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Delay Models
in Data Networks

3.1 INTRODUCTION

One of the most important perfonnance measures of a data network is the average delay
required to deliver a packet from origin to destination. Furthennore, delay considerations
strongly influence the choice and perfonnance of network algorithms, such as routing and
flow control. For these reasons, it is important to understand the nature and mechanism
of delay, and the manner in which it depends on the characteristics of the network.

Queueing theory is the primary methodological framework for analyzing network
delay. Its use often requires simplifying assumptions since, unfortunately, more real-
istic assumptions make meaningful analysis extremely difficult. For this reason, it is
sometimes impossible to obtain accurate quantitative delay predictions on the basis of
queueing models. Nevertheless, these models often provide a basis for adequate delay
approximations, as well as valuable qualitative results and worthwhile insights.

In what follows, we will mostly focus on packet delay within the communication
subnet (i.e., the network layer). This delay is the sum of delays on each subnet link
traversed by the packet. Each link delay in tum consists of four components.
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1. The processinR delay between the time the packet is correctly received at the head
node of the link and the time the packet is assigned to an outgoing link queue
for transmission. (In some systems, we must add to this delay some additional
processing time at the DLC and physical layers.)

2. The queueinR delay between the time the packet is assigned to a queue for trans-
mission and the time it starts being transmitted. During this time, the packet waits
while other packets in the transmission queue are transmitted.

3. The transmission delay between the times that the first and last bits of the packet
are transmitted.

4. The propagation delay between the time the last bit is transmitted at the head
node of the link and the time the last bit is received at the tail node. This is
proportional to the physical distance between transmitter and receiver; it can be
relatively substantial, particularly for a satellite link or a very high speed link.

This accounting neglects the possibility that a packet may require retransmission
on a link due to transmission errors or various other causes. For most links in practice,
other than multiaccess links to be considered in Chapter 4, retransmissions are rare and
will be neglected. The propagation delay depends on the physical characteristics of the
link and is independent of the traffic carried by the link. The processing delay is also
independent of the amount of traffic handled by the corresponding node if computation
power is not a limiting resource. This will be assumed in our discussion. Otherwise,
a separate processing queue must be introduced prior to the transmission queues. Most
of our subsequent analysis focuses on the queueing and transmission delays. We first
consider a single transmission line and analyze some classical queueing models. We then
take up the network case and discuss the type of approximations involved in deriving
analytical delay models.

While our primary emphasis is on packet-switched network models, some of the
models developed are useful in a circuit-switched network context. Indeed, queueing
theory was developed extensively in response to the need for perfonnance models in
telephony.

3.1.1 Multiplexing of Traffic on a Communication Link

The communication link considered is viewed as a bit pipe over which a given number
of bits per second can be transmitted. This number is called the transmission capacity of
the link. It depends on both the physical channel and the interface (e.g., modems), and is
simply the rate at which the interface accepts bits. The link capacity may serve several
traffic streams (e.g., virtual circuits or groups of virtual circuits) multiplexed on the link.
The manner of allocation of capacity among these traffic streams has a profound effect
on packet delay.

In the most common scheme, statistical multiplexinR, the packets of all traffic
streams are merged into a single queue and transmitted on a first-come first-serve basis. A
variation of this scheme, which has roughly the same average delay per packet, maintains
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a separate queue for each traffic stream and serves the queues in sequence one packet
at a time. However, if the queue of a traffic stream is empty, the next traffic stream is
served and no communication resource is wasted. Since the entire transmission capacity
C (bits/sec) is allocated to a single packet at a time, it takes L / C seconds to transmit a
packet that is L bits long.

In time-division (TOM) and frequency-division multiplexing (FOM) with m traffic
streams, the link capacity is essentially subdivided into m portions-one per traffic
stream. In FOM, the channel bandwidth W is subdivided into m channels each with
bandwidth W /m (actually slightly less because of the need for guard bands between
channels). The transmission capacity of each channel is roughly C /m, where C is
the capacity that would be obtained if the entire bandwidth were allocated to a single
channel. The transmission time of a packet that is L bits long is Lm/C, or m times
larger than in the corresponding statistical multiplexing scheme. In TOM, allocation is
done by dividing the time axis into slots of fixed length (e.g., one bit or one byte long,
or perhaps one packet long for fixed length packets). Again, conceptually, we may view
the communication link as consisting of m separate links with capacity C /m. In the case
where the slots are short relative to packet length, we may again regard the transmission
time of a packet L bits long as Lm/C. In the case where the slots are of packet length,
the transmission time of an L bit packet is L/C, but there is a wait of (m - 1) packet
transmission times between packets of the same stream.

One of the themes that will emerge from our queueing analysis is that statistical
multiplexing has smaller average delay per packet than either TOM or FOM. This is
particularly true when the traffic streams multiplexed have a relatively low duty cycle.
The main reason for the poor delay performance of TOM and FOM is that communication
resources are wasted when allocated to a traffic stream with a momentarily empty queue,
while other traffic streams have packets waiting in their queue. For a traffic analogy,
consider an m-lane highway and two cases. In one case, cars are not allowed to cross
over to other lanes (this corresponds to TOM or FOM), while in the other case, cars can
change lanes (this corresponds roughly to statistical multiplexing). Restricting crossover
increases travel time for the same reason that the delay characteristics of TOM or FOM
are poor: namely, some system resources (highway lanes or communication channels)
may not be utilized, while others are momentarily stressed.

Under certain circumstances, TOM or FOM may have an advantage. Suppose that
each traffic stream has a "regular" character (i.e., all packets arrive sufficiently apart
so that no packet has to wait while the preceding packet is transmitted.) If these traffic
streams are merged into a single queue, it can be shown that the average delay per packet
will decrease, but the variance of waiting time in queue will generally become positive
(for an illustration, see Prob. 3.7). Therefore, if maintaining a small variability of delay
is more important than decreasing delay, it may be preferable to use TOM or FOM.
Another advantage of TOM and FOM is that there is no need to include identification of
the traffic stream on each packet, thereby saving some overhead and simplifying packet
processing at the nodes. Note also that when overhead is negligible, one can afford to
make packets very small, thereby reducing delay through pipelining (cf. Fig. 2.37).
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3.2 QUEUEING MODELS-LITTLE'S THEOREM

We consider queueing systems where customers arrive at random times to obtain service.
In the context of a data network, customers represent packets assigned to a communication
link for transmission. Service time corresponds to the packet transmission time and is
equal to LIC, where L is the packet length in bits and C is the link transmission capacity
in bits/sec. In this chapter it is convenient to ignore the layer 2 distinction between
packets and frames; thus packet lengths are taken to include frame headers and trailers.
In a somewhat different context (which we will not emphasize very much), customers
represent ongoing conversations (or virtual circuits) between points in a network and
service time corresponds to the duration of a conversation. In a related context, customers
represent active calls in a telephone or circuit switched network and again service time
corresponds to the duration of the call.

We shall be typically interested in estimating quantities such as:

1. The average number of customers in the system (i.e., the "typical" number of
customers either waiting in queue or undergoing service)

2. The average delay per customer (i.e., the "typical" time a customer spends waiting
in queue plus the service time).

These quantities will be estimated in terms of known information such as:

1. The customer arrival rate (i.e., the "typical" number of customers entering the
system per unit time)

2. The customer service rate (i.e., the "typical" number of customers the system serves
per unit time when it is constantly busy)

In many cases the customer arrival and service rates are not sufficient to determine
the delay characteristics of the system. For example, if customers tend to arrive in
groups, the average customer delay will tend to be larger than when their arrival times
are regularly spaced apart. Thus to predict average delay, we will typically need more
detailed (statistical) information about the customer interarrival and service times. In
this section, however, we will largely ignore the availability of such information and see
how far we can go without it.

3.2.1 Little's Theorem

We proceed to clarify the meaning of the terms "average" and "typical" that we used
somewhat liberally above in connection with the number of customers in the system, the
customer delay, and so on. In doing so we will derive an important result known as
Little's Theorem.

Suppose that we observe a sample history of the system from time t = 0 to
the indefinite future and we record the values of various quantities of interest as time
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(3.1)

progresses. In particular, let

N(t) = Number of customers in the system at time t

aCt) = Number of customers who arrived in the interval [0, t]

T; = Time spent in the system by the i th arriving customer

Our intuitive notion of the "typical" number of customers in the system observed up to
time t is

Nt = t N(T) dT
. t io

which we call the time average of N(T) up to time t. Naturally, Nt changes with the
time t, but in many systems of interest, Nt tends to a steady-state N as t increases, that
is,

N = lim Nt

In this case, we call N the steady-state time average (or simply time average) of N(T).
It is also natural to view

At = a(t)
t

as the time GI'erage arrival rate over the interval [0. tj. The steady-state arrival rate is
defined as

A= lim At
t-x

(assuming that the limit exists). The time average of the customer delay up to time t is
similarly defined as

,\,0(1) T
T - 6;=0 I

t - net)

that is, the average time spent in the system per customer up to time t. The steady-state
time average customer delay is defined as

T = lim T t

(assuming that the limit exists).
It turns out that the quantities N, A, and T above are related by a simple formula

that makes it possible to determine one given the other. This result, known as Little's
Theorem, has the form

N=AT

Little's Theorem expresses the natural idea that crowded systems (large N) are associated
with long customer delays (large T) and reversely. For example, on a rainy day, traffic
on a rush hour moves slower than average (large T), while the streets are more crowded
(large N). Similarly, a fast-food restaurant (small T) needs a smaller waiting room
(small N) than a regular restaurant for the same customer arrival rate.
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The theorem is really an accounting identity and its derivation is very simple. We 
will give a graphical proof under some simplifying assumptions. Suppose that the system 
is initially empty [N(O) = 0] and that customers depart from the system in the order they 
arrive. Then the number of arrivals aCt) and departures /3(t) up to time t form a staircase 
graph as shown in Fig. 3.1. The difference aCt) - /3(t) is the number in the system N(t) 
at time t. The shaded area between the graphs of aCT) and /3(T) can be expressed as 

lot N(T)dT 

and if t is any time for which the system is empty [N(t) = 0], the shaded area is also 
equal to 

Dividing both expressions above with t, we obtain 

1 it 1 a(t) aCt) I:,:,,(t) Ti 
- N(T) dT = - '\;"""' Ti = -'- .=\ 
tot 6 t aCt) ,

<""j 

or equivalently, 

Little's Theorem is obtained assuming that 

Nt -+ N, At -+ A, Tt -+ T 

and that the system becomes empty infinitely often at arbitrarily large times. With a mi- ' 
nor modification'in the preceding argument, the latter assumption becomes unnecessary. 
To see this, note that the shaded area in Fig. 3.1 lies between I:flt{ Ti and Ti , so 
we obtain 

/3(t) Ti < N < A 1', 
t /3(t) - t - t t 

Assuming that Nt -+ N, At -+ A, Tt -+ T, and that the departure rate /3(t)/t up to time 
t tends to the steady-state arrival rate A, we obtain Little's Theorem. 

The simplifying assumptions used in the preceding graphical proof can be relaxed 
considerably, and one can construct an analytical proof that requires only that the limits 
A = limt-->oc a(t)/t, 8 limt-->oc /3(t)/t, and T limt-->oo Tt exist, and that A 8. In 
particular, it is not necessary that customers are served in the order they arrive, and 
the system is initially empty (see Problem 3.41). Figure 3.2 explains why the order 
customer service is not essential for the validity of Little's Theorem. 

