Computational Geometry Polytopes, optimization and beyond

Vissarion Fisikopoulos

Department of Informatics & Telecommunications National & Kapodistrian University of Athens

Spring 2025

Randomized Algorithms for Convex Optimization

Polytopes and Applications

What is Linear Programming?

Definition

A linear programming problem asks for a vector x that maximizes or minimizes a given linear function, among all vectors x that satisfy a given set of linear inequalities.

Standard Form:

 $\begin{array}{ll} \mathsf{maximize} & c^T x\\ \mathsf{subject to} & Ax \leq b\\ & x \geq 0 \end{array}$

where $x \in \mathbb{R}^n$, $c \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$

Example: Minimizing Cost of a Nutritional Mix

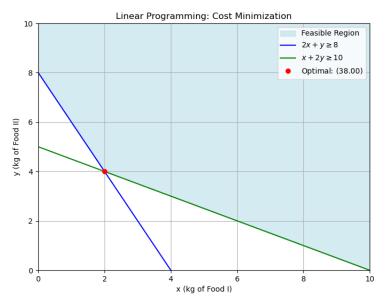
- A doctor wants to mix two foods to meet vitamin requirements.
- At least 8 units of vitamin A and 10 units of vitamin C are needed.
- ► Food I: 2 units of A, 1 unit of C per kg, costs \$5/kg.
- ► Food II: 1 unit of A, 2 units of C per kg, costs \$7/kg.

Let: x = kg of Food I, y = kg of Food II

Minimize
$$Z = 5x + 7y$$

Subject to $2x + y \ge 8$ (Vitamin A)
 $x + 2y \ge 10$ (Vitamin C)
 $x \ge 0, y \ge 0$

Example: Minimizing Cost of a Nutritional Mix



Randomized Algorithms for Convex Optimization

Polytopes and Applications

Geometry of LP

The set of all feasible points of an LP is called the feasible region. The feasible region is a polytope.

- What is the dimension of this polytope?
- How many facets does this polytope have?
- Does an LP have always a (unique) solution? What are the polytopes for those edge cases?

Finding Extreme Points in V-polytopes

- A finite set of points $\{x_1, x_2, \ldots, x_m\} \subset \mathbb{R}^n$
- Identify which points are extreme points of the convex hull:

$$P = \operatorname{conv}(x_1, x_2, \dots, x_m)$$

• For each point x_i , solve the LP:

Find
$$\lambda_j$$
 for $j \neq i$
such that $x_i = \sum_{j \neq i} \lambda_j x_j$
 $\sum_{j \neq i} \lambda_j = 1, \quad \lambda_j \ge 0$

Redundancy removal in H-polytopes via duality

Maximum Inscribed Ball in an H-Polytope

- Find the largest Euclidean ball contained in a polytope P defined by linear inequalities.
- $\blacktriangleright P = \{ x \in \mathbb{R}^n \mid a_i^T x \le b_i, \ i = 1, \dots, m \}$
- Ball $B(x_0, r) = \{x_0 + u \mid ||u|| \le r\}$
- LP formulation

$$\begin{array}{ll} \max & r\\ \text{subject to} & a_i^T x_0 + \|a_i\| r \leq b_i, \quad i=1,\ldots,m \end{array}$$

▶ Note: $x_0 + r \frac{a_i}{\|a_i\|}$ max point in *B* w.r.t. a_i

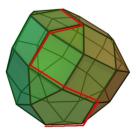
 $\begin{array}{c} {\sf Polytopes \ and \ } {\sf Applications} \\ {\sf 0000} \end{array}$

Simplex Method

- George Dantzig, 1947
- Moves along edges of the feasible polytope
- Exponential time worst-case, fast in practice

Idea:

- 1. Start at a basic feasible solution (vertex)
- 2. Move to adjacent vertex with better objective
- 3. Repeat until optimality



Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

 $\begin{array}{c} {\sf Polytopes \ and \ } {\sf Applications} \\ {\sf 0000} \end{array}$

Ellipsoid Method

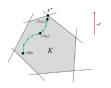
- ► First polynomial-time algorithm for LP (Khachiyan, 1979)
- Uses ellipsoids to enclose feasible region and iteratively shrink
- Theoretically important, but impractical

- Start: E_0 ellipsoid containing P
- While x_i center of E_i not in $P(H_i \text{ separtes } x_i \text{ from } P)$ do
- E_{i+1} ellipsoid contains $E_i \cap \{H_i\}$
- Property: the ellipsoids shrink in volume

