
Computational Geometry
Geometric Data Structures

Vissarion Fisikopoulos

Department of Informatics & Telecommunications
National & Kapodistrian University of Athens

Spring 2025



Contents

Interval trees

Range trees

kd trees

R trees



Interval Tree

▶ Stores intervals [li , ri ].

▶ Allows querying all intervals that overlap a query interval or
point.

▶ Built on a balanced BST of midpoints.



Interval Tree: Construction

1. Choose a center point xcenter (e.g., median of interval
endpoints) to ensure balance.

2. Partition the intervals into:
▶ Sleft: intervals completely left of xcenter
▶ Sright: intervals completely right of xcenter
▶ Scenter: intervals overlapping xcenter

3. Recursively build subtrees for Sleft and Sright.

4. Store Scenter in two lists:
▶ Sorted by interval start
▶ Sorted by interval end

Each node stores:

▶ xcenter
▶ Pointers to left/right subtrees

▶ Intervals overlapping xcenter, sorted by start and end



Interval Tree: Querying with a Point

Find all intervals overlapping a query point x .

At each node:
▶ Compare x with xcenter:

▶ If x < xcenter:
▶ start enumerating intervals in the list until the startpoint value

exceeds x
▶ Recurse on the left subtree.

▶ If x > xcenter:
▶ start enumerating intervals in the list until the endpoint value

exceeds x
▶ Recurse on the right subtree.

▶ If x = xcenter:
▶ Report all intervals in Scenter.



Interval Tree: Querying with an Interval

Find all intervals overlapping a query interval q = [qstart, qend].

An interval r = [rstart, rend] overlaps q if:

▶ rstart ∈ q or rend ∈ q; or

▶ r completely encloses q

Query strategy:

1. Use a search tree on interval endpoints:
▶ Perform binary search for qstart and qend.
▶ Collect all intervals whose start or end lies within q.
▶ Mark each interval to avoid duplicates.

2. Handle enclosing intervals:
▶ Pick any point x ∈ q (e.g., midpoint).
▶ Use point query to find all intervals overlapping x .
▶ Add only those that fully enclose q.



Interval Tree Complexity

Operations:

▶ Query: O(log n + k)

▶ Build: O(n log n)

▶ Space: O(n)



Range Search

The problem of finding all points that lie within a given query
range (interval, rectangle, box, etc.).

Input:

▶ A set S of n points in Rd

▶ A query range Q

Output:

▶ All points p ∈ S such that p ∈ Q

Applications:

▶ Database range queries

▶ Geographic information systems (GIS)

▶ Computer graphics and CAD



1D Range Search
n points on the real line, report all points in interval [x1, x2]

A balanced binary search tree (BST) where:
▶ Leaves store the points in sorted order.
▶ Internal nodes store the maximum of the left subtree.

Query Algorithm:
▶ Search for vsplit the lowest common ancestor of x1 and x2.
▶ Traverse from vsplit to x1 and report all points in right

subtrees of nodes where the path goes left.
▶ Traverse from vsplit to x2 and report all points in left subtrees

of nodes where the path goes right.



1D Range Search

Complexity:

▶ Preprocessing: O(n log n)

▶ Query: O(log n + k), where k is the number of reported
points



Range Trees

▶ Construct a primary BST on the first coordinate.

▶ For each node v , build an associated (d − 1)-dimensional
range tree on the remaining coordinates of the points in v ’s
subtree.

▶ Recursively apply this construction until 1D trees are reached.



Range Tree: Construction

1D Case:

▶ Construct a BST on the input points.

▶ Time complexity: O(n log n).

2-Dimensional Case:

▶ Näıve construction time: O(n log2 n).

▶ Optimized: Two sorted lists of points: x and y -coordinate.

▶ Linear time to construct an associated tree on a node.

▶ Improved time: O(n log n).

Optimized dD Construction: O(n logd−1 n)



2D Range Query Using Range Tree

Given a set S of n points in R2, report all points inside a query
rectangle [x1, x2]× [y1, y2].

Query Algorithm:

▶ Find the split node vsplit for [x1, x2] in the primary tree.

▶ Traverse to x1 and x2 as in 1D range search.
▶ For each visited subtree rooted at node v :

▶ Perform a 1D range query on the associated y -structure of v .