3.2.2 Probabilistic Form of Little's Theorem 

Little's Theorem admits also a prdbabilistic interpretation provided that we can 
time averages with statistical or ensemble averages, as we now discuss. Our precedlmg 
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Figure 3.1 Proof of Little's Theorem. If the systllm is empt,y at time t [N(t) = 0], 
the shaded area can be expressed both as lot N(r) dr and as T;. Dividing both 
expressions by t, equating them, and taking the limit as t --+ ex:) gives Little's Theorem. 
If N(t) > 0, we have 

and assuming that tbe departUre rate (J(t)/t up to time t tends to the steady-state ar-
rival rate A, the same argument applies. 
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T 

analysis deals with a· sii1gle sample function; now we will look at the probabilities of 
ma,ny sample functions and other events. 

We first need to clarify the meaning of an ensemble average. Let us denote 

Pn(t) = Probability of n customers in the system at time t 

(waiting in queue or under service) 

In a typical situation we are given the initial probabilities Pn(O) at time 0, together with 
enough statistical information to determine, at least in principle, the probabilities Pn(t) for 
all times t. For example, the probability distribution of the time between two successive 
arrivals (the interarrival time), and the probability distribution of the customers' service 
time at various parts of the queueing system may be given. Then the average number in 
the system at time t is g!ven by 

00 

N(t) = L npn(t) 
n=O 

Note that both N(t) and Pn(t) depend on t as well as the initial probability distribution 
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Figure 3.2 Infonnal justification of Little's Theorem without assuming first-in first-
out customer service. The shaded area can be expressed both as J; N (T) dT and as

LiED(t) T, + L'EDlf)(t - til, where D(t) is the set of customers that have departed
up to time t, D(t) is the set of customers that are still in the system at time t, and t, is
the time of arrival of the i 1h customer. Dividing both expressions by t, equating them,
and taking the limit as t --> co gives Little's Theorem.

Chap. 3

{PoCO), PI (0), ...}. However, the queueing systems that we will consider typically reach
a steady-state in the sense that for some P" (independent of the initial distribution), we
have

lim p"(t)=p,,. n=O.l. ...

The average number in the system at steady-state is given by

N= LnPn
n=O

and we typically have

N = lim N(t)

Regarding average delay per customer, we are typically given enough statistical
information to determine in principle the probability distribution of delay of each indi-
vidual customer (i.e., the first, second, etc.). From this, we can determine the average
delay of each customer. The average delay of the kth customer, denoted Tko typically
converges as k ---7 X to a steady-state value

T = lim T k

To make the connection with time averages, we note that almost every system of
interest to us is ergodic in the sense that the time average, N = lim/_x Nf, of a sample
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function is, with probability I, equal to the steady-state average N = liml_x N(t), that
IS,

N = lim N I = lim N(t) = N
I-x I-x

Similarly, for the systems of interest to us, the time average of customer delay T is also
equal (with probability I) to the steady-state average delay T, that is,

k
I", --T = lim - L T; = lim T k = T

k-x k k-x
;=1

Under these circumstances, Little's formula, N = AT, holds with Nand T being
stochastic averages and with A given by

\ . Expected number of arrivals in the interval [0. t]/\ = hm
I-x t

The equality of long term time and ensemble averages of various stochastic pro-
cesses will often be accepted in this chapter on intuitive grounds. This equality can
often be shown by appealing to general results from the theory of Markov chains (see
Appendix A, at the end of this chapter, which states these results without proof). In
other cases, this equality, though highly plausible, requires a specialized mathematical
proof. Such a proof is typically straightforward for an expert in stochastic processes but
requires background that is beyond what is assumed in this book. In what follows we
will generally use the time average notation T and N in place of the ensemble average
notation T and N, respectively, implicitly assuming the equality of the corresponding
time and ensemble averages.

3.2.3 Applications of Little's Theorem

The significance of Little's Theorem is due in large measure to its generality. It holds for
almost every queueing system that reaches a steady-state. The system need not consist
of just a single queue. Indeed, with appropriate interpretation of the terms N, A, and T,
the theorem holds for many complex arrival-departure systems. The following examples
illustrate its broad applicability.

Example 3.1

If )., is the arrival rate in a transmission line, NQ is the average number of packets waiting
in queue (but not under transmission). and ric' is the average time spent by a packet waiting
in queue (not including the transmission time), Little's Theorem gives

NQ=).,W

Furthermore. if X is the average transmission time, then Little's Theorem gives the average
number of packets under transmission as

p=).,X

Since at most one packet can be under transmission, p is also the line's utili:ation factor.
(i.e .. the proportion of time that the line is busy transmitting a packet).
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Example 3.2
Consider a network of transmission lines where packets arrive at n different nodes with
corresponding rates )1] •...• An. If N is the average total number of packets inside the
network. then (regardless of the packet length distribution and method for routing packets)
the average delay per packet is

Furthermore, Little's Theorem also yields Ni = AiTi, where Ni and Ti are the average
number in the system and average delay of packets arriving at nodei, respectively.

Example 3.3

A packet arrives at a transmission line every K seconds with the first packet arriving at time
O. All packets have equal length and require aK seconds for transmission where a < I.
The processing and propagation delay per packet is P seconds. The arrival rate here is
A = 1/K. Because packets arrive at a regular rate (equal interarrival times), there is no
delay for queueing, so the time T a packet spends in the system (including the propagation
delay) is

T=aK+P

According to Little's Theorem, we have

P
N = AT = a +-

K
Here the number in the system N(t) is a deterministic function of time. Its form is shown
in Fig. 3.3 for the case where K < aK + P < 2K, and it can be seen that N(t) does not
converge to any value (the system never reaches statistical equilibrium). However, Little's
Theorem holds with N viewed as a time average.

Example 3.4

Consider a window flow control system (as described in Section 2.8.1) with a window of
size W for each session. Since the number of packets in the system per session is always
no more than W, Little's Theorem asserts that the arrival rate A of packets into the system
for each session, and the average packet delay are related by W 2: AT. Thus, if congestion
builds up in the network and T increases, A must eventually decrease. Next, suppose that
the network is congested and capable of delivering only A packets per unit time for each
session. Assuming that acknowledgment delays are negligible relative to the forward packet
delays, we have W AT. Then, increasing the window size TV for all sessions merely
serves to increase the delay T without appreciably changing A.

Example 3.5

Consider a queueing system with K servers, and with room for at most N 2: K customers
(either in queue or in service). The system is always full; we assume that it starts with
N customers and that a departing customer is immediately replaced by a new customer.
(Queueing systems of this type are called closed and are discussed in detail in Section
3.8.) Suppose that the average customer service time is X. We want to find the average
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Figure 3.3 The number in the system in Example 3.3, Net), is deterministic and does
not converge as t -+ =. Little's Theorem holds with N, A, and T viewed as time
averages.

customer time in the system T. We apply Little's Theorem twice, first for the entire system,
obtaining N = )"T, and then for the service portion of the system, obtaining K = )"X
(since all servers are constantly busy). By eliminating)" in these two relations we have

T= NX
K

Consider also the same system but under different customer arrival assumptions. In
particular, assume that customers arrive at a rate)" but are blocked (and lost) from the system
if they find the system full. Then the number of servers that are busy may be less than K.
Let K be the average number of busy servers and let (3 be the proportion of customers that
are blocked from entering the system. Applying Little's Theorem to the service portion of
the system, we obtain

K = (I - (3)"X

from which

K
(3=1---=

)"X

Since K K, we obtain a lower bound on the blocking probability, namely,

K
/3>1---=- )"X

Example 3.6

A transmission line serves m packet streams, also called users, in round-robin cycles. In
each cycle, some packets of user I are transmitted, followed by some packets of user 2, and
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so on, until finally, some packets of user m are transmitted. An overhead period of average
length Ai precedes the transmission of the packets of user i in each cycle. Systems of this
type are called polling systems and are discussed in detail in Section 3.5.2.

The arrival rate and the average transmission time of the packets of user i are Ai and
Xi, respectively. From Little's theorem we know that the fraction of time the transmission
line is busy transmitting packets of user i is AiX;, Consider now the time intervals used for
overhead of user i. We can view these intervals as "packets" with average transmission time
Ai. The arrival rate of these "packets" is IlL, where L is the average cycle length, and as
before, we may use Little's theorem to assert that the fraction of time used for transmission
of these "packets" is AIL, where A = Al + A2 + ... + Am. Therefore, we have

A TTl _

1= - + AXL 1 1

;=1

which yields the average cycle length

A
L= TTl

1- L;=1 Ai X ;

Example 3.7 Estimating Throughput in a Time-Sharing System

Little's Theorem can sometimes be used to provide bounds on the attainable system through-
put A. In particular, known bounds on ]V and T can be translated into throughput bounds via
A = ]VIT. As an example, consider a time-sharing computer system with ]V terminals. A
user logs into the system through a terminal, and after an initial reflection period of average
length R, submits a job that requires an average processing time P at the computer. Jobs
queue up inside the computer and are served by a single CPU according to some unspecified
priority or time-sharing rule.

We would like to get estimates of the throughput sustainable by the system (in jobs
per unit time), and corresponding estimates of the average delay of a user. Since we are
interested in maximum attainable throughput, we assume that there is always a user ready
to take the place of a departing user, so the number of users in the system is always ]V.
For this reason, it is appropriate to adopt a model whereby a departing user immediately
reenters the system as shown in Fig. 3.4.

Applying Little's Theorem to the portion of the system between the entry to the
terminals and the exit of the system (points A and C in Fig. 3.4), we have

(3.3)

where T is the average time a user spends in the system. We have

T=R+D (3.4)

where D is the average delay between the time a job is submitted to the computer and the
time its execution is completed. Since D can vary between P (case where the user's job
does not have to wait for other jobs to be completed) and ]VP (case where the user's job
has to wait for the jobs of all the other users; compare with Example 3.5), we have

(3.5)
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(3.6)

Figure 3.4 N terminals connected with a time-sharing computer system. To
estimate maximum attainable throughput, we assume that a departing user im-
mediately reenters the system or, equivalently, is immediately replaced by a new
user.

Combining this relation with A = NIT [cf. Eq. (3.3)], we obtain

N
-R+P

The throughput A is also bounded above by the processing capacity of the computer. In
particular, since the execution time of a job is P units on the average, it follows that the
computer cannot process in the long run more than II P jobs per unit time, that is,

I
A<--P (3.7)

(3.8)

(This conclusion can also be reached by applying Little's Theorem between the entry and
exit points of the computer's CPU.)

By combining the preceding two relations, we obtain the bounds

N {I N}---::-:-:c- < A < min - ---R+NP- - P'R+P
for the throughput A. By using T = N I A, we also obtain bounds for the average user delay
when the system is fully loaded:

max {NP, R+ P} -s; T -s; R+ NP (3.9)

These relations are illustrated in Fig. 3.5.
It can be seen that as the number of terminals N increases, the throughput approaches

the maximum liP, while the average user delay rises essentially in direct proportion with
N. The number of terminals becomes a throughput bottleneck when N < I + RIP, in
which case the computer resource stays idle for a substantial portion of the time while all
users are engaged in reflection. In contrast, the limited processing power of the computer
becomes the bottleneck when N > I + RIP. It is interesting to note that while the exact
maximum attainable throughput depends on system parameters, such as the statistics of the
reflection and processing times, and the manner in which jobs are served by the CPU, the
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Figure 3.5 Bounds on throughput and average user delay in a time-sharing
system. (a) Bounds on attainable throughput [Eq. (3.8)]. (b) Bounds on average
user time in a fully loaded system [Eq. (3.9)]. The time increases essentially in
proportion with the number of terminals N.

bounds obtained are independent of these parameters. We owe this convenient situation to
the generality of Little's Theorem.