Linear Programming

Interior Point Methods

- First efficient practical polynomial-time algorithm
- Moves through interior of feasible region, not on edges
- Popular in large-scale optimization
- First find an interior point (by solving a simpler LP with at trivial starting point)
- Defines a "central path" and computes points on it by solving "similar" optimization problems (typically by Newton's method)



Randomized Algorithms for Convex Optimization

Polytopes and Applications

Further Reading

- Bertsimas Introduction to Linear Optimization
- Boyd, Vandenberghe Convex Optimization

Polytopes and Applications

Linear Programming

Randomized Algorithms for Convex Optimization

Polytopes and Applications

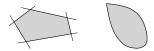
Randomized Algorithms for Convex Optimization 00000000

Polytopes and Applications

Optimization

Given P a convex body in \mathbb{R}^n :

▶ minimize a convex function *f* in *P* (convex optimization).



Randomized Algorithms for Convex Optimization $_{\odot \odot \odot \odot \odot \odot \odot \odot \odot}$

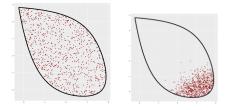
Polytopes and Applications

Optimization

Given P a convex body in \mathbb{R}^n :

▶ minimize a convex function *f* in *P* (convex optimization).

Goal: Randomized approximation algorithms based on sampling from P with geometric random walks.



Convex optimization - Special cases

- The objective function is linear $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$.
- ▶ The body is given as an intersection of *m* half-spaces.

Convex optimization - Special cases

- The objective function is linear $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$.
- The body is given as an intersection of m half-spaces.

H-polytope : $P = \{x \mid Ax \leq b, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m\}$

Convex optimization - Special cases Semidefinite program

- The objective function is linear $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$.
- The body is given as a Linear Matrix Inequality (LMI).

Convex optimization - Special cases Semidefinite program

- The objective function is linear $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$.
- The body is given as a Linear Matrix Inequality (LMI).

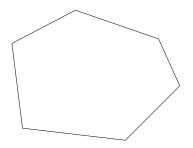
Spectrahedron : $K = \{x \mid A_0 + x_1A_1 + \dots + x_dA_d \succeq 0\}$, where A_i : symmetric matrices, $B \succeq 0$: B is positive semidefinite (symmetric with non-negative eigenvalues)

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

Polytopes and Applications

Cutting planes Dabbene, Shcherbakov, Polyak, 10'

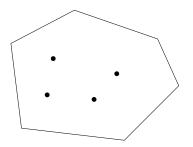
▶ Input: convex body *K*, objective function *c*.



Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

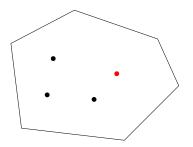
Polytopes and Applications

- ▶ Input: convex body *K*, objective function *c*.
- ► Sample *N* points under the uniform distribution.



Polytopes and Applications

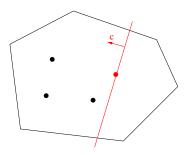
- ▶ Input: convex body *K*, objective function *c*.
- ► Sample N points under the uniform distribution.
- ▶ Find the point *x* minimizing the objective function.



Randomized Algorithms for Convex Optimization ${\tt OOOOOOOO}$

Polytopes and Applications

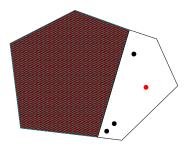
- ▶ Input: convex body *K*, objective function *c*.
- ► Sample N points under the uniform distribution.
- ▶ Find the point *x* minimizing the objective function.
- Cut the convex body at x.



Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

Polytopes and Applications

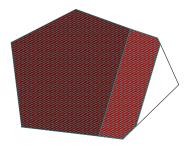
- ▶ Input: convex body *K*, objective function *c*.
- ► Sample N points under the uniform distribution.
- ▶ Find the point *x* minimizing the objective function.
- Cut the convex body at x.
- Repeat I times.



Randomized Algorithms for Convex Optimization ${\tt OOOOOOOO}$

Polytopes and Applications

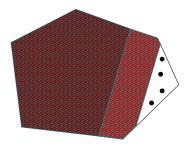
- ▶ Input: convex body *K*, objective function *c*.
- ► Sample N points under the uniform distribution.
- ▶ Find the point *x* minimizing the objective function.
- Cut the convex body at x.
- Repeat I times.



Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

Polytopes and Applications

- ▶ Input: convex body *K*, objective function *c*.
- ► Sample N points under the uniform distribution.
- ▶ Find the point *x* minimizing the objective function.
- Cut the convex body at x.
- Repeat I times.



Randomized Algorithms for Convex Optimization ${\tt OOOOO}{\bullet}{\tt OOO}$

Polytopes and Applications

Cutting planes

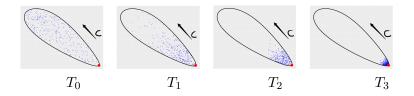
• Let
$$rB_d \subseteq K \subseteq RB_d$$
.

