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   Abstract 

 Despite the initial enthusiasm following the discovery of 
the association of  BRCA  germline mutations with heredi-
tary breast and/or ovarian cancer, in many families affected 
by the syndrome no pathogenic mutations were detected 
in the two genes, although exhaustively searched. Many 
other genes have also been implicated due to their role in 
the same pathway of DNA repair where the  BRCA1/2  genes 
are involved: homologous recombination (HR). Among 
them,  PALB2  clearly emerges as the third breast cancer sus-
ceptibility gene. Its mutations have been detected in most 
populations investigated so far, albeit rarely: in 1 %  – 4 %  
of families negative for  BRCA  mutations, with either par-
tial or complete penetrance. In some populations,  PALB2  
recurrent mutations have been identifi ed and the estimated 
hazard risks are comparable to those of  BRCA  mutations. 
Since new effective targeted therapeutic options are becom-
ing available ( “ synthetic lethality ”  with novel PARP inhibi-
tors, etc.) that are applicable to all those patients with a 
defect in HR pathway, it is imperative to detect all these 
candidate patients. Data obtained from laboratory tests in 
the tumor (simple immunohistochemistry, gene expres-
sion analysis, etc.) can assist in the recognition of a 
specifi c pattern ( BRCA1 ness, HRless) so that even patients 
that look  “ sporadic ”  could benefi t from these targeted ther-
apies. Therefore, a genetic analysis algorithm is proposed, 
although with the advent of Next Generation Sequencing it 
is predicted that in the future most germline genetic altera-
tions and also somatic or epigenetic events in the tumor of 
these genes will be detected.  

   Keywords:     BRCA1 ;    BRCA2 ;   breast cancer;   epigenetics;   giant 
cells;    PALB2 ;   PARP inhibitors.     

  Introduction 

 After about 125 years from the fi rst published description 
of hereditary breast cancer by French physician Paul Broca 
in his assay  Trait é  des Tumeurs  regarding his wife ’ s fam-
ily  (1) , the fi rst culprit breast cancer susceptibility gene was 
discovered in 1994:  BRCA1   (2)  and soon was followed by 
 BRCA2   (3) . In this sense, his memory could be honored by 
paraphrasing the two genes to  BROCA1  and  2 . These genes 
are highly penetrant and pathogenic mutations in heterozy-
gosity confer cumulative risks of breast cancer by age 70: 
65 %  (95 %  CI 51 – 75) for  BRCA1  and 39 %  (95 %  CI 22 – 51) 
for  BRCA2   (4) . Hereditary breast cancer is associated with 
ovarian cancer and  BRCA1  or  BRCA2  mutations confer also 
45 %  (95 %  CI 33 – 54) or 11 %  (95 %  CI 4.1 – 18) cumulative 
risks of ovarian malignancy correspondingly by the same age 
 (4) . Families affected by mutations in these dominant genes 
are characterized by younger ages of onset compared to spo-
radic breast (and ovarian) cancer, increased numbers of cases 
with breast and ovarian cancer in the same patient or bilateral 
breast cancer in female carriers and rarely, breast cancer in 
male carriers. Occasionally, other cancers can also be found 
in family members, such as pancreatic, prostate, melanoma, 
etc.  (5, 6) . 

 Still though, there is a great percentage of these families 
(  <  50 %  depending on the population) where no deleteri-
ous mutations in the two high-risk  BRCA  genes have been 
detected in their peripheral blood DNA, despite technological 
improvements for mutation detection methods and exhaustive 
genetic analysis performed covering additionally for large 
genomic rearrangements and non-exonic sites. 

 Only a low percentage of the remaining families can 
be attributed to germline mutations in genes, such as  p53, 
PTEN, STK11, CDH1,  whose action can be easily recog-
nized clinically since breast cancer is only part of a wider 
syndrome with multiple tumors in many sites and other 
pathologies as well: they cause Li-Fraumeni, Cowden, Peutz-
Jeghers, diffuse gastric carcinoma, correspondingly. The 
percentage up to 100 %  for hereditary breast cancer families 
is predicted to be fi lled either by a combination of low-risk 
but common mutated alleles (to be discovered and validated 
through genome-wide association studies in high numbers of 
patients and controls)  (7)  or by intermediate- (or moderate) 
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risk genes, such as  ATM, CHEK2, BRIP1, PALB2   (8 – 12)  and 
recently discovered  RAD51C   (13) . 

 Biallelic mutations (either homozygous or compound 
heterozygous) in some of the aforementioned genes ( BRCA2, 
BRIP1, PALB2, RAD51C ) lead also to Fanconi anemia: an 
heterogeneous recessive disease characterized by develop-
mental abnormalities, thrombopenia, bone marrow aplasia or 
failure, hematological cancers (leukemias, lymphomas) and 
usually lethal solid tumors early in adulthood (medulloblas-
toma, Wilms ’  tumor). This connection between breast cancer 
and Fanconi anemia was proven also by the investigation 
of the role of these four gene products in a common termi-
nal pathway for DNA repair. This is the error-free homolo-
gous recombination (HR) mechanism and will be described 
in detail, updated with most recent knowledge, in the next 
paragraph of this review. The protein products of the major-
ity of the aforementioned genes participate in the handling of 
DNA damages and/or in cell cycle regulation and their defi cit 
causes tumorigenesis; therefore are classifi ed clearly as tumor 
suppressors. 