3.3 THE M /M /1 QUEUEING SYSTEM

The M / ]\[ / I queueing system consists of a single queueing station with a single server
(in a communication context, a single transmission line). Customers arrive according
to a Poisson process with rate A, and the probability distribution of the service time is
exponential with mean 1/ f.1 sec. We will explain the meaning of these terms shortly.
The name AI/AI / I reflects standard queueing theory nomenclature whereby:

1. The first letter indicates the nature of the arrival process [e.g., !vI stands for mem-
oryless, which here means a Poisson process (i.e., exponentially distributed inter-
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arrival times), G stands for a general distribution of interarrival times, D stands
for deterministic interarrival times].

2. The second letter indicates the nature of the probability distribution of the service
times (e.g., "U, G, and D stand for exponential, general, and deterministic distri-
butions, respectively). In all cases, successive interarrival times and service times
are assumed to be statistically independent of each other.

3. The last number indicates the number of servers.

We have already established, via Little's Theorem, the relations

N=AT. NQ = AVV

between the basic quantities,

N = Average number of customers in the system

T = Average customer time in the system

NQ = Average number of customers waiting in queue

IV = Average customer waiting time in queue

However, N, T, 1VQ , and VV cannot be specified further unless we know something
more about the statistics of the system. Given these statistics, we will be able to derive
the steady-state probabilities

p" = Probability of n customers in the system, n = O. I ....

From these probabilities, we can get
x

N= LnPn
n=O

and using Little's Theorem,

N
A

Similar formulas exist for 1VQ and W. Appendix B provides a summary of the results
for the M / 1'1/1 system and the other major systems analyzed later.

The analysis of the Al/M /1 system as well as several other related systems,
such as the 1'1/1'1/m or M / M / x systems, is based on the theory of Markov chains
summarized in Appendix A. An alternative approach is to use simple graphical arguments
based on the concept of mean residual time introduced in Section 3.5. This approach
does not require that the service times are exponentially distributed (i.e., it applies to the
M /G / I system). The price paid for this generality is that the characterization of the
steady-state probabilities is more complicated than for the M /M / I system. The reader
wishing to circumvent the Markov chain analysis may start directly with the M /G/1
system in Section 3.5 after a reading of the preliminary facts on the Poisson process
given in Sections 3.3.1 and 3.3.2.
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We first introduce our assumptions on the arrival and service statistics of the M /M / I
system.

Arrival statistics-the Poisson process. In the AI /M / I system, customers
arrive according to a Poisson process which we now define:

A stochastic process {A(t) I t 2 o} taking nonnegative integer values is said to be
a Poisson process with rate A if

1. A(t) is a counting process that represents the total number of arrivals that have
occurred from °to time t [i.e., A(O) = 0], and for s < t, A(t) - A(s) equals the
numbers of arrivals in the interval (8, t].

2. The numbers of arrivals that occur in disjoint time intervals are independent.
3. The number of arrivals in any interval of length T is Poisson distributed with
parameter AT. That is, for all t, T > 0,

(AT)n
P {A(t + T) - A(t) = n} = C- AT__ ,

n!
n = 0, I, .. , (3.10)

The average number of arrivals within an interval of length T is AT (based on the
mean of the Poisson distribution). This leads to the interpretation of A as an arrival
rate (average number of arrivals per unit time).

We list some of the properties of the Poisson process that will be of interest:

1. Interarrival times are independent and exponentially distributed with parameter A;
that is, if t n denotes the time of the nth arrival, the intervals Tn = t n+1 - t n have
the probability distribution

820 (3.11 )

and are mutually independent. [The corresponding probability density function is
p(Tn) = AC- ATn . The mean and variance of Tn are I/A and I/A2, respectively.]
For a proof of this property, see [Ros83], p. 35.

2. For every t 2 °and b 2 0,
P {A(t + b) - A(t) = O} = 1 - Ab + o(b)

P{A(t+b)-A(t)= I} =Ab+o(b)

P{A(t+b)-A(t)22} =o(b)

where we generically denote by o(b) a function of b such that

lim o(b) = °
Ii

(3.12)

(3.13)

(3.14)
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These equations can be verified by expanding the Poisson distribution on the num-
ber of arrivals in an interval of length fJ [Eq. (3.1O)J in a Taylor series [or equiva-
lently, by writing e-)..o = I - AfJ + (AfJ)2/2 - ...].

3. If two or more independent Poisson processes AI, .... A k are merged into a single
process A = Al + A2 + ... + A k , the latter process is Poisson with a rate equal to
the sum of the rates of its components (see Problem 3.10).

4. If a Poisson process is split into two other processes by independently assigning
each arrival to the first (second) of these processes with probability p (I - p,
respectively), the two arrival processes thus obtained are Poisson (see Problem
3.11). (For this it is essential that the assignment of each arrival be independent
of the assignment of other arrivals. If, for example, the assignment is done by
alternation, with even-numbered arrivals assigned to one process and odd-numbered
arrivals assigned to the other, the two generated processes are not Poisson. This
will prove to be significant in the context of data networks; see Example 3.17 in
Section 3.6.)

A Poisson process is generally considered to be a good model for the aggregate
traffic of a large number of similar and independent users. In particular, suppose that we
merge n independent and identically distributed packet arrival processes. Each process
has arrival rate A/n, so that the aggregate process has arrival rate A. The interarrival
times T between packets of the same process have a given distribution F(s) = P{T :S s}
and are independent [F(s) need not be an exponential distribution]. Then under relatively
mild conditions on F fe.R., F(O) = 0, dF(O)/ds > 0], the aggregate arrival process can
be approximated well by a Poisson process with rate A as n ---+ x (see [KaT75], p. 221).

Service statistics. Our assumption regarding the service process is that the
customer service times have an exponential distribution with parameter 11, that is, if s"
is the service time of the nth customer,

P { > < s} - I -fl8Sn _ - - e ,

[The probability density function of s" is pes,,) = 11e- flsn , and its mean and variance are
1//1 and 1//12, respectivelY.J Furthermore, the service times Sn are mutually independent
and also independent of all interarrival times. The parameter 11 is called the service
rate and represents the rate (in customers served per unit time) at which the server
operates when busy. In the context of a packet transmission system, the independence of
interarrival and service times implies, among other things, that the length of an arriving
packet does not affect the arrival time of the next packet. It will be seen in Section 3.6
that this condition is often violated in practice, particularly when the arriving packets
have just departed from another queue.

An important fact regarding the exponential distribution is its memoryless character,
which can be expressed as

P {Tn > T + t I Tn > t} = P {Tn > r} ,

P {Sri > T+ tisn > t} = P {s" > T} ,

for T. t > 0

for T. t 0
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for the interarrival and service times Tn and 8 n, respectively. This means that the
additional time needed to complete a customer's service in progress is independent of
when the service started. Similarly, the time up to the next arrival is independent of when
the previous arrival occurred. Verification of the memoryless property follows from the
calculation

} P {Tn> I' + t}P {Tn > I' + t I Tn > t =
P{Tn>t}

(
P { }= e = Til > I'

Markov chain formulation. An important consequence of the memoryless
property is that it allows the use of the theory of Markov chains. Indeed, this property,
together with our earlier independence assumptions on interarrival and service times,
imply that once we know the number N(t) of customers in the system at time t, the
times at which customers will arrive or complete service in the future are independent of
the arrival times of the customers presently in the system and of how much service the
customer currently in service (if any) has already received. This means that the future
numbers of customers depend on past numbers only through the present number; that is.
{N(t) It 2: O} is a continuous-time Markov chain.

We could analyze the process N(t) in terms of continuous-time Markov chain
methodology; most of the queueing literature follows this line of analysis (see also
Problem 3.12). It is sufficient, however, for our purposes in this section to use the
simpler theory of discrete-time Markov chains (briefly summarized in Appendix A).

Let us focus attention at the times

O. b. 26.. .. . ltb....

where b is a small positive number. We denote

N k = Number of customers in the system at time ltb

Since ]'h: = N(kb) and, as discussed, N(t) is a continuous-time Markov chain, we see
that {Nk I k = 0, I, ... } is a discrete-time Markov chain with steady-state occupancy
probabilities equal to those of the continuous chain. Let P,) denote the corresponding
transition probabilities

Note that Pij depends on b, but to keep notation simple, we do not show this dependence.
By using Eqs. (3.12) through (3.14), one can show that

p(W = 1 - Ab + o(b)

P1i = 1 - Ab - f.1b + o(b),

Pii+1 = Ab + u(b),

Pi,i-l = lIb + o(b),

Pij = o(b).

i 2: 1
i2:0
i 2: I
i and j oF i. i + l.i - 1

(3.15)

(3.16)

(3.17)

(3.18)



Sec. 3.3 The M / M /1 Queueing System 167

To see how these equations are verified, note that when at a state i 2: 1, the proba-
bility of 0 arrivals and 0 departures in a b-interva1 h = (kb. (ki-1)b] is (e- AD )(e-/1D); this
is because the number of arrivals and the number of departures are Poisson distributed
and independent of each other. Expanding this in a power series in D,

P {O customers arrive and 0 depart in h} = 1 - Ab - f.1b + 0(15) (3.19)

The probability of 0 arrivals and I departure in the interval h is e-AD(l - e-/1D) if
i = 1 (since 1 - e-/1D is the probability that the customer in service will complete its
service within h), and e-AD (f.1be-/l D) if i > 1 (since f.1be-/lD is the probability that within
the interval h, the customer in service will complete its service while the subsequent
customer will not). In both cases we have

P{O customers arrive and I departs in Id = f.1b + 0(15)

Similarly, the probability of 1 arrival and 0 departures in h is (Abe-AD)e-/l D, so

P {1 customer amves and 0 depart in h} = AD + 0(15)

These probabilities add up to 1 plus o(b). Thus, the probability of more than one arrival
or departure is negligible for 15 small. It follows that for i 2: 1, Pi;, which is the
probability of an equal number of arrivals and departures in h, is within 0(15) of the
value in Eq. (3.19); this verifies Eq. (3.16). Equations (3.15), (3.17), and (3.18) are
verified in the same way.

The state transition diagram for the Markov chain {,Vk} is shown in Fig. 3.6, where
we have omitted the terms o(b).

Derivation of the stationary distribution. Consider now the steady-state
probabilities

Pn = lim P{Nk = n} = lim P{N(t) = n}
k---+x i-x·

Note that during any time interval, the total number of transitions from state n to n + 1
must differ from the total number of transitions from n + 1 to n by at most 1. Thus
asymptotically, the frequency of transitions from n to n + 1 is equal to the frequency of
transitions from n + 1 to n. Equivalently, the probability that the system is in state nand
makes a transition to n + I in the next transition interval is the same as the probability
that the system is in state n + 1 and makes a transition to n, that is,

PnAb + o(b) = Pn+lf.1b + 0(15)

1- M 1 - AS -IJ.O 1 - AS - /lO

Figure 3.6 Discrete-time Markov chain for the :\1/ '\1 /1 system. The state n corresponds to n
customers in the system. Transition probabilities shown are correct up to an 0(6) term.
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By taking the limit in this equation as b --+ 0, we obtain

Pn A = Pn+lj1 (3.20)

(The preceding equations are called global balance equations, corresponding to the set
of states {O, 1, ... , n} and {n + 1, n + 2, ... }. See Appendix A for a more general
statement of these equations and for an interpretation that parallels the argument given
above.) These equations can also be written as

where

It follows that

Pn+l = PPn,

A
P= -

j1

n = O. 1. ...