▶ The expected number of phases s.t. $|f_I - f^*| < \epsilon$ is,

$$I = \left\lceil \frac{1}{\ln(N+1)} d\ln(R/\epsilon) \right\rceil = O^*(d)$$

Exponential sampling and Simulated Annealing Kalai, Vempala, 06'

Problem: Minimize a linear function $f(\mathbf{x}) = \mathbf{c} \cdot \mathbf{x}$ in body K. Answer: Sample from $\pi_T(\mathbf{x}) \propto e^{-\mathbf{c} \cdot \mathbf{x}/T}$, for $T = T_0 > \cdots > T_I$.



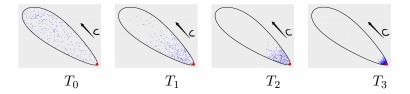
A sample from π_{T_I} is ϵ -close to the optimal solution with high probability.

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

Polytopes and Applications

Simulated Annealing

Fix the sequence of Temperatures



► The sequence $T_0 > \cdots > T_I$ is fixed s.t. the L_2 norm of π_{T_i} w.r.t. $\pi_{T_{i+1}}$ is bounded by a constant,

$$||\pi_{T_i}/\pi_{T_{i+1}}|| = \mathbb{E}_{\pi_{T_i}}\left[\frac{d\pi_{T_i}}{d\pi_{T_{i+1}}}\right] = \int_K \frac{\pi_{T_i}(x)}{\pi_{T_i+1}(x)} \pi_{T_i}(x) dx = O(1)$$

• Then π_{T_i} is a warm start for $\pi_{T_{i+1}}$ (Hit-and-Run).

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000} \bullet$

Polytopes and Applications

Simulated Annealing Convergence to the optimal solution

• Starting with $T_0 = R$ (uniform distribution is a warm start).

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000} \bullet$

Polytopes and Applications

Simulated Annealing Convergence to the optimal solution

- Starting with $T_0 = R$ (uniform distribution is a warm start).
- Set $T_i = T_0(1 \frac{1}{\sqrt{d}})^i$, $i = 1, \dots, I$ (T_i is a warm start for T_{i+1}).

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000} \bullet$

Polytopes and Applications

Simulated Annealing Convergence to the optimal solution

- Starting with $T_0 = R$ (uniform distribution is a warm start).
- Set $T_i = T_0(1 \frac{1}{\sqrt{d}})^i$, $i = 1, \dots, I$ (T_i is a warm start for T_{i+1}).
- Knowing that for a temp. T,

$$\mathbb{E}_{\pi_T}[\mathbf{c} \cdot \mathbf{x}] \le dT + \min_{x \in K} \mathbf{c} \cdot \mathbf{x}$$

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000} \bullet$

Polytopes and Applications

Simulated Annealing Convergence to the optimal solution

- Starting with $T_0 = R$ (uniform distribution is a warm start).
- Set $T_i = T_0(1 \frac{1}{\sqrt{d}})^i$, $i = 1, \dots, I$ (T_i is a warm start for T_{i+1}).
- Knowing that for a temp. T,

$$\mathbb{E}_{\pi_T}[\mathbf{c} \cdot \mathbf{x}] \le dT + \min_{x \in K} \mathbf{c} \cdot \mathbf{x}$$

▶ $I = O^*(\sqrt{d})$ phases suffices to obtain a solution $|f_I - f^*| \le \epsilon$.

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000} \bullet$

Polytopes and Applications

Simulated Annealing Convergence to the optimal solution

- Starting with $T_0 = R$ (uniform distribution is a warm start).
- Set $T_i = T_0(1 \frac{1}{\sqrt{d}})^i$, $i = 1, \dots, I$ (T_i is a warm start for T_{i+1}).
- Knowing that for a temp. T,

$$\mathbb{E}_{\pi_T}[\mathbf{c} \cdot \mathbf{x}] \le dT + \min_{x \in K} \mathbf{c} \cdot \mathbf{x}$$

• $I = O^*(\sqrt{d})$ phases suffices to obtain a solution $|f_I - f^*| \le \epsilon$.

► No sequence of distributions $\propto f_i(\mathbf{c} \cdot \mathbf{x})$ can, in general, solve the problem in less than $\Omega(\sqrt{d})$ phases.