  PALB2  emerges nowadays as the third breast cancer suscep-
tibility gene and will be a main topic of this review. Since its 
discovery in 2006  (14) ,  PALB2  mutations have been detected 
 –  albeit at low percentages  –  in most breast cancer populations 
tested so far worldwide in families with either small or large 
number of cases. Studies with some of the recurrent  PALB2  
mutations tested in patients unselected for family history have 
demonstrated risks and penetrances as high as those arising 
from  BRCA  mutations  (15, 16) . It also follows the BRCA pat-
tern: although PALB2 protein is needed in all human cells for 
HR, its mutations lead to tumors mainly in breast tissue (and 
ovaries) and mainly in females. 

 The inclusion of  PALB2  gene (and other HR genes as 
well) in the panel of genes for genetic analysis of heredi-
tary breast cancer is critically discussed. There is defi -
nitely the need to increase diagnostic sensitivity so that all 
carriers of mutations in these HR genes can be detected: 
patients and their progeny can benefi t from increased sur-
veillance and offer of suitable therapeutic options or even 
new approaches (such as  “ synthetic lethality ” ) arising 
from basic research work. We should not forget that some 
of the  “ sporadic ”  cases are due to incomplete penetrance, 
small number of family members, paternal inheritance 
(and adoption in some cases). Both these cases but also 
those with modest family history can clearly benefi t from 
data obtained from the tumor: either histological (grade, 
medullary subtype, etc.) or immunohistochemical (IHC) 
or, even more refi ned, from pattern recognition of gene 
expression in microarrays. The so-called triple-negative 
breast cancer (TNBC) could unmask cases with the pres-
ence of a  BRCA1  mutation  (17) : this is the most aggressive 
phenotype of  BRCA1  cancers ( BRCA1ness ) due most prob-
ably to the multiplicity of roles for the BRCA1 protein. 
Notably, the same aggressive phenotype can be achieved 
by HR defi cit obtained by mutation(s) in other  HR  genes 
(single or in combination) and/or epigenetic silencing of 
their expression.  

  Connection of hereditary breast cancer with 

homologous recombination DNA repair and 

Fanconi anemia 

 Every day due to free radical formation and exposure to 
environmental extrinsic factors (X-rays, UV light, chemical 
substances, etc.) many DNA damages occur per cell per day. 
Double stranded breaks (DSBs) that are caused mainly by 
ionizing radiation (IR) occur at low frequency (eight events/
day/cell, V.A. Bohr, pers. comm.) and are the most toxic ones: 
they should be repaired immediately and in an infallible way. 
The ideal method is the HR and not the error-prone non-ho-
mologous end joining (NHEJ). 

 DSBs are located via the multi-protein BASC complex 
(BRCA1-associated surveillance complex) and the informa-
tion is passed to the transducer ATM protein with phosphory-
lation: then ATM approaches the damage area and  “ marks ”  the 
chromatin protein H2AX by phosphorylation in two residues 
(Figure  1  , left part). This is recognized by the MDC1 complex 
that adds the sturdier poly-ubiquitylation marks at Lys-63 of 
Ub (these are localization signals and not degradation signals 
as those at Lys-48 where the protein is headed to proteasome 
for degradation). These marks attract the RAP80-ABRAXAS- 
BRCA1 complex because of the double ubiquitin interacting 
motif (UIM) domain possessed by receptor associated pro-
tein (RAP)80. Then after BRCA1 SUMOylation and with 
the help of its two BRCT transcactivation domains, the MRN 
(MRE11-RAD50-NBS1) complex, CtBP (C-terminal binding 
protein) and BRIP1 appear successively and prepare single-
stranded extensions covered and protected by RPA (replica-
tion protein A). In the meantime, BRCA1 heterodimerizes 
also with BARD1 (through its RING domain) and exerts 
G1/S phase control and other regulatory functions. Finally, 
binding of BRCA1 to PALB2 localizes BRCA2 to the repair 
foci. Eight RAD51 molecules bind with the eight BRC repeat 
domains of BRCA2 and displace RPA  (18)  and then assisted 
possibly by RAD51C, they perform strand invasion, Holliday 
junction and eventually HR  (19, 21, 22) . 

