▶ Ball B(x0, r) = {x0 + u | ∥u∥ ≤ r}
▶ LP formulation

max r

subject to aTi x0 + ∥ai∥r ≤ bi, i = 1, . . . ,m

▶ Note: x0 + r ai
∥ai∥ max point in B w.r.t. ai
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Simplex Method
▶ George Dantzig, 1947

▶ Moves along edges of the feasible polytope

▶ Exponential time worst-case, fast in practice

Idea:

1. Start at a basic feasible solution (vertex)

2. Move to adjacent vertex with better objective

3. Repeat until optimality
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Ellipsoid Method

▶ First polynomial-time algorithm for LP (Khachiyan, 1979)

▶ Uses ellipsoids to enclose feasible region and iteratively shrink

▶ Theoretically important, but impractical

▶ Start: E0 ellipsoid containing P

▶ While xi center of Ei not in P (Hi separtes xi from P ) do

▶ Ei+1 ellipsoid contains Ei ∩ {Hi}
▶ Property: the ellipsoids shrink in volume
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Interior Point Methods

▶ First efficient practical polynomial-time algorithm

▶ Moves through interior of feasible region, not on edges

▶ Popular in large-scale optimization

▶ First find an interior point (by solving a simpler LP with at
trivial starting point)

▶ Defines a ”central path” and computes points on it by solving
”similar” optimization problems (typically by Newton’s
method)



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Further Reading

▶ Bertsimas - Introduction to Linear Optimization

▶ Boyd, Vandenberghe - Convex Optimization
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Optimization

Given P a convex body in Rn:

▶ minimize a convex function f in P (convex optimization).

Goal: Randomized approximation algorithms based on sampling
from P with geometric random walks.
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Convex optimization - Special cases
Linear program

▶ The objective function is linear f(x) = c · x.
▶ The body is given as an intersection of m half-spaces.

H-polytope : P = {x | Ax ≤ b, A ∈ Rm×n, b ∈ Rm}
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Convex optimization - Special cases
Semidefinite program

▶ The objective function is linear f(x) = c · x.
▶ The body is given as a Linear Matrix Inequality (LMI).

Spectrahedron : K = {x | A0 + x1A1 + · · ·+ xdAd ⪰ 0},
where Ai: symmetric matrices, B ⪰ 0: B is positive
semidefinite (symmetric with non-negative
eigenvalues)
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Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.

c



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes
Dabbene, Shcherbakov, Polyak, 10’

▶ Input: convex body K, objective function c.

▶ Sample N points under the uniform distribution.

▶ Find the point x minimizing the objective function.

▶ Cut the convex body at x.

▶ Repeat I times.



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Cutting planes

▶ Let rBd ⊆ K ⊆ RBd.

▶ The expected number of phases s.t. |fI − f∗| < ϵ is,

I =

⌈
1

ln(N + 1)
d ln(R/ϵ)

⌉
= O∗(d)
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Exponential sampling and Simulated Annealing
Kalai, Vempala, 06’

Problem: Minimize a linear function f(x) = c · x in body K.

Answer: Sample from πT (x) ∝ e−c·x/T , for T = T0 > · · · > TI .

T0 T1 T2 T3

A sample from πTI
is ϵ-close to the optimal solution with high

probability.
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Simulated Annealing
Fix the sequence of Temperatures

T0 T1 T2 T3

▶ The sequence T0 > · · · > TI is fixed s.t. the L2 norm of πTi

w.r.t. πTi+1 is bounded by a constant,

||πTi/πTi+1 || = EπTi

[
dπTi

dπTi+1

]
=

∫
K

πTi(x)

πT i+1(x)
πTi(x)dx = O(1)

▶ Then πTi is a warm start for πTi+1 (Hit-and-Run).
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Simulated Annealing
Convergence to the optimal solution

▶ Starting with T0 = R (uniform distribution is a warm start).

▶ Set Ti = T0(1− 1√
d
)i, i = 1, . . . , I (Ti is a warm start for

Ti+1).

▶ Knowing that for a temp. T ,

EπT [c · x] ≤ dT +min
x∈K

c · x

▶ I = O∗(
√
d) phases suffices to obtain a solution |fI − f∗| ≤ ϵ.

▶ No sequence of distributions ∝ fi(c · x) can, in general, solve
the problem in less than Ω(

√
d) phases.
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Birkhoff polytopes

▶ Given the complete bipartite graph Kn,n = (V,E) a perfect
matching is M ⊆ E s.t. every vertex meets exactly one
member of M

▶ S ⊆ E, χS
e = {1 if e ∈ S, 0 otherwise}

▶ Bn = conv{χM | M is a perfect matching of Kn,n}

▶

▶ # faces of B3: 6, 15, 18, 9; vol(B3) = 9/8

▶ there exist formulas for the volume [deLoera et al ’07] but
values only known for n ≤ 10 after 1yr of parallel computing
[Beck et al ’03]
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Minkowski sum

The Minkowski sum of two convex sets P and Q is:

P +Q = {p+ q | p ∈ P, q ∈ Q}

Volume of zonotopes (sums of segments) is used to test methods
for order reduction which is important in several areas:
autonomous driving, human-robot collaboration and smart grids
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Mixed volume
Let P1, P2, . . . , Pd be polytopes in Rd then the mixed volume is

M(P1, . . . , Pd) =
∑

I⊆{1,2,...,d}

(−1)(d−|I|) ·Vol(
∑
i∈I

Pi)

where the sum is the Minkowski sum.

Example

For d = 2: M(P1, P2) = Vol(P1 + P2)−Vol(P1)−Vol(P2)

P1 P2 P1 + P2



Linear Programming Randomized Algorithms for Convex Optimization Polytopes and Applications

Mixed volume
Let P1, P2, . . . , Pd be polytopes in Rd then the mixed volume is

M(P1, . . . , Pd) =
∑

I⊆{1,2,...,d}

(−1)(d−|I|) ·Vol(
∑
i∈I

Pi)

where the sum is the Minkowski sum.

Example

For d = 2: M(P1, P2) = Vol(P1 + P2)−Vol(P1)−Vol(P2)

P1 P2 P1 + P2


	Linear Programming
	Randomized Algorithms for Convex Optimization
	

	Polytopes and Applications
	