Randomized Algorithms for Convex Optimization

Polytopes and Applications

Linear Programming

Randomized Algorithms for Convex Optimization

Polytopes and Applications

Randomized Algorithms for Convex Optimization

Polytopes and Applications

Birkhoff polytopes

• Given the complete bipartite graph $K_{n,n} = (V, E)$ a perfect matching is $M \subseteq E$ s.t. every vertex meets exactly one member of M

Randomized Algorithms for Convex Optimization

Polytopes and Applications

Birkhoff polytopes

• Given the complete bipartite graph $K_{n,n} = (V, E)$ a perfect matching is $M \subseteq E$ s.t. every vertex meets exactly one member of M

•
$$S \subseteq E, \ \chi_e^S = \{1 \text{ if } e \in S, 0 \text{ otherwise} \}$$

Randomized Algorithms for Convex Optimization

Polytopes and Applications

Birkhoff polytopes

• Given the complete bipartite graph $K_{n,n} = (V, E)$ a perfect matching is $M \subseteq E$ s.t. every vertex meets exactly one member of M

•
$$S \subseteq E, \ \chi_e^S = \{1 \text{ if } e \in S, 0 \text{ otherwise} \}$$

•
$$B_n = conv\{\chi^M \mid M \text{ is a perfect matching of } K_{n,n}\}$$

Randomized Algorithms for Convex Optimization

Polytopes and Applications 0 = 00

Birkhoff polytopes

Given the complete bipartite graph K_{n,n} = (V, E) a perfect matching is M ⊆ E s.t. every vertex meets exactly one member of M

•
$$S \subseteq E, \ \chi_e^S = \{1 \text{ if } e \in S, 0 \text{ otherwise} \}$$

• $B_n = conv\{\chi^M \mid M \text{ is a perfect matching of } K_{n,n}\}$

Randomized Algorithms for Convex Optimization

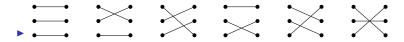
Polytopes and Applications 0 = 00

Birkhoff polytopes

Given the complete bipartite graph K_{n,n} = (V, E) a perfect matching is M ⊆ E s.t. every vertex meets exactly one member of M

•
$$S \subseteq E, \ \chi_e^S = \{1 \text{ if } e \in S, 0 \text{ otherwise} \}$$

•
$$B_n = conv\{\chi^M \mid M \text{ is a perfect matching of } K_{n,n}\}$$



• # faces of B_3 : 6, 15, 18, 9; $vol(B_3) = 9/8$

Randomized Algorithms for Convex Optimization

Polytopes and Applications

Birkhoff polytopes

Given the complete bipartite graph K_{n,n} = (V, E) a perfect matching is M ⊆ E s.t. every vertex meets exactly one member of M

•
$$S \subseteq E, \ \chi_e^S = \{1 \text{ if } e \in S, 0 \text{ otherwise} \}$$

• $B_n = conv\{\chi^M \mid M \text{ is a perfect matching of } K_{n,n}\}$



• # faces of B_3 : 6, 15, 18, 9; $vol(B_3) = 9/8$

▶ there exist formulas for the volume [deLoera et al '07] but values only known for $n \le 10$ after 1yr of parallel computing [Beck et al '03]

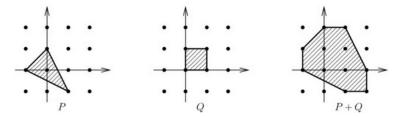
Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

Polytopes and Applications 0000

Minkowski sum

The Minkowski sum of two convex sets P and Q is:

 $P + Q = \{p + q \mid p \in P, q \in Q\}$



Volume of zonotopes (sums of segments) is used to test methods for order reduction which is important in several areas: autonomous driving, human-robot collaboration and smart grids Randomized Algorithms for Convex Optimization

Polytopes and Applications

Mixed volume

Let P_1, P_2, \ldots, P_d be polytopes in \mathbb{R}^d then the mixed volume is

$$M(P_1, \dots, P_d) = \sum_{I \subseteq \{1, 2, \dots, d\}} (-1)^{(d-|I|)} \cdot \operatorname{Vol}(\sum_{i \in I} P_i)$$

where the sum is the Minkowski sum.

Randomized Algorithms for Convex Optimization ${\scriptstyle 00000000}$

Polytopes and Applications

Mixed volume

Let P_1, P_2, \ldots, P_d be polytopes in \mathbb{R}^d then the mixed volume is

$$M(P_1, \dots, P_d) = \sum_{I \subseteq \{1, 2, \dots, d\}} (-1)^{(d - |I|)} \cdot \operatorname{Vol}(\sum_{i \in I} P_i)$$

where the sum is the Minkowski sum.

Example

For
$$d = 2$$
: $M(P_1, P_2) = Vol(P_1 + P_2) - Vol(P_1) - Vol(P_2)$