 Another type of damage, inter-strand crosslinks (ICLs), 
induced by chemicals, such as alkylating agents (platinum 
and derivatives), mitomycin C, diepoxy-butane (DEB), etc., 
need the terminal HR mechanism as well. However, they must 
be detected fi rst and then by-passed using a combination of 
repair mechanisms like nucleotide excision repair (NER) and 
trans-lesion synthesis (TLS) that may introduce errors (point 
mutations) before fi nally being repaired by HR. The ICL 
damage is detected via ATR by FANCM helicase and AP24 
protein and then the Fanconi anemia nuclear core complex is 
formed composed by proteins FANCA, -G, -F, -C, -B, AP100, 
-E and -L  (23)  (Figure  1 , right part). The last two possess 
E3 ubiquitin ligase activity and monoubiquitylate FANCD2 
and FANCI via UBET2T  (20, 24) . The Fanconi anemia core 
complex is then removed and FANCD2 and FANCI recruit 
HR proteins BRCA2 (FAND1), BRIP (FANCJ), PALB2 
(FANCN) and probably RAD51C (FANCO) and newly found 
SLX4 (FANCP). The FANCD2 and FANCI are deubiquity-
lated then via USP1. Biallelic mutations in the genes of most 
of the aforementioned proteins that repair ICL lesions cause 
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different forms of Fanconi anemia. From the total 15 groups 
of Fanconi anemia, FANCA is the most prevalent (66 % ) 
followed by FANCC (10 % ) and FANCG (9 % )  (23) . In this 
model, RAD51 is again the fi nal effector of HR and is not 
clear whether BRCA1 participates since no biallelic BRCA1 
mutations have been found in Fanconi anemia (could be very 
well be that biallelic inactivation of  BRCA1,  but  RAD51  as 
well, could be extremely lethal for any human cell). 

 From these suggested repair models for DSB and ICL 
damages, it is suffi ciently explained why mutations in cer-
tain genes result only in Fanconi anemia, in other genes result 
only in breast and/or ovarian cancer, while in some genes 
result in both syndromes. In this last category, biallelic carri-
ers develop more severe and lethal Fanconi anemia earlier in 
life and heterozygotes develop breast/ovarian cancer usually 
during the 4th – 6th decade of life  (25) . 

 Cells with HR defi cit due to either DNA repair gene 
mutations or loss of expression of these genes will undergo 
either apoptosis (hence the developmental defects in Fanconi 
patients) or carcinogenicity due to broken chromosomes and 
aneuploidy or accumulation of point mutations from errors 
that occurred during NHEJ. Therefore, the ideal laboratory 
test would not be the cumbersome mutation scanning for all 
mentioned DNA repair genes, but rather, as recently sug-
gested, a competence test for HR like the RAD51 score, an 

immunofl uorescent measurement of formed RAD51 foci after 
damage induction  (26) . This test though, is not yet standard-
ized and commercialized and only few reference laboratories 
could provide for it.  

  PALB2 

  PALB2  gene (Gene ID # 79728, OMIM  # 610355), was located 
in a 38.2 Kb area on chromosome 16 (16p12.1)  (14) . It con-
sists of 13 exons transcribing approximately 3.5 Kb mRNA, 
which encodes a protein of 1186 amino-acids (131 KDa) with 
pI 6.4 and a charge of  – 2. Exons 4 and 5 are much larger than 
all others (genomic sequence NG_007406.1, mRNA sequence 
NM_024675.3). C-terminal end of PALB2 protein through 
seven-bladed  β -propeller WD40 (tryptophan-aspartic acid 
rich) domains (AA 836-1186), is anchoring the N-terminal 
end of BRCA2 protein (AA 10-40), as was shown elegantly 
in crystallization experiments, and apparently assists in local-
izing BRCA2 in nuclear chromatin structures; thus justifying 
the initials of  PALB2  gene:  p artner  a nd  l ocalizer of  B RCA 2  
 (14, 27) . Co-localization of PALB2 and BRCA2 in DNA 
repair foci was proven via immunoprecipitation and immuno-
fl uorence experiments following DNA damage DSBs induced 
by IR. Moreover, a defi cit of HR DNA repair was reported 
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after  PALB2  siRNA transfection:  BRCA2  mRNA was fully 
expressed but the protein was unable to enter the nucleus and 
remained in the cytoplasmic portion as found in fractionation 
experiments. In addition, it was recently discovered that the 
N-terminal end of PALB2 also interacts with BRCA1 pro-
tein via the coiled coil regions (PALB2 AA 9-44 with BRCA1 
1393-1424, few residues before the two BRCT domains) 
 (28) . The terminal HR is only performed via extremely 
large molecular complexes and apparently the axis BRCA1-
PALB2-BRCA2 is very central to this mechanism  (29) . 
PALB2 interacts also with RAD51 (AA 1-200, 836-1186) and 
most probably binds directly with DNA at AA 1-200  (30 – 32)  
(Figure  2  , data derived also from GenBank NP_078951.2 and 
UniProKB/Swiss-Prot Q86YC2). 

  PALB2  mutations were detected for the fi rst time in 2007; in 
heterozygosity in families with hereditary breast cancer  (33)  
and biallelic in cases of Fanconi anemia and childhood tumors 
 (34, 35) . Restoration of  PALB2  gene expression restores the 
cellular defect of the Fanconi anemia complementation group 
N and this is the reason that the name  FANCN  was assigned 
in parallel  (34) . In older studies,  BRCA2  gene was found to 
correspond to  FANCD1  and  BRIP1  gene (earlier  BACH1 ) to 
 FANCJ , respectively  (36) . 