Pn+l = pn+1Po, n = 0, 1, ... (3.21 )

If P < 1 (service rate exceeds arrival rate), the probabilities Pn are all positive and add
up to unity, so

Combining the last two equations, we finally obtain

(3.22)

n =0.1 .... (3.23)

(3.24)

We can now calculate the average number of customers in the system in steady-
state:

x· x

N = E {N(t)} = L npn = L npn(l - p)
,,=0 n=O

= p(l - p) npn-l = p(l _ p) :p

= p(l - p) :p = p(l - P)_(1 1_p)--=-2

and finally, using p = AI j1, we have
N- _P A_
-1-p-j1-A

The graph of this equation is shown in Fig. 3.7. As p increases, so does N, and as
p --+ 1, we have N --+ 00. The graph is valid for p < 1. If p > 1, the server cannot keep
up with the arrival rate and the queue length increases without bound. In the context of
a packet transmission system, p > 1 means that AL > C, where A is the arrival rate in
packets/sec, L is the average packet length in bits, and C is the transmission capacity in
bits/sec.
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o
Utilization Factor p = X/ IJ.

Figure 3.7 Average number in the system
versus the utilization factor in the AI /}'vI /1
system. As p I. IV =.

The average delay per customer (waiting time in queue plus service time) is given
by Little's Theorem,

Using p = /\jp, this becomes

N PT=-=---
,\ ,\(1 - p)

(3.25)

(3.26)T=_I-
p - ,\

We note that it is actually possible to show that the customer delay is exponentially
distributed in steady-state [see Problem 3.ll(b)].

The average waiting time in queue, lV, is the average delay T less the average
service time 1/p, so

Til PH
p-'\ p p-'\

By Little's Theorem, the average number of customers in queue is

p2
NQ ='\W=--

I-p

A very useful interpretation is to view the quantity p as the utilization factor of the
queueing system, (i.e., the long-term proportion of time the server is busy). We showed
this earlier in a broader context by using Little's Theorem (Example 3.1). Based on
this interpretation, it follows that p = 1 - Po, where Po is the probability of having no
customers in the system, and we obtain an alternative verification of the formula derived
for Po [Eq. (3.22)].

We illustrate these results by means of some examples from data networks.
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Example 3.8 Increasing the Arrival and Transmission Rates by the Same Factor
Consider a packet transmission system whose arrival rate (in packets/sec) is increased from
A to K A, where K > 1 is some scalar factor. The packet length distribution remains the
same but the transmission capacity is increased by a factor of K, so the average packet
transmission time is now I/(K /1) instead of 1//1. It follows that the utilization factor p,
and therefore the average number of packets in the system, remain the same:

N= _P_ = _A_
1-p /1-A

However, the average delay per packet is now T = N /(KA) and is therefore decreased by
a factor of K. In other words, a transmission line K times as fast will accommodate K
times as many packets/sec at K times smaller average delay per packet. This result is quite
general, even applying to networks of queues. What is happening, as illustrated in Fig. 3.8,
is that by increasing arrival rate and service rate by a factor K, the statistical characteristics
of the queueing process are unaffected except for a change in time scale-the process is
speeded up by a factor K. Thus, when a packet arrives, it will see ahead of it statistically
the same number of packets as with a slower transmission line. However, the packets ahead
of it will be moving K times faster.

Example 3.9 Statistical Multiplexing Compared with Time- and Frequency-Division
Multiplexing

Assume that m statistically identical and independent Poisson packet streams each with an
arrival rate of A/m packets/sec are transmitted over a communication line. The packet
lengths for all streams are independent and exponentially distributed. The average transmis-
sion time is 1//1. If the streams are merged into a single Poisson stream, with rate A, as in
statistical multiplexing, the average delay per packet is

T=_l_
/1-A

If, instead, the transmission capacity is divided into m equal portions, one per packet stream
as in time- and frequency-division multiplexing, each portion behaves like an M / M /1
queue with arrival rate A/m and average service rate /1/m. Therefore, the average delay
per packet is

T= --'!!!...--..
/1-A

that is, m times larger than for statistical multiplexing.
The preceding argument indicates that multiplexing a large number of traffic streams

on separate channels in a transmission line performs very poorly in terms of delay. The per-
formance is even poorer if the capacity of the channels is not allocated in direct proportion
to the arrival rates of the corresponding streams-something that cannot be done (at least in
the scheme considered here) if these arrival rates change over time. This is precisely why
data networks, which most of the time serve many low duty cycle traffic streams, are typi-
cally organized on the basis of some form of statistical multiplexing. An argument in favor
of time- and frequency-division multiplexing arises when each traffic stream is "regular" (as
opposed to Poisson) in the sense that no packet arrives while another is transmitted, and thus
there is no waiting in queue if that stream is transmitted on a dedicated transmission line.
If several streams of this type are statistically multiplexed on a single transmission line, the
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Figure 3.8 Increasing the arrival rate and the service rate by the same factor (see
Example 3.8). (a) Sample paths of number of anivals n(t) and departures (3(t) in
the original system. (b) Corresponding sample paths of number of arrivals n(t) and
departures (3(t) in the "speeded up" system, where the arrival rate and the service rate
have been increased by a factor of 2. The average number in the system is the same
as before, but the average delay is reduced by a factor of 2 since customers are moving
twice as fast.

average delay per packet will decrease, but the average waiting time in queue will become
positive and the variance of delay will also become positive. Thus in telephony, where each
trafflc stream is a voice conversation that is regular in the sense above and small variability
of delay is critical, time- and frequency-division multiplexing are still used widely.

3.3.2 Occupancy Distribution upon Arrival
In our subsequent development, there are several situations where we will need a prob-
abilistic characterization of a queueing system as seen by an arriving customer. It is
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possible that the times of customer arrivals are in some sense nontypical, so that the
steady-state occupancy probabilities upon arrival,

an = lim P{N(t) = n I an arrival occurred just after time t} (3.27)
t----t(X)

need not be equal to the corresponding unconditional steady-state probabilities,

Pn = lim P{N(t) = n} (3.28)
t----+CX)

It turns out, however, that for the JIll /M / I system, we have

n = 0, I, ... (3.29)

so that an arriving customer finds the system in a "typical" state. Indeed, this holds
under very general conditions for queueing systems with Poisson arrivals regardless ofthe
distrihution of the service times. The only additional requirement we need is that future
arrivals are independent of the current number in the system. More precisely, we assume
that for every time t and increment 6 > 0, the number of arrivals in the interval (t, t + 6)
is independent of the number in the system at time t. Given the Poisson hypothesis,
essentially this amounts to assuming that, at any time, the service times of previously
arrived customers and the future interarrival times are independent-something that is
reasonable for packet transmission systems. In particular, the assumption holds if the
arrival process is Poisson and interarrival times and service times are independent.

For a formal proof of the equality an = Pn under the preceding assumption, let
A(t, t + 8) be the event that an arrival occurs in the interval (t, t + 6). Let

Pn(t) = P {N(t) = n}

an(t) = P{N(t) = n I an arrival occurred just after time t}
We have, using Bayes' rule,

(3.30)

(3.31)

(3.32)

an(t) = lim P {N(t) = n IA(t, t + 6)}
0--->0

. P{N(t)=n, A(t,t+6)}= hm
0--->0 P{A(t,t+6)}

= lim P {A(t, t + 6) I N(t) = n} P{N(t) = n}
0--->0 P{A(t,t+6)}

By assumption, the event A(t, t + 6) is independent of the number in the system at time
t. Therefore,

P{A(t, t + 6) IN(t) = n} = P{A(t, t + 6)}
and we obtain from Eq. (3.32)

an(t) = P {N(t) = n} = Pn(t)

Taking the limit as t ----+ 00, we obtain an = Pn.
As an example of what can happen if the arrival process is not Poisson, suppose

that interarrival times are independent and uniformly distributed between 2 and 4 sec,
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while customer service times are all equal to I sec. Then an arriving customer always
finds an empty system. On the other hand, the average number in the system as seen
by an outside observer looking at a system at a random time is 1/3. (The time in the
system of each customer is 1 sec, so by Little's Theorem, N is equal to the arrival rate
A, which is 1/3 since the expected time between arrivals is 3.)

For a similar example where the arrival process is Poisson but the service times
of customers in the system and the future arrival times are correlated, consider a packet
transmission system where packets arrive according to a Poisson process. The transmis-
sion time of the nth packet equals one half the interarrival time between packets nand
n + I. Upon arrival, a packet finds the system empty. However, the average number in
the system, as seen by an outside observer, is easily seen to be 1/2.

3.3.3 Occupancy Distribution upon Departure

Let us consider the distribution of the number of customers in the system just after a
departure has occurred, that is, the probabilities

dn(t) = P{N(t) = n I a departure occurred just before time t}

The corresponding steady-state values are denoted

It turns out that

dn = lim dn(t),
t--7X

dn = (In,

n = 0, I, ...

n=O,l, ...

under very general assumptions-the only requirement essentially is that the system
reaches a steady-state with all n having positive steady-state probabilities, and that N(t)
changes in unit increments. [These assumptions certainly hold for a stable M /M /1
system (p < 1), but they also hold for most stable single-queue systems of interest.]
For any sample path of the system and for every n, the number in the system will be
n infinitely often (with probability 1). This means that for each time the number in the
system increases from n to n + 1 due to an arrival, there will be a corresponding future
decrease from n + 1 to n due to a departure. Therefore, in the long run, the frequency of
transitions from n to n + lout of transitions from any k to k + 1 equals the frequency
of transitions from n + 1 to n out of transitions from any k + 1 to k, which implies
that dn = an. Therefore, in steady-state, the system appears statistically identical to
an arriving and a departing customer. When arrivals are Poisson, we saw earlier that
an = Pn; so, in this case, both an arriving and a departing customer in steady-state see
a system that is statistically identical to the one seen by an observer looking at the system
at an arbitrary time.

3.4 THE M/M/m, M/M/OCJ, M/M/m/m, AND OTHER MARKOV
SYSTEMS

We consider now a number of queueing systems that are similar to 1M/ lvI /1 in that
the arrival process is Poisson and the service times are independent, exponentially dis-
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tributed, and independent of the interarrival times. Because of these assumptions, these
systems can be modeled with continuous- or discrete-time Markov chains. From the cor-
responding state transition diagram, we can derive a set of equations that can be solved
for the steady-state occupancy probabilities. Application of Little's Theorem then yields
the average delay per customer.

3.4.1 M / M /m: The m-Server Case

The M /M /m queueing system is identical to the M /M / I system except that there
are m servers (or channels of a transmission line in a data communication context).
A customer at the head of the queue is routed to any server that is available. The
corresponding state transition diagram is shown in Fig. 3.9.

By writing down the global balance equations for the steady-state probabilities Pn
and taking fJ ----7 0, we obtain

(3.33)
n>m

From these equations we obtain

(mp)n
Po--,- ,n.

where p is given by

Pn =
rnmpn

Po--,-,rn.
n>m

(3.34)

A
p= - < I

mJL

We can calculate Po using Eq. (3.34) and the condition 2::=oPn = 1. We obtain

[
T.n-1 (mp)n x (mp)n I ]-1

Po = 1+ '"' -- + '"' -----L n! L m! mn-m
n=l n=rn

Figure 3.9 Discrete-time Markov chain for the fefIM 1m system.
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_ [m
L
-l (mp)n (mp)m]-1

Po - -- + ---,---'-----,-
n! m!(l - p)

n=O
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(3.35)

The probability that an arrival will find all servers busy and will be forced to wait
in queue is an important measure of performance of the M /M /m system. Since an
arriving customer finds the system in "typical" state (see Section 3.3.2), we have

P{Q '} L
oc

LX pommpn po(mp)m LX n-mueuemg = Pn = = pm! m!
n=m n=m n=m

and, finally,
t::,. • po(mp)m

PQ = P{Queuemg} = , (3.36)
m.(l - p)

where Po is given by Eq. (3.35). This is known as the Erlang C formula, honoring
Denmark's A. K. Erlang, the foremost pioneer of queueing theory. This equation is
often used in telephony (and more generally in circuit switching systems) to estimate
the probability of a call request finding all of the m circuits of a transmission line busy.
In an M /M /m model it is assumed that such a call request "remains in queue," that
is, continuously attempts to find a free circuit. The alternative model where such a call
departs from the system and never returns is discussed in the context of the M /M /m/m
system in Section 3.4.3.

