Computational Geometry Geometric Data Structures

Vissarion Fisikopoulos

Department of Informatics & Telecommunications National & Kapodistrian University of Athens

Spring 2025

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Contents

Interval trees

Range trees

kd trees

R trees

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Interval Tree

- ▶ Stores intervals [*I_i*, *r_i*].
- Allows querying all intervals that overlap a query interval or point.

Built on a balanced BST of midpoints.

Interval Tree: Construction

- 1. Choose a center point x_{center} (e.g., median of interval endpoints) to ensure balance.
- 2. Partition the intervals into:
 - ► S_{left}: intervals completely left of x_{center}
 - Sright: intervals completely right of x_{center}
 - S_{center}: intervals overlapping x_{center}
- 3. Recursively build subtrees for S_{left} and S_{right} .
- 4. Store S_{center} in two lists:
 - Sorted by interval start
 - Sorted by interval end

Each node stores:

- Xcenter
- Pointers to left/right subtrees
- Intervals overlapping x_{center}, sorted by start and end

Interval Tree: Querying with a Point

Find all intervals overlapping a query point x.

At each node:

- Compare x with x_{center}:
 - If $x < x_{center}$:
 - start enumerating intervals in the list until the startpoint value exceeds x
 - Recurse on the left subtree.
 - If $x > x_{center}$:
 - start enumerating intervals in the list until the endpoint value exceeds x

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Recurse on the right subtree.
- If $x = x_{center}$:
 - Report all intervals in S_{center}.

Interval Tree: Querying with an Interval

Find all intervals overlapping a query interval $q = [q_{start}, q_{end}]$.

An interval $r = [r_{\text{start}}, r_{\text{end}}]$ overlaps q if:

▶
$$r_{start} \in q$$
 or $r_{end} \in q$; or

r completely encloses q

Query strategy:

- 1. Use a search tree on interval endpoints:
 - Perform binary search for q_{start} and q_{end}.
 - Collect all intervals whose start or end lies within q.
 - Mark each interval to avoid duplicates.
- 2. Handle enclosing intervals:
 - Pick any point $x \in q$ (e.g., midpoint).
 - Use point query to find all intervals overlapping x.
 - Add only those that fully enclose q.

Interval Tree Complexity

Operations:

• Query: $\mathcal{O}(\log n + k)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- ▶ Build: $\mathcal{O}(n \log n)$
- ► Space: $\mathcal{O}(n)$

Range Search

The problem of finding all points that lie within a given **query** range (interval, rectangle, box, etc.).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Input:

- A set S of n points in \mathbb{R}^d
- A query range Q

Output:

• All points $p \in S$ such that $p \in Q$

Applications:

- Database range queries
- Geographic information systems (GIS)
- Computer graphics and CAD

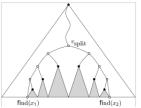
1D Range Search

n points on the real line, report all points in interval $[x_1, x_2]$

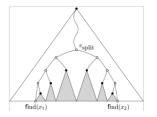
- A balanced binary search tree (BST) where:
 - Leaves store the points in sorted order.
 - Internal nodes store the maximum of the left subtree.

Query Algorithm:

- Search for v_{split} the lowest common ancestor of x_1 and x_2 .
- Traverse from v_{split} to x₁ and report all points in right subtrees of nodes where the path goes left.
- Traverse from v_{split} to x₂ and report all points in left subtrees of nodes where the path goes right.



1D Range Search



Complexity:

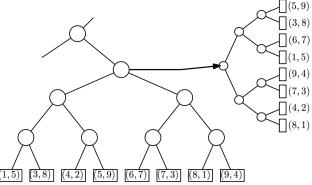
- **Preprocessing:** $\mathcal{O}(n \log n)$
- Query: $\mathcal{O}(\log n + k)$, where k is the number of reported points

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Range Trees

- Construct a primary BST on the first coordinate.
- ► For each node v, build an associated (d 1)-dimensional range tree on the remaining coordinates of the points in v's subtree.
- Recursively apply this construction until 1D trees are reached.

screen shot from Mark van Kreveld slides, http://www.cs.uu.nl/docs/vakken/ga/slides5b.pdf)



Range Tree: Construction

1D Case:

- Construct a BST on the input points.
- Time complexity: $\mathcal{O}(n \log n)$.

2-Dimensional Case:

- Naïve construction time: $\mathcal{O}(n \log^2 n)$.
- Optimized: Two sorted lists of points: x and y-coordinate.

- Linear time to construct an associated tree on a node.
- lmproved time: $\mathcal{O}(n \log n)$.

Optimized $d\mathbf{D}$ **Construction**: $\mathcal{O}(n \log^{d-1} n)$

2D Range Query Using Range Tree

Given a set S of n points in \mathbb{R}^2 , report all points inside a query rectangle $[x_1, x_2] \times [y_1, y_2]$.

Query Algorithm:

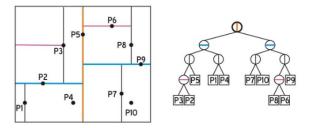
- Find the split node v_{split} for $[x_1, x_2]$ in the primary tree.
- Traverse to x_1 and x_2 as in 1D range search.
- For each visited subtree rooted at node v:
 - Perform a 1D range query on the associated y-structure of v.