 Most pathogenic  PALB2  mutations detected so far are trun-
cating frameshift or stop codons and are scattered throughout 
the entire gene region with no hot-spot areas. Even muta-
tions affecting the C-terminus could still be deleterious, 
e.g., Y1183X in the 13th exon that removes the last four 
residues of the protein  (35)  abolishes the propeller structure 
of C-terminus of PALB2 and destabilizes the whole protein 
 (27) . Using multiplex ligation-dependent probe amplifi ca-
tion (MLPA) methodology, mutations with large genomic 
rearrangements have also been reported  (34, 37) , however, 
they should be considered very rare since in other two studies 
results were not corroborated, although the same technique 

was used  (38, 39) . Until now, deleterious  PALB2  mutations 
are detected in various populations ranging from 1 %  to 2 %  
of women with hereditary breast and ovarian cancer negative 
for mutations in  BRCA1/2  genes  (31, 40 – 44)  up to 3 %  – 4 %  
in one study in the US  (45) . In certain populations, such as 
Finnish or French Canadians, recurrent or founder mutations 
are detected, even in patients that had not been selected based 
on family history  (39, 43) . In the recurrent Finnish  PALB2  
c.1592delT mutation the cumulative risk was estimated to be 
40 %  (95 %  CI 17 – 77) by age 70 years comparable to  BRCA2  
risks  (15)  while in another more recent investigation from 
Australia, the hazard ratio of  PALB2  c.3113G  >  A was esti-
mated to reach a high 91 %  (95 %  CI 44 – 100) by the same age 
 (16) . Both studies were conducted in patients unselected for 
family history. Therefore, it seems that  PALB2  is a moder-
ate risk gene of a  “ higher order ”  compared to the rest of this 
category. In studies with large pedigrees with detected  PALB2  
mutations, there have been families with either complete or 
partial penetrance. 

  PALB2  mutations have also been detected in 1 %  of a popu-
lation of male breast cancer  (46, 47)  and in increased percent-
age (2 % ) in  BRCA (-) bilateral breast cancer patients  (48)  with 
one of the pedigrees including a stomach cancer case as well. 

 In 2009, a connection with familial pancreatic cancer was 
observed  (49)  and demonstrated further in larger studies 
where  PALB2  mutations were detected in 3 %  – 4 %  of famil-
ial pancreatic cancer  (50, 51)  but not necessarily enriched in 
breast-pancreas families as one would expect  (52) . No asso-
ciation was found with melanoma  (53) . 

  PALB2  single nucleotide polymorphisms (SNPs) have been 
already examined for their association with breast cancer  (54)  
and it would be interesting to see the results of any future 
studies relating them with expression levels. 

 Missense mutations detected so far are evaluated with the 
published sets of criteria  (55, 56) , e.g., mutation position 
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is important: an alanine change at position 1025 of PALB2 
protein abolished its binding to BRCA2  (27) . Bioinformatics 
prediction tools that are freeware can also be used in their 
interpretation, such as Polyphen ( www.genetics.bwh.har-
vard.edu/pph ), SIFT ( http://sift.jcvi.org ) and Mutation taster 
( www.mutationtaster.org ). 

 In general, signifi cantly less ovarian cancer is seen in 
 PALB2  families compared to  BRCA1  and  BRCA2  families 
 (31, 44)  and it remains to be seen whether ovarian cancer risk 
is truly increased in PALB2 mutation carriers. The average 
disease onset age is between those for  BRCA1  and  BRCA2 . 
Pathology data from  PALB2  tumors will be discussed later on, 
in the relevant section of this review. 

 Regarding loss of heterozygosity (LOH) in  PALB2  tumors, 
data is confl icting; it has been shown in two studies  (41, 45)  
while in another two, no LOH was detected and this led inves-
tigators to propose that the model of haploinsuffi ciency could 
apply for this tumor suppressor gene  (40, 43) . 

 Somatic  PALB2  mutations have been reported in one study 
so far in the molecular profi le of a metastatic lobular breast 
cancer  (57) .  

  Other risk genes common for breast cancer and 

Fanconi:  RAD51C ,  SLX4  and  BRIP1  

 RAD51C also participates in DNA repair by HR and it is the 
gene product of one of the fi ve  RAD51  paralogs (the rest of 
them are -B, -D, XRCC-2 and -3). The gene is located in posi-
tion 17q23 and consists of 9 exons. Deleterious mutations of 
all types (stop codons, frameshift, missense, splicing) were 
detected in 1.3 %  of German females with the occurrence of 
both breast and ovarian cancer that were otherwise  BRCA1/2  
negative  (13)  and also in ovarian-only cancer  (58) . A  RAD51C  
hypomorphic missense mutation (R258H) in homozygosity 
was also detected in one consanguineous family that suffered 
from a Fanconi-anemia-like disorder with multiple congenital 
abnormalities but with no hematological malignancy (there-
fore proposed to be renamed to  FANCO) . However, the fre-
quency mentioned above was not verifi ed in other populations 
 (31, 59, 60) . Another paralog,  RAD51D  was also recently 
associated with ovarian-only cancer families  (61) . 