The expected number of customers waiting in queue (not in service) is given by
OC

NQ = LnPm+n
n=O

Using the expression for Pm+n [Eq. (3.34)], we obtain

Using the Erlang C formula of Eq. (3.36) to express Po in terms of PQ' and the equation
(I - p) 2:::=0 npn = p/ (I - p) encountered in the M / M / I system analysis, we finally
obtain

Note that

PNQ =PQ--l-p
(3.37)

NQ p
PQ 1- P

represents the expected number found in queue by an arriving customer conditioned on
the fact that he is forced to wait in queue, and is independent of the number of servers for
a given p = A/mIL. This suggests in particular that as long as there are customers waiting
in queue, the queue size of the M /M / m system behaves identically as in an M /M /1



176 Delay Models in Data Networks Chap. 3

system with service rate mtL-the aggregate rate of the m servers. Some thought shows
that indeed this is true in view of the memoryless property of the exponential distribution.

Using Little's Theorem and the expression (3.37) for NQ, we obtain the average
time W a customer has to wait in queue:

W = NQ = pPQ
A A(l - p)

The average delay per customer is, therefore,

T- - W- pPQ
- tL + - tL + A(1 - p)

and using p = A/mtL, we obtain

T= +W= + PQ
tL tL mtL - A

Using Little's Theorem again, the average number of customers in the system is

and using p = A/mtL, we finally obtain

N = mp+ pPQ
l-p

(3.38)

Example 3.10 Using One vs. Using Multiple Channels in Statistical Multiplexing
Consider a communication link serving m independent Poisson traffic streams with overall
rate A. Suppose that the link is divided into m separate channels with one channel assigned
to each traffic stream. However, if a traffic stream has no packet awaiting transmission, its
corresponding channel is used to transmit a packet of another traffic stream. The transmission
times of packets on each of the channels are exponentially distributed with mean II f.L. The
system can be modeled by the same Markov chain as the M1M1m queue. Let us compare
the average delays per packet of this system, and an M IMil system with the same arrival
rate ,\ and service rate mf.L (statistical multiplexing with one channel having m times larger
capacity). In the fonner case, the average delay per packet is given by the M IM 1m average
delay expression (3.38)

f.L mf.L-'\

while in the latter case, the average delay per packet is

A I PQT=-+---
mf.L mf.L-'\

where PQ and PQ denote the queueing probability in each case. When p « I (lightly
loaded system) we have PQ 0, PQ 0, and

--;c=m
T
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When p is only slightly less than 1, we have PQ ':'::' 1, PQ ':'::' 1, l/p« l/(Tnp- A), and

T
- "'" 1f-

Therefore, for a light load, statistical multiplexing with Tn channels produces a delay almost
Tn times larger than the delay of statistical multiplexing with the Tn channels combined in
one (about the same as time- and frequency-division multiplexing). For a heavy load, the
ratio of the two delays is close to 1.

3.4.2 M1MI 00: The Infinite-Server Case

In the limiting case where m = 00 in the M IM 1m system, we obtain from the global
balance equations (3.33)

APn-l = np,Pn,

so

Pn = p, n.

From the condition 2:::'=0 Pn = I, we obtain

n = 1,2, ...

n = 1,2, ...

n = 0, 1, ...

so finally,

_ e-A/ fl
Pn - , 'p, n.

Therefore, in steady-state, the number in the system is Poisson distributed with parameter
AIp,. The average number in the system is

p,

By Little's Theorem, the average delay is N IA or
1T=-
P,

This last equation can also be obtained simply by arguing that in an M IM I 00 system,
there is no waiting in queue, so T equals the average service time 1I p,. It can be shown
that the number in the system is Poisson distributed even if the service time distribution
is not exponential (i.e., in the MIGloo system; see Problem 3.47).

Example 3.11 The Quasistatic Assumption

It is often convenient to assume that the external packet traffic entering a subnet node and
destined for some other subnet node can be modeled by a stationary stochastic process that
has a constant bit arrival rate (average bits/sec). This approximates a situation where the
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arrival rate changes slowly with time and constitutes what we refer to as the quasistatic
assumption.

When there are only a few active sessions (i.e., user pairs) for the given origin-
destination pair, this assumption is seriously violated since the addition or termination of a
single session can change the total bit arrival rate by a substantial factor. When, however,
there are many active sessions, each with a bit arrival rate that is small relative to the total,
it seems plausible that the quasistatic assumption is approximately valid. The reason is that
session additions are statistically counterbalanced by session terminations, with variations
in the total rate being relatively small. For an analytical substantiation, assume that sessions
are generated according to a Poisson process with rate .\., and terminate after a time which is
exponentially distributed with mean 1/J.1. Then the number of active sessions n evolves like
the number of customers in an IvI /M / CXJ system (i.e., is Poisson distributed with parameter
)..j J.1 in steady-state). In particular, the mean and standard deviation of n are

N = E {n} =
J.1

Suppose the i th active session generates traffic according to a stationary stochastic process
having a bit arrival rate Ii bits/sec. Assume that the rates Ii are independent random
variables with common mean E {Ii} = r and second moment = E {,f}. Then the total
bit arrival rate for n active sessions is the random variable f = Ii, which has mean

F = E{f} =
J.1

The standard deviation of f, denoted 17f, can be obtained by writing

I7J = E{ - F2

and carrying out the corresponding calculations (Problem 3.28). The result is

(

.\.) 1/2
I7f = -;; s,

Therefore, we have

Suppose now that the average bit rate r of a session is small relative to the total F; that
is, a "many-small-sessions assumption" holds. Then, since r /F = J.1/.\., we have that J.1/.\.
is small. If we reasonably assume that s, /r has a moderate value, it follows from the
equation above that 17f / F is small. Therefore, the total arrival rate f is approximately
constant, thereby justifying the quasistatic assumption.

3.4.3 M IM Im1m: The m-Server Loss System
Consider a system which is identical to the M IM 1m system except that if an arrival
finds all m servers busy, it does not enter the system and is lost instead; the last m in the
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!v! /M /m/m notation indicates the limit on the number of customers in the system. This
model is in wide use in telephony (and also, more generally, in circuit switched networks).
In this context, customers in the system correspond to active telephone conversations and
the m servers represent a single transmission line consisting of m circuits. The average
service time 1/It is the average duration of a telephone conversation. The principal
quantity of interest here is the blocking probability, that is, the steady-state probability
that all circuits are busy, in which case an arriving call is refused service. Note that in an
M /M /m/m-based model, the assumption is that blocked calls are lost (not reattempted).
This is in contrast with an M /M /m-based model, where the assumption is that blocked
calls continuously reattempt admission into service. In data networks, the !v! /M /m/m
system can be used as a model where arrivals correspond to requests for virtual circuit
connections between two nodes and the maximum number of virtual circuits allowed is
m.

The corresponding state transition diagram is shown in Fig. 3.10. We have

so

Pn = Po n ,
IL n.

n = 1,2, ... ,'m

n = 1,2, ... ,rn

Solving for Po in the equation Pn = I, we obtain

_ [Tn (A)n 1]-1
Po - L It n!

n=O

The probability that an arrival will find all m servers busy and will therefore be lost is

This equation is known as the Erlang B formula and finds wide use in evaluating the
blocking probability of telephone systems. It can be shown to hold even if the service
time has mean 1/IL but arbitrary probability distribution (i.e., for an M /G/m/m system;
see [Ros83], p. 170).

Figure 3.10 Discrete-time Markov chain for the M / M /m/m system.
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3.4.4 Multidimensional Markov Chains-Applications in Circuit
Switching

We have considered so far queueing systems with a single type of customer where the
state can be described by the number of customers in the system. In some important
systems there are several classes of customers, each with its own statistical characteristics
for arrival and service, which cannot be lumped into a single class for the purpose of
analysis. Here are some examples:

Example 3.12 Two Session Classes in a Circuit Switching System
Consider a transmission line consisting of m independent circuits of equal capacity. There
are two types of sessions arriving with Poisson rates )'1 and '\2, respectively. A session
is blocked and lost for the system if all circuits are busy upon arrival, and is otherwise
routed to any free circuit. The durations (or holding times) of the sessions of the two types
are exponentially distributed with means 1//11 and 1//12' We are interested in finding the
steady-state blocking probability for this system.

We first note that if /11 = ti2, the two session types are indistinguishable for queueing
purposes and the system can be modeled by an Al/M / m/m queue with arrival rate .\ 1+.\2
and state equal to the total number of busy circuits. The desired blocking probability pm
is then given by the Erlang B formula of the preceding subsection. If, however, /11 =I=- /12,
then the total number of busy circuits does not fully specify the future statistical behavior of
the queue; the number of each session type is also important since the duration of a session
depends statistically on its type. Thus, the appropriate Markov chain model involves the
two-dimensional state (nl_ 712), where ni is the number of circuits occupied by a session of
type i, for i = 1,2. The transition probability diagram for this chain is shown in Fig. 3.11.
Generally, for multidimensional chains one may write the global balance equations for the
stationary distribution

and try to solve them numerically. For this example, however, a closed-form expression is
possible. We will demonstrate this shortly, once we develop the appropriate methodology.

Example 3.13 Two-Class System with Preferential Treatment for One Class
Consider the system of the preceding example with the difference that there is a limit k < m
on the number of circuits that can be used by sessions of the second type, so there are always
m - k circuits for use by sessions of the first type. The corresponding two-dimensional
Markov chain is shown in Fig. 3.12. Note that here we should distinguish between the
blocking probability for the first type of session, which is

P(71I,712)

and the blocking probability for the second type of session. which is

{(n"n2J!O:'On,:'Om,n2=min{k,m-n,} }

Again, it turns out that there is a closed-form expression for P( n I . n2), as will be seen
shortly.
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•

o 2

... Figure 3.11 Markov chain for the
two-class queue of Example 3.12. To
simplify the diagram. we do not show
self-transitions and o(,s) transitions.

m -1 m5J11 mm-k

• • •

2

•

'-' -'-'-__-'-'-.... • • • • ..r- ..-/

o

2

Figure 3.t2 Markov chain for the two class queue with preferential treatment for one
class (cf. Example 3.13). Self-transitions and 0(") transitions are not shown.

Multidimensional Markov chains usually involve K customer types. Their states
are of the form (71t. 712 • ...• 71K), where Tli is the number of customers of type i in the
system. Such chains are usually harder to analyze than their one-dimensional counter-
parts, but in many interesting special cases one can obtain a closed-form solution for the
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stationary distribution P(T/j. n2 . .... nK). Important examples of properties that make
this possible are:

1. The detailed balance equations

AiP(nj ..... ni-I· ni. ni+j ..... nK) = /1iP(n I.···. ni-l. ni + I. ni+j····. nK)

hold for all pairs of adjacent states

and

where Ai and IIi are the arrival rate and service rate, respectively, of the customers
of type i. These equations imply that the frequency of transitions between any
two adjacent states is the same in both directions (see Appendix A). We will
explain in Section 3.7 that chains for which these equations hold are statistically
indistinguishable when looked in forward and in reverse time, and for this reason
they will be called reversible. Note that these equations hold for all the single-
customer class systems discussed so far.