Complexity:

- $\mathcal{O}(\log^2 n + k)$
- Can be improved to $O(\log n + k)$ using fractional cascading
- General dimension: $\mathcal{O}(\log^{d-1} n + k)$

k-d Tree

- Binary tree
- Each node splits space using a hyperplane orthogonal to one axis.
- The splitting axis cycles between x and y axis
- Left subtree: points with smaller coordinate along the axis.
- Right subtree: points with larger coordinate along the axis.



k-d Tree: Construction

- At each level, choose a splitting axis (cycle through dimensions).
- Select the median point along that axis to balance the tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Create a node storing the median point.
- Recursively construct left and right subtrees:
 - Left subtree: points with smaller coordinate.
 - Right subtree: points with larger coordinate.
- Keep one sorted list of points per dimension

Time: $\mathcal{O}(n \log n)$ **Space:** $\mathcal{O}(n)$

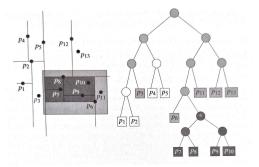
k-d Tree: Range Searching

Report all points inside a rectangular query region R

At each node:

- Check if the point at the node lies in R.
- Compare the splitting coordinate with R:
 - If R lies completely on one side of the hyperplane, recurse only on that subtree.

▶ If *R* straddles the hyperplane, recurse on both subtrees.



Complexity: $\mathcal{O}(\sqrt{n}+k)$

2D k-d Tree: Query Complexity

Key Idea: How many regions are intersected by a vertical (horizontal) line?

Recurrence Relation (2 levels):

$$Q(n) = 1, \ (n = 1)$$

 $Q(n) = 2 \cdot Q(n/4) + 2, \ (n > 1)$

After 2 levels, input size reduces to n/4 in each subproblem.
Line may intersect up to 2 such subregions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Complexity: $Q(n) = O(\sqrt{n} + k)$

Given a set of points $P \subset \mathbb{R}^d$ and a query point $q \in \mathbb{R}^d$, find the point $p^* \in P$ closest to q according to a given distance metric (usually Euclidean).

Data Structures for NN Search:

- **kd Tree:** Space partitioning via axis-aligned hyperplanes
- Voronoi Diagrams: Partition space into nearest neighbor regions

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Nearest Neighbor Search in 2D using kd-trees

- Traverse down the tree: At each node, compare q with the node's splitting coordinate to decide which subtree to explore first.
- Leaf node: Record the point as the current best candidate.
- Backtracking: As recursion unwinds, check if the hypersphere around q with radius equal to the best distance found so far intersects the splitting line at the current node.
 - If yes, explore the other subtree as it may contain closer points.

- If no, prune that subtree.
- Update best candidate: At each node visited, update the current best candidate.

Complexity: Worst-case: O(n), in practice: $O(\log n)$.

Nearest Neighbor Search using Voronoi Diagrams

Reduce nearest neighbor search to a point location problem in the Voronoi diagram of the input point set.

Preprocessing:

- ► Given a set P of n points in ℝ², construct the Voronoi diagram Vor(P).
- Build a point location data structure (e.g., trapezoidal map) on top of Vor(P).
- Time complexity:
 - ► Voronoi diagram: $O(n \log n)$
 - Trapezoidal map (for point location): O(n log n) preprocessing

Query:

- Given a query point q, locate the Voronoi cell containing q using the trapezoidal map.
- Query time: O(log n)

Range Tree and kd Tree

Structure	Construction	Space	Range Query	NN Query
k-d Tree	$O(n \log n)$	<i>O</i> (<i>n</i>)	$O(\sqrt{n}+k)$	$O(\log n)$ (avg)
Range Tree	$O(n \log n)$	$O(n \log n)$	$O(\log n + k)$	-

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Notes:

- *n*: number of input points.
- k: number of reported points in range queries.

R-Tree

Height-balanced tree used for indexing spatial objects via their *Minimum Bounding Rectangles* (MBRs).

Structure:

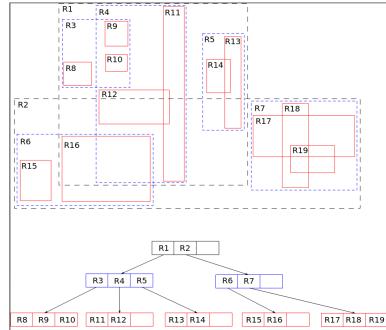
Leaf Nodes: Store actual data or pointers to data.

- Point data: store the point and its ID.
- Polygon data: store the polygon's MBR and a reference/ID.
- **Non-Leaf Nodes:** Store entries of the form:
 - (MBR of child subtree, pointer to child node)
- Bounding boxes in parent nodes tightly enclose all MBRs in their children.

Usage:

- Range search, nearest neighbor, intersection.
- Widely used in spatial databases and GIS systems.

R-Tree



= 990