  SLX4  is another gene with recently discovered mutations in 
Fanconi anemia (hence the proposed  FANCP )  (62, 63) , how-
ever, when a population of familial German and Byelorussian 
breast cancer patients was examined, few missense mutations 
were detected and only one was predicted in silico to be del-
eterious (G700R)  (64) . 

  BRIP1  or  BACH1  gene is localized in chromosome 17 
(17q22.2). It consists of 20 exons transcribed to an mRNA 
which encodes a 130 Kb protein containing 1249 amino 
acids.  BRIP1  encodes a helicase that contributes to chromo-
somal stability by interacting with the C-terminal domain of 
BRCA1 protein ( BR CA1 I  nteracting  P rotein- terminal heli-
case 1)  (65) . Studies conducted so far, have reported that 
alterations affecting the BRIP1-BRCA1 interaction might be 
responsible for a very small percentage of hereditary breast 
and ovarian cancer  (11, 31, 66 – 68) . Biallelic mutations were 

identifi ed in families with Fanconi anemia (but with no child-
hood solid tumors) that were classifi ed to complementation 
group  FANCJ   (69) . In male breast cancer, there have been 
no signifi cant fi ndings in  BRIP1  gene  (70) . Nevertheless, a 
stop codon mutation detected in exon 17 (P798X) is present 
in 0.3 %  of hereditary prostate cancer  (71) . 

 From the data presented in this section, one could con-
clude that these three recently investigated genes seem more 
 “ Fanconi ”  and  “ ovarian cancer ”  than  “ hereditary breast can-
cer ”  susceptibility genes  –  at least up to now.  

  Diagnostic hints from tumor pathology data  –  

 BRCA1 ness phenotype 

 As noted in the introduction, it is imperative to detect all HR 
gene mutation carriers for appropriate monitoring and therapy 
selection. Earlier studies have observed signifi cant differ-
ences between  BRCA  carriers and sporadic ones in the results 
of immunohistochemistry tests that are performed routinely 
in most tumor specimens. The most characteristic for almost 
80 %  of  BRCA1  breast cancer tumors was triple negativity 
(TNBC) for estrogen receptor (ER), progesterone recep-
tor (PgR) and amplifi cation of  HER2  ( c-erbb2 ) oncogene 
 (72, 73) . 

 In parallel, analogous results to these simple tests were 
obtained by far more expensive molecular profi les where a 
pattern of expression of 176 genes in certain tumors was able 
to clearly distinguish a  “  BRCA1  ”  signature from  BRCA2  and 
sporadic tumors  (74) . With a wider and better selection of 
genes, all breast cancer tumors could be classifi ed initially 
in four categories: the good prognosis luminal types A and B 
(usually ER/PgR positive), HER2-amplifi ed type (responsive 
to herceptin mAb) and the basal type in 15 %  of cases  (75) . 
Lately, another poor prognosis type is added with epithelial 
to mesenchymal transition (EMT) features and claudin-low 
expression  (76) . A substantial majority of tumors with  BRCA1  
germline mutations falls within the basal subtype and as men-
tioned previously belongs also to the simple TNBC classifi ca-
tion; however the basal and TNBC groups overlap but they 
do not coincide  (17) . Lately, new approaches with MLPA 
or microarray have been developed to identify  BRCA1 ness 
 (77, 78) . 

 Unfortunately, the majority of patients cannot obtain 
detailed molecular portraits; few benefi t from the FDA-
approved commercial Onco type  Dx and MammaPrint tests 
(21- and 70-gene expression arrays correspondingly) (more 
can be found in AACC-sponsored and EFCC/EDM-backed 
website www.labtestsonline.org when searching for multi-
parameter gene expression tests for breast cancer). The rest 
can benefi t from the three cheap and simple IHC tests but 
also from additional parameters, e.g., IHC tissue staining for 
CK14 and CK5/6 antigens (basal type markers) increases the 
possibility of detecting a germline  BRCA1  mutation by 148 
times when TNBC phenotype co-exists  (79) . A signifi cant 
overrepresentation of medullary histology subtype is also 
remarkable (18 % ) in BRCA1 tumors compared to the rest 
(3 % )  (72, 80 – 84) . It seems that since BRCA1 is higher in 
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hierarchy in many mechanisms and cell regulations, disrup-
tion of its function through mutation and LOH results in a 
more aggressive phenotype in cancers of mutation carriers, 
especially at a younger age. This is the reason for  BRCA1  
tumors being observed with higher grade histologically and 
with increased proliferation with either Ki-67 IHC staining or 
S-phase measurements with fl ow or image cytometry  (73) . In 
the effort to spot as many  BRCA1  carriers as possible, we have 
also been assisted by the presence of giant cells in two anec-
dotal cases with no apparent family history but with highly 
aneuploid tumors (see impressive Supplementary Figures 
 S1 and S2   )  (81, 82) . This is a rare feature and we report it 
here in order to instigate discussion about its association with 
 BRCA1  mutations  (86, 87) . This aggressive  BRCA1 ness phe-
notype can also be present in 25 %  of sporadic cancer since 
the same results can be achieved through, e.g., a combination 
of silencing  BRCA1  gene expression by promoter CpG island 
methylation and somatic mutations. 