2. The stationary distribution can be expressed in product form, that is,

P(nl. n2 ..... nK) = P j(nl)P2(n2)'" PK(nK)

where for each i, Pi(ni) is an expression depending only on the number ni of
customers of type i. Several important types of networks of queues admit product
form solutions, as will be seen in Section 3.8.

In this section we restrict ourselves to a class of multidimensional Markov chains,
constructed from single-customer class systems using a process called truncation, for
which we will see that both of the properties above hold.

Truncation of independent single-class systems. For a trivial example
of a multidimensional Markov chain that admits a product form solution, consider K
independent AlIAlI I queues. The number of customers in the i th queue has distribution

Pi(ni) = p;"(l - Pi)

where
Ai

Pi =-
/1;

Ai and /1i are the corresponding arrival and service rates, respectively, and we assume
that Pi < I for all i. Since the K queues are independent, we have the product form

P(nj. n2 . ...• nK) = P j (nj )P2(n2) ... PK(nK)

Note that the reasoning above would also apply if each of the M IMil queues
were replaced by a birth-death type of queue (two successive states can differ only by
a single unit: for example, the M I1\llm, M IMIX), and M IM Imlm queues). The
only requirement is that the queues are independent.
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. . . Figure 3.13 Markov chain for a K
independent M / M /1 queues system.
Self-transitions and 0(6) transitions are not
shown (K = 2 in the figure).

(3.39)

Consider now the transition probability diagram of the K independent AI/AI /1
queues system, shown in Fig. 3.13. A truncation of this system is a Markov chain having
the same transition probability diagram with the only difference that some states have
been eliminated, while transitions between all other pairs of states, together with their
corresponding transition probabilities, have been left unchanged except for 0(8) terms
(see Fig. 3.14). We require that the truncation is an irreducible Markov chain, that is, all
states communicate with each other (see Appendix A).

We claim that the stationary distribution of this truncated system has the product
form

.. . p'l<K
P(nl.n2 ..... nK) = -G

where G is a normalization constant guaranteeing that P(n I. n2 . ... , nK) is a probability
distribution, that is,

G = L p;ll p;12 .. ·llt
(nl.n2, .... nKJES

where 5 is the set of states of the truncated system.
To show this, we consider the detailed balance equations

(3.40)

AiP(n\ ..... ni-I. ni· ni+I.··.· nK) = /iiP(nl ..... ni-I' ni + 1. n,+! ..... nK)

By substituting the probabilities (3.39) in these equations, we obtain

G

nj ni-l rl-i rli ....... j .nK
API ... Pi-I Pi P,+I ... PK

1 G
nl ... pn;-lpTli+lpTI;+1 ... pnKPI i-I I ,-;-1 K= /ii

which holds as an identity in view of the definition Pi = Ai / /ii. Therefore, the probability
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distribution given by the expression (3.39) satisfies the detailed balance equations for the
truncated chain, so it must be its unique stationary distribution (see Appendix A).

It should be noted here that there is a generic difficulty with product form solutions.
To obtain the stationary distribution, one needs to compute the normalization constant
G of Eq. (3.40). For some systems, this involves a large amount of computation. An
alternative to computing G directly from Eq. (3.40) is to approximate it using Monte
Carlo simulation. Here, a fairly large number of independent samples of (n!, ... ,nK)
are generated using the distribution

K

P(nt, ... , nK) = ITo - Pi)p7 i

i=l

and G is approximated by the proportion of samples that belong to the truncated space
S. We will return to the computation of normalization constants in Section 3.8 in the
context of queueing networks; see also Problem 3.51.

The reasoning above can also be used to show that there is a product form solution
for any truncation of a system consisting of K independent queues each described by a
birth-death Markov chain, such as the M/M/m, M/M/oo, and M/M/m/m systems.
For example, it is straightforward to verify that the stationary distribution of the K
independent M /M / 00 queues system is given by

where G is a normalization constant,

and S is the set of states of the truncated chain.

Figure 3.14 Example of a Markov chain
which is a truncation of the K independent
AIlM 11 queues system (K = 2 in the
figure).
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Blocking probabilities for circuit switching systems. Using the product
form solution (3.39), it is straightforward to write closed-form expressions for the block-
ing probabilities of the circuit switching systems with two session classes of Examples
3.12 and 3.13. The two-dimensional chains of these examples are truncations of the two
independent M /M / 00 queues system (Figs. 3.11 to 3.13). Thus, in the case of Example
3.13, the blocking probability for the first type of session is

The blocking probability for the second type of session is

The following important example illustrates the wide applicability of product form
solutions in circuit switching networks.

Example 3.14 Circuit Switching Networks with Fixed Routing

Consider a network of transmission lines shared by sessions of K different types (see Fig.
3.15). Sessions of type i arrive according to a Poisson rate Ai and have an exponentially
distributed holding time with mean IlfLi'

Type 4

Figure 3.15 Model of a circuit switching
network. There are K different session
types. All sessions of the same type go
over the same path and reserve the same
amount of transmission capacity on each
link of their path. A session is blocked
if some link on its path is loaded to the
point that it cannot accommodate the
transmission capacity of the session.
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(3.41 )

(3.42)

We assume that all sessions of a given type i traverse the same set of network links
(fixed routing) and reserve a fixed amount bi of transmission capacity at each link. Thus if
Cj is the transmission capacity of a link j and I(j) is the set of session types using this
link, we must have

L bini::; C j
iEI(j)

where ni is the number of sessions of type i in the network. A session of a given type m
is blocked from entering the network (and is assumed lost to the system) if upon arrival it
finds that it cannot be accommodated due to insufficient link capacity, that is,

bm + L bini> Cj
iEI(j)

for some link j that the session must traverse.
The quality of service of this system may be described by the blocking probabilities

for the different session types. To obtain these probabilities, we model the system as a
truncation of the K independent AI/ 1'v[ / 00 queues system. The truncated chain is the same
as for the latter system, except that all states (n I , n2 , ... , nK) for which the inequality
LiEI(j) bini ::; C j is violated for some link j have been eliminated. The stationary
distribution has a product form, which yields the desired blocking probabilities.

A remarkable fact about the product form solution of this example is that it is valid
for a broad class of holding time distributions that includes the exponential as a special case
(see [BLL84] and [Kau81]).

3.5 THE MIG11 SYSTEM

Consider a single-server queueing system where customers arrive according to a Poisson
process with rate A, but the customer service times have a general distribution-not
necessarily exponential as in the 1111Mil system. Suppose that customers are served in
the order they arrive and that Xi is the service time of the i th arrival. We assume that
the random variables (XI, X 2 , .•. ) are identically distributed, mutually independent, and
independent of the interarrival times.

Let
- I
X = E{X} = - = Average service time

J1

X2 = E {X2} = Second moment of service time

Our objective is to derive and understand the Pollaczek-Khinchin (P-K) formula:

AX2w=---2(1 - p)

where W is the expected customer waiting time in queue and p = AIJ1 = AX. Given
the P-K formula (3.41), the total waiting time, in queue and in service, is

T = X + AX2
2(1 - p)
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Applying Little's fonnula to Wand T, we get the expected number of customers in the
queue NQ and the expected number in the system N:

>?X2
NQ = 2(1 _ p)

,.\2 X2
N=p+---

2(1 - p)

(3.43)

(3.44)

For example, when service times are exponentially distributed, as in the M / Ai /1 system,
we have X2 = 2/J12, and the P-K fonnula (3.41) reduces to the equation (see Section
3.3.2)

W= p
J1(1 - p)

(M/M/I)

When service times are identical for all customers (the M / D / I system, where D means
detenninistic), we have X2 = 1/J12, and

(M/D/I) (3.45)

Since the M / D /1 case yields the minimum possible value of X2 for given J1, it
follows that the values ofW, T, NQ, and N for an M / D/I queue are lower bounds to
the corresponding quantities for an M / G /1 queue of the same ,.\ and J1. It is interesting
to note that Wand NQ for the M / D /1 queue are exactly one half their values for the
M /M /1 queue of the same ,.\ and J1. The values of T and N for M /D/1, on the
other hand, range from the same as M /M /1 for small p to one half of M /M /1 as p
approaches 1. The reason is that the expected service time is the same in the two cases,
and for p small, most of the waiting occurs in service, whereas for p large, most of the
waiting occurs in the queue.

We provide a proof of the Pollaczek-Khinchin fonnula based on the concept of
the mean residual service time. This same concept will prove useful in a number of
subsequent developments. One example is Jlv1/G/1 queues with priorities. Another is
reservation systems where part of the service time is occupied with sending packets (i.e.,
serving customers), and part with sending control infonnation or making reservations for
sending the packets.

Denote

Wi = Waiting time in queue of the ith customer
R i = Residual service time seen by the ith customer. By this we mean that if

customer j is already being served when i arrives, R i is the remaining time
until customer j's service time is complete. If no customer is in service
(i.e., the system is empty when i arrives), then R i is zero

Xi = Service time of the ith customer
Ni = Number of customers found waiting in queue by the ith customer upon arrival
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We have
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Wi=Ri + L X j
j=i-N;
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By taking expectations and using the independence of the random variables Ni and
Xi-I, ... ,Xi - Ni , we have

Taking the limit as i ----+ 00, we obtain

I
W = R+ -NQ

/1
where

(3.46)

R = Mean residual time, defined as R = E{R;}.

In Eq. (3.46) (and throughout this section) all long-term average quantities should be
viewed as limits when time or customer index increases to infinity. Thus, W, R, and
NQ are limits (as i ----+ 00) of the average waiting time, residual time, and number found
in queue, respectively, corresponding to the i th customer. We assume that these limits
exist, and this is true of almost all systems of interest to us provided that A < /1. Note
that in the waiting time equation (3.46), the average number in queue NQ and the mean
residual time R as seen by an arriving customer are also equal to the average number
in queue and mean residual time seen by an outside observer at a random time. This
is due to the Poisson character of the arrival process, which implies that the occupancy
distribution upon arrival is typical (see Section 3.3.2).

By Little's Theorem, we have

and by substitution in the waiting time formula (3.46), we obtain

W = R+pW (3.47)

(3.48)

where p = AI/1 is the utilization factor; so, finally,

I-p

We can calculate R by a graphical argument. In Fig. 3.16 we plot the residual
service time reT) (i.e., the remaining time for completion of the customer in service at
time T) as a function of T. Note that when a new service of duration X begins, reT)
starts at X and decays linearly for X time units. Consider a time t for which ret) = O.
The time average of reT) in the interval [0, t] is

1 i· t I M(t) I 2
- r(T) dT = - " - Xt t 2 'o ;=1

(3.49)
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where M(t) is the number of service completions within lO, tJ, and Xi is the service
time of the i th customer. We can also write this equation as

(3.50)

(3.51)

and assuming the limits below exist, we obtain

. I it I . M(t) . X 2
hm - reT) dT = - hm hm I-I I

t 0 2 t M(t)

The two limits on the right are the time averages of the departure rate (which equals the
arrival rate) and the second moment of the service time, respectively, while the limit on
the left is the time average of the residual time. Assuming that time averages can be
replaced by ensemble averages, we obtain

(3.52)

(3.53)

The P-K formula,

AX2
20 - p)

now follows by substituting the expression obtained for R lcf. Eq. (3.52)J into the formula
W = RiO - p) lcf. Eq. (3.48)J.