Complexity:

▶ O(log2 n + k)

▶ Can be improved to O(log n + k) using fractional cascading

▶ General dimension: O(logd−1 n + k)



k-d Tree
▶ Binary tree

▶ Each node splits space using a hyperplane orthogonal to one
axis.

▶ The splitting axis cycles between x and y axis

▶ Left subtree: points with smaller coordinate along the axis.

▶ Right subtree: points with larger coordinate along the axis.

figure from ”Registration of 3D Points Clouds for Urban Robot Mapping”



k-d Tree: Construction

▶ At each level, choose a splitting axis (cycle through
dimensions).

▶ Select the median point along that axis to balance the tree.

▶ Create a node storing the median point.
▶ Recursively construct left and right subtrees:

▶ Left subtree: points with smaller coordinate.
▶ Right subtree: points with larger coordinate.

▶ Keep one sorted list of points per dimension

Time: O(n log n) Space: O(n)



k-d Tree: Range Searching
Report all points inside a rectangular query region R
▶ At each node:

▶ Check if the point at the node lies in R.
▶ Compare the splitting coordinate with R:

▶ If R lies completely on one side of the hyperplane, recurse
only on that subtree.

▶ If R straddles the hyperplane, recurse on both subtrees.

Complexity: O(
√
n + k)



2D k-d Tree: Query Complexity

Key Idea: How many regions are intersected by a vertical
(horizontal) line?

Recurrence Relation (2 levels):

Q(n) = 1, (n = 1)

Q(n) = 2 · Q(n/4) + 2, (n > 1)

▶ After 2 levels, input size reduces to n/4 in each subproblem.

▶ Line may intersect up to 2 such subregions.

Complexity: Q(n) = O(
√
n + k)



Nearest Neighbor Problem

Given a set of points P ⊂ Rd and a query point q ∈ Rd , find the
point p∗ ∈ P closest to q according to a given distance metric
(usually Euclidean).

Data Structures for NN Search:

▶ kd Tree: Space partitioning via axis-aligned hyperplanes

▶ Voronoi Diagrams: Partition space into nearest neighbor
regions



Nearest Neighbor Search in 2D using kd-trees

▶ Traverse down the tree: At each node, compare q with the
node’s splitting coordinate to decide which subtree to explore
first.

▶ Leaf node: Record the point as the current best candidate.
▶ Backtracking: As recursion unwinds, check if the

hypersphere around q with radius equal to the best distance
found so far intersects the splitting line at the current node.
▶ If yes, explore the other subtree as it may contain closer points.
▶ If no, prune that subtree.

▶ Update best candidate: At each node visited, update the
current best candidate.

Complexity: Worst-case: O(n), in practice: O(log n).



Nearest Neighbor Search using Voronoi Diagrams

Reduce nearest neighbor search to a point location problem in the
Voronoi diagram of the input point set.

Preprocessing:

▶ Given a set P of n points in R2, construct the Voronoi
diagram Vor(P).

▶ Build a point location data structure (e.g., trapezoidal map)
on top of Vor(P).

▶ Time complexity:
▶ Voronoi diagram: O(n log n)
▶ Trapezoidal map (for point location): O(n log n) preprocessing

Query:

▶ Given a query point q, locate the Voronoi cell containing q
using the trapezoidal map.

▶ Query time: O(log n)



Range Tree and kd Tree

Structure Construction Space Range Query NN Query
k-d Tree O(n log n) O(n) O(

√
n + k) O(log n) (avg)

Range Tree O(n log n) O(n log n) O(log n + k) -

Notes:

▶ n: number of input points.

▶ k: number of reported points in range queries.



R-Tree

Height-balanced tree used for indexing spatial objects via their
Minimum Bounding Rectangles (MBRs).

Structure:
▶ Leaf Nodes: Store actual data or pointers to data.

▶ Point data: store the point and its ID.
▶ Polygon data: store the polygon’s MBR and a reference/ID.

▶ Non-Leaf Nodes: Store entries of the form:
▶ (MBR of child subtree, pointer to child node)

▶ Bounding boxes in parent nodes tightly enclose all MBRs in
their children.

Usage:

▶ Range search, nearest neighbor, intersection.

▶ Widely used in spatial databases and GIS systems.



R-Tree


	Interval trees
	Range trees
	kd trees
	R trees