 Where does  PALB2  stand ?  In patients with  PALB2  muta-
tions tumor histopathological characteristics (histological 
type, IHC results for hormone receptors ER/PgR, and HER2 
oncogene) resemble to cancers caused by either  BRCA1  or 
 BRCA2  mutations  (31, 39 – 42, 48) . Therefore, some  PALB2  
tumors are TNBC (about 40 % , Reis-Filho, pers. comm.). 
Only one study reported data for p53 and Ki-67 IHC from one 
tumor  (41) . Due to the limited availability of  PALB2  tumors 
features like aneuploidy, presence of medullary subtype and 
giant cells, pattern of gene expression (do they belong to the 
basal subtype ? ) are not available so far. At the moment, no 
safe conclusions can be drawn regarding whether pathology 
is affected by  PALB2  mutation position and/or combination of 
LOH and polymorphism in other genes.  

  Therapeutic options for the treatment of TNBC 

or cancer with homologous recombination 

defi cit 

 In the era of Personalized Medicine, hereditary breast can-
cer patients should be offered the best therapeutic options 
according to their genetic profi le. Patients with defects in 
HR could certainly benefi t by using chemotherapeutics that 
increase the number of infl icted DSBs and ICLs, such as plat-
inum derivatives and MMC  (88) . Both patients and mutation 
carriers should be monitored regularly with magnetic reso-
nance imaging (MRI) for earlier detection of small malignant 
lesions and be advised about prophylactic bilateral mastec-
tomy and/or salpingo-oophorectomy, especially after child-
bearing or reaching 40 years old  (89 – 91) . Chemoprevention 
strategies for carriers (e.g., with tamoxifen), special diets  (92)  
and detection of circulating tumor cells as a prognostic tool 
for patients remain to be tested in large cohorts  (93) . So far 
no other specifi c guidelines regarding clinical management 
of  PALB2  or any other HR gene mutation carriers or patients 
exist besides those available for  BRCA  mutation carriers. 

  “ Synthetic lethality ”  is a new concept derived from basic 
research and has been proposed to be suitable for carriers of 
a defect in one of the DNA repair mechanisms, e.g., HR in 

TNBC and/or  BRCA1 ness tumors  (88) . The principle is as 
follows: if only a single type of chemotherapy is administered 
(e.g., platinum) in patients bearing a mutation in this pathway, 
cancer cells may manage to survive by increasing activity of 
other repair paths, e.g., base excision repair (BER). However, 
if an inhibitor of this other pathway is co-administered, e.g., 
a  p oly ( A DP- r ibose)  p olymerase 1 (PARP1) inhibitor that 
blocks BER, then cancer cells will eventually die while normal 
cells will manage to survive since they have one of the repair 
mechanisms intact  (22) . First clinical trials with such inhibi-
tors (BSI-201-Iniparib and AZD2281-Olaparib) have been 
performed in  BRCA  patients  (94, 95)  and in combination with 
chemotherapy in metastatic TNBC patients  (96)  with accept-
able results and no adverse reactions. However, in larger stud-
ies both inhibitors failed to show clear statistical benefi t in 
either progression-free survival or overall survival effi cacy 
points and these trials ended. Reasons for these inhibitors not 
working could be due to lack of drug selectivity or even resis-
tance due to a reverse  BRCA  mutation  (97, 98) . More knowl-
edge regarding their mechanism of action should certainly 
be acquired  (99) . Possibly, novel inhibitors in the pipeline 
(AB-899-Neliparib, AG-014699-Rucaparib, MK4827 etc) or 
future production of more selective inhibitors for PARP1 (and 
not for PARP2) may show survival benefi t for the patients 
and also provide appropriate chemoprophylaxis tools for car-
riers of  BRCA1  mutations. This should be applicable also for 
mutation carriers of other genes where there is also defect 
in the same DNA repair path, e.g.,  PALB2,  (44) which was 
shown elegantly with a PALB2-defi cient cell line treated with 
Olaparib  (30) . These observations and proposals can certainly 
be extended to tumors with hypermethylated promoters of 
these genes, e.g.,  BRCA1  CpG island hypermethylation has 
already predicted in vitro sensitivity for three new experimen-
tal PARP1 inhibitors  (100, 101) . Another recently introduced 
provocative idea is to render artifi cially tumor cells  “ BRCA-
less ”  (or  “ HR-less ” ) by inhibiting upstream genes, e.g., CDK1 
in addition to PARP1  (102) .  