Note that our derivation was based on two assumptions:

-;::-
-.:
'"E
i=
'"u
'"(/)
'":::J"0
a: X,

o Timer
X,

Figure 3.16 Derivation of the mean residual service time. During period [0, t], the
time average of the residual service time T(r) is

1
t kIlt) ",M(t) 2
T(r) dr = = M(t) L....i=! X,
tot L 2' 2 t M(t)

1=1

where X, is the service time of the i th customer, and 1\1(t) is the number of ser-
vice completions in [0, t]. Taking the limit as t -t 00 and equating time and ensemble
averages, we obtain the mean residual time R = (I /2»"X2.
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1. The existence of the steady-state averages TF, R, and NQ

2. The equality (with probability one) of the long-tenn time averages appearing in
Eq. (3.51) with the corresponding ensemble averages

These assumptions can be justified by careful applications of the law of large
numbers, but the details are beyond the scope of this book. However, these are natural
assumptions for the systems of interest to us, and we will base similar derivations on
graphical arguments and interchange of time averages with ensemble averages without
further discussion.

One curious feature of the P-K fonnula (3.53) is that an 1'11/G / I queue can have
p < I but infinite W if the second moment X 2 is x. What is happening in this case
is that a small fraction of customers have incredibly long service times. When one of
these customers is served, an incredible number of arrivals are queued and delayed by a
significant fraction of that long service time. Thus, the contribution to W is proportional
to the square of the service time, leading to an infinite W if X2 is infinite.

The derivation of the P-K fonnula above assumed that customers were served in
order of arrival, that is, that the number of customers served between the i th arrival and
service is just the number in queue at the i th arrival. It turns out, however, that this
fonnula is valid for any order of servicing customers as long as the order is detennined
independently of the required service time. To see this, suppose that the i th and ph

customers are both in the queue and that they exchange places. The expected queueing
time of customer i (over the service times of the customers in queue) will then be
exchanged with that for customer j, but the average, over all customers, is unchanged.
Since any service order can be considered as a sequence of reversals in queue position,
the P-K fonnula remains valid (see also Problem 3.32).

To see why the P-K fonnula is invalid if the service order can depend on service
time, consider a queue with two customers requiring 10 and I units of service time,
respectively. Assuming that the server becomes available at time 0, serving the first
customer first results in one customer starting service at time 0 and the other at time 10.
Serving the second customer first results in one customer starting at time 0 and the other
at time I. Thus, the average queueing time over the two customers is 5 in the first case
and 0.5 in the second case. Clearly, queueing time is reduced by serving customers with
small service time first. For this situation, the derivation of the P-K fonnula breaks down
at Eq. (3.46) since the customers that will be served before a newly arriving customer
no longer have a mean service time equal to 1/Ji.

Example 3.15 Delay Analysis of an ARQ System
Consider a go back TI ARQ system such as the one discussed in Section 2.4. Assume that
packets are transmitted in frames that are one time unit long, and there is a maximum wait
for an acknowledgment of n - I frames before a packet is retransmitted (see Fig. 3.17). In
this system packets are retransmitted for two reasons:

1. A given packet transmitted in frame i might be rejected at the receiver due to errors,
in which case the transmitter will transmit packets in frames i+ I, i +2..... i +n - I,
(if any are available), and then go back to retransmit the given packet in frame i+ n.
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2. A packet transmitted in frame i might be accepted at the receiver, but the correspond-
ing acknowledgment (in the form of the receive number) might not have arrived at
the transmitter by the time the transmission of packet i + n - I is completed. This
can happen due to errors in the return channel, large propagation delays, long return
frames relative to the size of the goback number n, or a combination thereof.

We will assume (somewhat unrealistically) that retransmissions occur only due to
reason I, and that a packet is rejected at the receiver with probability p independently of
other packets.

Consider the case where packets arrive at the transmitter according to a Poisson
process with rate .\. It follows that the time interval between start of the first transmission
of a given packet after the last transmission of the previous packet and end of the last
transmission of the given packet is I + kn time units with probability (I - p)pk. (This
corresponds to k retransmissions following the last transmission of the previous packet; see
Fig. 3.17.) Thus, the transmitter's queue behaves like an MIGII queue with service time
distribution given by

kP{X=I+kn}=(l-p)p, k=O.I. ...

The first two moments of the service time are

x (X X)

x (00 00 00)- 2 k k k 2 2k
=(l-p) +n

We now note that
X

,",pk = _1_,
I-p

k=O

X

'"'kk __P_
P - (I _ )2'

k=O P

Effective service time
of packet 1

Effective service time
of packet 2

,. II .. 'II

Start of effective service time
of packet 4

Error Final transmission
of packet 1

Error Final transmission Correct Error
of packet 2 -Packets Transmitted

Error

Figure 3.17 Illustration of the effective service times of packets in the ARQ
system of Example 3.15. For example, packet 2 has an effective service time of
n + 1 because there was an error in the first attempt to transmit it following the
last transmission of packet 1. but no error in the second attempt.
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(The first sum is the usual geometric series sum, while the other two sums are obtained by
differentiating the first sum twice.) Using these formulas in the equations for X and X2
above, we obtain

I-p

X2 _ I + 2np + n
2
(p + p")

- 1 - p (I - p)2

The P-K formula gives the average packet time in queue and in the system (up to the end
of the last transmission):

T=X+W

3.5.1 M / G/1 Queues with Vacations

Suppose that at the end of each busy period, the server goes on "vacation" for some
random interval of time. Thus, a new arrival to an idle system, rather than going into
service immediately, waits for the end of the vacation period (see Fig. 3.18). If the
system is still idle at the completion of a vacation, a new vacation starts immediately.
For data networks, vacations correspond to the transmission of various kinds of control
and record-keeping packets when there is a lull in the data traffic; other applications will
become apparent later.

Let VI, V2 , be the durations of the successive vacations taken by the server. We
assume that VI. Y2 are independent and identically distributed (lID) random variables,
also independent of the customer interarrival times and service times. As before, the
arrivals are Poisson and the service times are lID with a general distribution. A new
arrival to the system has to wait in the queue for the completion of the current service or
vacation and then for the service of all the customers waiting before it. Thus, the waiting
time formula TV = R/O - p) is still valid [cf. Eq. (3.48)], where now R is the mean
residual time for completion of the service or vacation in process when the i th customer
arrives.

The analysis of this new system is the same as that of the P-K formula except that
vacations must be included in the graph of residual service times r(T) (see Fig. 3.19).
Let Al(t) be the number of services completed by time t and L(t) be the number of
vacations completed by time t. Then [as in Eq. (3.49)], for any t where a service or
vacation is just completed, we have

! r r T dT _ ! M(I) ! X2 + ! L. (I) ! V 2 _ M.(t) 1xl + L(.t) v,2
t./o () - t I: 2 i t I: 2 i - t M(t) t L(t)

1=1 ,=1
(3.54)

As before, assuming that a steady-state exists, Ivl(t)/t approaches A with increasing
t, and the first term on the right side of Eq. (3.54) approaches AX2/2 as in the derivation
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Figure 3.18 AIIG11 system with vacations. At the end of a busy period. the server goes on
vacation for time V with first and second moments V and V2, respectively. If the system is empty
at the end of a vacation, the server takes a new vacation. An arriving customer to an empty system
must wait until the end cif the current vacation to get service.
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Figure 3.19 Residual service times for an MIGI I system with vacations. Busy peri-
ods alternate with vacation periods. If AI(t) and L(t) are the numbers of services and
vacations completed by time t, respectively, and t is a time of completion of a service
or a vacation, we have

t M(t) L(t) "" ,\lit)!) ""L(t)])1r T)dT = ""'. + ""' = M(t) L..,=! 2: X ; + L(t) L..i=t 2:v,-
t 0 ( t 2 1 t 2 1 t lvf(t) t L(t)

1=1 1=1

Taking limit as t ---+ CXJ and arguing that 1\!I(t)lt ---+ A and L(t)lt ---+ (I - p)/V.
we obtain the mean residual time R = A'i' +

of the P-K formula [cf. Eq. (3.52)]. For the second term, note that as t ----+ x, the fraction
of time spent serving customers approaches p, and thus the fraction of time occupied with
vacations is 1 - p. Assuming that time averages can be replaced by ensemble averages,
we have to - p)1L(t) ----+ V with increasing t, and thus the second term in Eq. (3.54)
approaches (1 - p)V2 I (2V), where Vand V2 are the first and second moments of the
vacation interval, respectively. Combining this with W = RI(1 - p), and assuming
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(3.55)

(3.56)

equality of the time and ensemble averages of R, we get

),X2 V2w= +---=2(1 - p) 2V

as the expected waiting time in queue for an !vI /G/ I system with vacations.
If we look carefully at the derivation of the preceding equation, we see that the

mutual independence of the vacation intervals is not required (although the time and
ensemble averages of the vacation intervals must still be equal) and the length of a
vacation iAt!n'al need not be independent of the",customer arrival and service times.
Naturally, with this kind of dependence, it becomes more difficult to calculate V and
V2, as these quantities might be functions of the underlying !vI /G /1 process.

Example 3.16 Frequency- and Time-Division Multiplexing on a Slot Basis
We have m traffic streams of equal-length packets arriving according to a Poisson process
with rate Aim each. If the traffic streams are frequency-division multiplexed on m sub-
channels of an available channel, the transmission time of each packet is m time units.
Then, each subchannel can be represented by an Af IDI I queueing system and the MIDI I
formula W = pI(2f1(1 - p» [cf. Eq. (3.45)] with p = A, /1 = 11m, gives the average
queueing delay per packet,

W _ Am
FDM - 2(1 - A)

Consider the same FOM scheme with the difference that packet transmissions can
start only at times m, 2m, 3m, . .. (i.e., at the beginning of a slot of rn time units). We call
this scheme slotted ji"equency-division multiplexing (SFOM), and note that it can be viewed
as an l\if ID I I queue with vacations. When there are no packets in the queue for a given
stream at the beginning of a slot, the server takes a vacation for one slot, or m time units.
Thus, 17 = m, V 2 = Tn

2, and the vacation system waiting time formula (3.55) becomes

WSFDM = W FDM + r; (3.57)

(3.58)

Finally, consider the case where the m traffic streams are time-division multiplexed
in a scheme whereby the time axis is divided in Tn-slot frames with one slot dedicated to
each traffic stream (see Fig. 3.20). Each slot is one time unit long and can carry a single
packet. Then, if we compare this TOM scheme with the SFOM scheme, we see that the
queue for a given stream in TOM is precisely the same as the queue for SFOM, and

WTDM = W SFDM = W FDM + ; = 2(1r: A)
If we now look at the total delay for TOM, we get a different picture, since the service

time is I unit of time rather than Tn units as in SFOM. By adding the service times to the
queueing delays, we obtain

Am
TFDM = m + 2(1 _ A)

rn
TSFDY! = TFDM + :2

Tn. (Tn)
TTDY! = 1+ 2(1 _ A) = TFDM - :2 - I (3.59)
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Stream 1 Stream 2 Stream 3 Stream 4

--,--IttM-'-------'--...l...----..!-1-!--I__.
I. Framek .1_. t

Frame (k + 1)
One time unit per slot

Figure 3.20 TOM with m = 4 traffic streams.

Thus, the customer's average total delay is more favorable in TDM than in FDM (assuming
that In > 2). The longer average waiting time in queue for TDM is more than compensated
by the faster service time. Contrast this with the Example 3.9, which treats TDM with
slots that are a very small portion of the packet size. Problem 3.33 outlines an altemative
approach for deriving the TDM average delay.

3.5.2 Reservations and Polling

Organizing transmissions from several packet streams into a statistical multiplexing sys-
tem requires some form of scheduling. In some cases, this scheduling is naturally and
easily accomplished; in other cases, however, some form of reservation or polling system
is required.