  Expert opinion for genetic analysis algorithm 

for hereditary breast and/or ovarian cancer 

 Genetic analysis for hereditary breast and/or ovarian cancer is 
very expensive and laborious. There exist software programs 
that may assist in genetic counseling of these patients or people 
with appropriate indications and can calculate the possibility 
for a person being a  BRCA  mutation carrier and thus support 
the value of genetic analysis. Such tools include BRCA Risk 
calculator from Myriad, BOADICEA  (103) , BRCAPRO, 
IBIS, FHAT, Penn, Manchester score, etc. and there exist also 
references for their comparative assessment  (104) . Obviously, 
any future versions of these software programs  –  pursuant to 
the updated data mentioned in the pathology section  –  must 
include apart from age of onset and number of family mem-
bers with the disease: i) additional information from histol-
ogy, IHC routine testing (when available) and observations, 
such as aneuploidy and proliferation indices, gene expression 
analysis, etc.; and ii) the possibility of additional testing in 
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the rest of HR genes (e.g.,  PALB2, BRIP1, RAD51C,  etc.) 
depending on population mutation frequencies and the pres-
ence of specifi c founder or recurrent mutations. 

 Therefore, after proper genetic counseling and gathering 
of all data demonstrating the need for genetic analysis, the 
next logical step would be, as indicated in Figure  3   (outer 
circle), testing for recurrent population-specifi c mutations, 
e.g.,  BRCA1  5382insC [or more appropriately c.5266dupC 
according to the latest HGVS nomenclature guidelines  (105) ] 
for Eastern Europeans and Ashkenazi Jewish populations  (85, 
106, 107) ,  BRCA2  995del5 for Icelanders  (108) , also  PALB2  
c.1592delT for Finnish and  CHEK2  c.1100delC for North 
European populations  (11) , etc. Whenever two or more recur-
rent mutations exist within the same exon, a fast scanning 
method would be more appropriate for their reliable detection 
 (109) . 

 A second step would be analysis for all  BRCA1  and  BRCA2  
coding areas and splicing sites since mutations are scattered 
throughout the genes with no mutation hot-spots. This is per-
formed by DNA Sequencing in Myriad Labs in the US (the 
only place allowed for commercial testing in the US after 
regaining patent rights in July 2011) but more often with 
a combination of methods elsewhere in the world. As seen 
in BIC database ( http://research.nhgri.nih.gov/bic ) a web 
site where information about BRCA mutations is deposited 
(should extend to the other HR genes as well), most deleteri-
ous mutations are truncating; therefore the protein truncation 
test (PTT) seems a wise choice, at least in large exons,  (85, 
110, 111)  and nowadays new developments of the method 
combined with an ELISA format have been published  (112) . 
For the small exons, dHPLC  (113, 114)  or newly emerged 
High Resolution Melting Curve Analysis (HRMA)  (115 – 118)  
are excellent and inexpensive choices. With the application 
of these last two techniques or with DNA sequencing, many 
missense and/or unclassifi ed variants are usually revealed 
and have to be interpreted carefully, as pointed earlier in the 

section of  PALB2  mutations. If not performed simultaneously, 
in some populations it might be wise to start with one gene, 
e.g.,  BRCA1  if its mutations are overrepresented in the spe-
cifi c population, and then proceed with  BRCA2 . 

 Third step, would be the evaluation of large genomic rear-
rangements, mostly for  BRCA1,   (119)  with methodologies, 
such as MLPA  (120)  or real time quantitative PCR, e.g., 
QMPSF  (121) , long-range PCR, etc. For some populations, 
there is probably need to upgrade them in the fi rst step, e.g., 
duplication of  BRCA1  exon 13 for North Europeans, specifi c 
mutations for the Dutch people, etc. 

 The next step, if all previous analysis turns out negative, 
should be to extend the search for germline mutations to other 
HR genes ( PALB2,  etc.) if there is suffi cient ethnic population 
data to support it (e.g., testing about 1000  BRCA (-) samples) 
 (44, 45) . 

 Finally, if everything else was negative, epigenetic study 
of the tumor DNA might help signifi cantly as an adjunct tool 
in the selection of targeted therapy, as CpG island promoter 
methylation is a frequent event in the  BRCA1  gene  (122)  and 
at a lower percentage (about 8 %  of tumors) in few studies that 
examined  PALB2   (123, 124) .  

  Outlook 

 With the advent of Next Generation Sequencing methods and 
the simplicity and automation they provide, it is very likely 
that all 100 %  of families with hereditary breast and/or ovarian 
cancer will have their mutations identifi ed within the whole 
spectrum of DNA repair genes; even in these loci where muta-
tions have been detected very rarely so far. A research group in 
the US is extending coverage for 21 cancer genes in Illumina 
GA IIx with exon capture of not only a signifi cant fraction of 
the aforementioned genes but also the MMR colorectal can-
cer genes:  MLH1, MSH2, MSH6, PMS1, PMS2, MUTYH  with 

Genetic counseling

Next generation sequencing
(better in Ca genes only)

Population -specific
recurrent mutations

(e.g., BRCA1 c.5266dupC etc)

BRCA1/2 exonic, splice sites
Large rearrangements (mainly BRCA1),

PALB2 and other HR genes

Epigenetics in tumor
(BRCA1 methylation etc)

 Figure 3    Algorithm for hereditary breast cancer genetic analysis for most countries (outer circle). Those health systems or individuals who 
can afford the costs of Next Generation Sequencing could follow the inner circle in the future.    
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100 %  accuracy  (125) . Use of other platforms for specialized 
Next Generation  BRCA  diagnostics is also expected to follow 
soon (e.g., with pyrosequencing methodology in the Roche 
454 GS-FLX etc.). 

 Increased demand by informed physicians and patients and 
improvements in the technology will eventually reduce costs 
and increase prevalence of the method. In this context, more 
carriers that look  “ sporadic ”  will be detected and will ben-
efi t from the new therapeutic options, thus making the whole 
diagnostic approach more cost-effective for the Health sys-
tems (Figure  3 , inner circle). The detected mutations might be 
deleterious but there will be also cases with a combination of 
hypomorphic mutations and polymorphisms in a plethora of 
genes, with the fi nal result being always the same: an overall 
HR defi cit. Epigenome analysis of bisulfi te-converted DNA 
will certainly become more available and will fi ll the remain-
ing gap in hereditary breast cancer genetics.  

  Points to remember  

   Genetic counseling is an absolute necessity both before and • 
after laboratory testing and a signed informed consent from 
the patient is obligatory. Since the genetic basis of cancer 
will be continually updated with information about ger-
mline and somatic mutations, there will be increased needs 
for training of laboratory professionals in cancer genetics 
and appropriate certifi cation for genetic counseling in this 
fi eld. This training will be also very useful in the interaction 
with oncologists and in the effort for the interpretation of 
theranostics (diagnostic tests with therapeutic implications, 
e.g.,  HER2, k-ras, EGFR,  etc.).  
  No direct-to-consumer (DTC) testing should be advised: • 
false negatives results that might arise due to test limita-
tions should be adequately explained and positive results 
should be always provided within a frame of medical ser-
vice with proper psychological support and medical advice 
about the therapeutic options.  
  Testing laboratories must comply with ISO15189 accredi-• 
tation requirements: special guidelines are available for 
increasing analytical and diagnostic sensitivity and speci-
fi city and performing method validation with appropriate 
reference materials  (126, 127) . Laboratories should per-
form internal quality control and participate regularly in 
external quality assessment schemes (EQAs)  (128) .  
  For any mutation detected, nomenclature should be as-• 
signed according to the latest HGVS guidelines  (105) . Any 
mutation detected with Next Generation methods should 
be always verifi ed by classical DNA Sanger Sequencing 
 (129) .     

  Highlights  

    • BRCA1  and  BRCA2  are still the main hereditary breast can-
cer susceptibility genes.  

   • PALB2  emerges as the 3rd important gene and although 
rarely mutated, its inclusion in genetic analysis is justifi -
able, at least in some populations.  
  All of the above genes play a central role in the terminal • 
pathway of DNA repair through error-free HR mechanism.  
  Biallelic mutations of two of the genes ( • BRCA2  and  PALB2 ) 
have been detected in patients of the complementation 
groups D1 and N in Fanconi anemia.  
  Tumor pathology and biological characteristics (histo-• 
logical features, e.g., grade, medullary histotype, triple 
negativity in routine IHC data, aneuploidy and high pro-
liferation, gene expression, etc.) can provide valuable hints 
for the presence of mutations in one of the above genes.  
  The detection of such pathogenic mutations can guide ther-• 
apy and offer additional options, e.g., synthetic lethality 
with novel PARP inhibitors.  
  Genetic analysis should always begin with population-spe-• 
cifi c mutations (particularly in any of the three genes), then 
continue with  BRCA  genetic analysis in coding areas and 
then proceed with either large  BRCA1  rearrangements or 
 PALB2  analysis depending on the population and pathol-
ogy data.  
  Next Generation Sequencing for coding/intronic areas of • 
all genes involved in DNA repair in peripheral blood and 
also their epigenome/somatic analysis in the tumor will 
certainly be more available in the future and will provide 
cost-effective diagnostics.      
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 Supplementary Figure S1    Giant cell with nuclear pleomorphism 
(H&E stain,   ×  400) from a 40-year-old woman with triple-negative 
medullary breast cancer but with no family history (adopted). PTT 
analysis revealed a  BRCA1  R1203X mutation  (82) .    
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 Supplementary Figure S2    (A) Giant cell next to normal cells 
(Feulgen-stained nuclei) and (B) ploidy analysis by image cytom-
etry from imprints from a TNBC tumor with high Ki-67 prolifera-
tion (47-year-old woman with no family history who also developed 
ovarian cancer at the age of 48). 
 The arrow-indicated giant cell has a DNA Index result of 6.3 (or else 
48 pg DNA/nucleus) and is circled in the cell-cycle histogram. PTT 
analysis revealed a  BRCA1  3896delT mutation  (85) .    
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