Situations of this type arise often in multiaccess channels, which will be treated
extensively in Chapter 4. For a typical example, consider a communication channel that
can be accessed by several spatially separated users; however, only one user can transmit
successfully on the channel at anyone time. The communication resource of the channel
can be divided over time into a portion used for packet transmissions and another portion
used for reservation or polling messages that coordinate the packet transmissions. In other
words, the time axis is divided into data intervals, where actual data are transmitted, and
reservation intervals, used for scheduling future data. For uniform presentation, we use
the term "reservation" even though "polling" may be more appropriate to the practical
situation.

We will consider Tn traffic streams (also called users) and assume that each data
interval contains packets of a sinfile user. Reservations for these packets are made in the
immediately preceding reservation interval. All users are taken up in cyclic order (see
Fig. 3.21). There are several versions of this system differing in the rule for deciding
which packets are transmitted during the data interval of each user. In the fiated system,
the rule is that only those packets that arrived prior to the user's preceding reservation
interval are transmitted. By contrast, in the exhaustive system, the rule is that all available
packets of a user are transmitted during the corresponding data interval, including those
that arrived in this data interval or the preceding reservation interval. An intermediate
version, which we call the partially fiated system, results when the packets transmitted in
a user's data interval are those that arrived up to the time this data interval began (and the
corresponding reservation interval ended). A typical example of such reservation systems
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Reservation and data Reservation and data Reservation and data
intervals for user 1 intervals for user 2 intervals for user 3

Transmission interval
for user 1

I.. -I
Arrival interval for user 1 in an exhaustive system

Arrival interval for user 1 in a partially gated system

Arrival interval for user 1 in a gated system

Packets arriving in the arrival interval shown are
transmitted in the transmission interval shown

Reservation intervals

Figure 3.21 Reservation or polling system with three users. In the exhaustive version,
a packet of a user that arrives during the user's reservation or data interval is transmitted
in the same data interval. In the partially gated version. a packet of a user arriving during
the user's data interval must wait for an entire cycle and be transmitted during the next
data mterval of the user. In the fully gated version, packets arriving during the user's
reservation interval must also wait for an entire cycle. The figure shows, for the three
systems, the association between the interval in which a packet arrives and the interval
in which the packet is transmitted.

is one of the most common local area networks, the token ring. The users are connected
by cable in a unidirectional loop. Each user transmits the current packet backlog, then
gives the opportunity to a neighbor to transmit, and the process is repeated. (A more
detailed description of the token ring is given in Chapter 4.)

We assume that the arrival processes of all users are independent Poisson with
rate A/m, and that the first and second moments of the packet transmission times are
X = 1/11 and X2, respectively. The utilization factor is p = A/Jl. Interarrival times
and transmission times are, as usual, assumed independent. While we assume that all
users have identical arrival and service statistics, we allow the reservation intervals of
different users to have different statistics.

Single-user system. Our general line of analysis of reservation systems can
be better understood in tenns of the special case where m = I, so we consider this
case first. We may also view this as a system where all users share reservation and data
intervals. Let Vp be the duration of the fth reservation interval and assume that successive
reservation intervals are independent and identically distributed random variables with
first and second moments V and V2, respectively. We consider a gated system and
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(3.60)

assume that the reservation intervals are statistically independent of the arrival times
and service durations. Finally, for convenience of exposition, we assume that packets
are transmitted in the order of their arrival. As in our derivation of the P-K formula,
expected delays and queue lengths are independent of service order as long as service
order is independent of service requirement (i.e., packet length).

Consider the i th data packet arriving at the system. This packet must wait in queue
for the residual time Hi until the end of the current packet transmission or reservation
interval. It must also wait for the transmission of the Ni packets currently in the queue
(this includes both packets for which reservations were already made in the last reserva-
tion interval and earlier arrivals waiting to make a reservation). Finally, the packet must
wait during the next reservation interval vt(i), say, in which its reservation will be made
(see Fig. 3.22). Thus, the expected queueing delay for the i th packet is given by

E{Wd = E{R i } + E{Nd + E{vt(i)}
f1

The similarity of this reservation system to the Al/G/1 queue with vacations should
be noted. The only difference is that in the gated reservation system, a reservation interval
starts when all packets that arrived prior to the start of the preceding reservation interval
have been served, whereas in the vacation system, a vacation interval starts when all
arrivals up to the current time have been served and the system is empty. (Thus in
the gated reservation system, every packet has to wait in queue for a full reservation
interval, while in the vacation system, only the packets that find the system empty upon
arrival have to wait for part of a vacation interval. Note that the exhaustive version of
this reservation system is equivalent to the vacation system.) The time-average mean
residual time for the two systems is the same (the calculation based on Fig. 3.19 still
applies) and is given by AX2/2 + (l - p)V2 /2V. The value of Iimi_:>0 E {Nd / f1 is
pW in both systems, and finally the value of E{VC(i)} is just V. Thus, from

Waiting time in queue W;

Arrival time
of ith packet

Residual Waiting time
time R; for N, packets

ahead of packet
i in queue

Transmission
of ith packet
starts

Transm iss ion
Reservation of ith packet
interval V,U! ends

'-Time

Figure 3.22 Calculation of the average waiting time in the single-user gated system.
The expeeted waiting time E {W,} of the ,til packet is

" E{NdE{H/,} = E{Ild + -- +E{ViI,d
II
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(single user, gated)

Eq. (3.60) the expected time in queue for the single-user reservation system is

..\X2 V2 V
W= +-=+--20 - p) 2V 1 - P

(3.61 )

(3.62)

(3.63)

(3.64)

In the common situation where the reservation interval is a constant A, this simplifies to

w _ ..\X2 +.:'! (3 -p)
20 - p) 2 1 - P

There is an interesting paradox associated with the waiting time formula (3.61).
We have seen that a fraction 1 - P of time is used on reservations. Since there is one
reservation interval of mean duration V per cycle, we can conclude that the expected
cycle length must be V10 - p) (see also Example 3.6). The mean queueing delay in
Eq. (3.61) can be an arbitrarily large multiple of this mean cycle length, which seems
paradoxical since each packet is transmitted on the cycle following its arrival. The
explanation of this is that more packets tend to arrive in long cycles than in short cycles,
and thus mean cycle length is not representative of the cycle lengths seen by arriving
packets; this is the same phenomenon that makes the mean residual service time used in
the P-K formula derivation larger than one might think (see also Problem 3.31).

Multiuser system. Suppose that the system has m users, each with independent
Poisson arrivals of rate ..\Im. Again X and X2 are the first two moments of the service
time for each user's packets. We denote by Vi and V?' respectively, the first two moments
of the reservation intervals of user i. The service times and reservation intervals are all
independent. We number the users 0, 1, ... , m - I and assume that the eth reservation
interval is used to make reservations for user emod m and the subsequent (£th) data
interval is used to send the packets corresponding to those reservations.

Consider the i th packet arrival into the system (counting packets in order of arrival,
regardless of user). As before, the expected delay for this packet consists of three terms:
first, the mean residual time for the packet or reservation in progress; second, the expected
time to transmit the number Ni of packets that must be transmitted before packet i; and
third, the expected duration of reservation intervals (see Fig. 3.23). Thus,

E{Wd = E{Rd + E{N;} + E{Yi }
f1

where Y; is the duration of all the whole reservation intervals during which packet i
must wait before being transmitted. The time average mean residual time is calculated
as before, and is given by

..\X2 0 - ) ,\,,:,-1 \;;2R = __ + p L.t=o t
2 2 ,\,m-l V

L.bO f

The number of packets N i that i must wait for is not equal to the number already in
queue, but the order of serving packets is independent of packet service time; thus,
each packet served before i still has a mean transmission time 1I f1 as indicated in
Eq. (3.63) and by Little's formula, the value of E{ N;} I f1 is pW as before.
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Figure 3.23 Calculation of the average waiting time in the multiuser system. The
expected waiting time E{Wi } of the ith packet is

E{N}E{W,} = E{R;} + __i + E{Y,}
J1

Letting Y = limi_oo E{Y;}, we can thus write the steady-state version of Eq. (3.63):

W=R+pW+Y
or, equivalently,

W=R+Y
I-p

We first calculate Y for an exhaustive system. Denote

aij = E {Y; I packet i arrives in user f's reservation or data

interval and belongs to user (t + j) mod m}
We have

{

0, j = 0
aij =

V(£+I) mod m + ... + V(f+j) mod m , j > 0
Since packet i belongs to any user with equal probability 11m, we have

E{Y; I packet i arrives in user t's reservation or data interval}

(3.65)

1 m-l
= - L aij =m

j=1

m-l .
'" m-J----V(£+j)modmm
j=1

(3.66)

Since all users have equal data rate, the data intervals of all users have equal average
length in steady-state. Therefore, in steady-state, a packet will arrive during user f's data
interval with probability plm, and during user f's reservation interval with probability
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(1 - p) V £/ V k). Using this fact in Eq. (3.66), we obtain the following equation
for Y = E{Yi }:

m-lm-l .

--V£V<£+j)modrn
Tn

£=0 j=l

(3.67)

The last sum above can be written

m-lm-l. I
--V£V(£+j)modm = -2rn

£=0 j=l

(To see this, note that the right side above is the sum of all possible products V £V £' for
e-I e. The left side is the sum of all possible terms (j / rn)V £V t' and [( rn - j) / rn]V £V£"
where j = It - el and t -I e.) Using this expression, and denoting

m-l
-
V = - V£

rn
£=0

as the reservation interval averaged over all users, we can write Eq. (3.67) as
- - m 1-2

Y = pV(rn - I) + (1 - p)rnV _ (1 - p) V£
2 2 2rnV

(rn - p)V
2

",m-l -2
(I - p) L-t=o V£

2rnV
(3.68)

Combining Eqs. (3.64), (3.65), and (3.68), we obtain

,\X2 (rn _ p)V (-Vl-w= + +----'--=------'---
2(I-p) 2(1-p) 2rnV

Denoting

",m-l (V2 _v2)L-£=o £ £

rn
as the variance of the reservation intervals averaged over all users, we finally obtain

(3.69)(exhaustive)w = ,\X2 + (rn - p)V +
2(1 - p) 2(1 - p) 2V

The partially gated system is the same as the exhaustive except that if a packet of
a user arrives during a user's own data interval (an event of probability p/rn in steady-
state), it is delayed by an additional rnV, the average sum of reservation intervals in a
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(3.71 )(gated)

cycle. Thus, Y is increased by pV in the preceding calculation, and we obtain

"'X2 (rn + p)V a'v"W = + + ---= (partially gated) (3 70)2(1 - p) 2(1 - p) 2V .

Consider, finally, the fully gated system. This is the same as the partially gated
system except that if a packet of a user arrives during a user's own reservation interval
[an event of probability (I - p)/m in steady-state], it is delayed by an additional mV.
This increases Y by an additional (I - p)V and results in the equation

W = "'X2 + (rn + 2 - p)V +
2(1 - p) 2(1 - p) 2V

(3.74)

(3.72)

(3.73)

(gated)

(exhaustive)

(partially gated)

In comparing these results with the single-user system, consider the case where
the reservation interval is a constant A/m. Thus, A is the overhead or reservation
time for an entire cycle of reservations for each user, which is usually the appropriate
parameter to compare with A in the single-user waiting-time formula (3.62). We then
have (V = A/m. = 0)

"'X2 A(I- p/m)W= +-
2(1 - p) 2 I - P

W = "'Xl + (1 + p/m)
2(1-p) 2 I-p

W = "'Xl + (I + (2 - p)/rn)
2(1 - p) 2 1 - P

It can be seen that delay is somewhat reduced in the multiuser case; essentially,
packets are delayed by roughly the same amount until the reservation time in all cases,
but delay is quite small after the reservation in the multiuser case.

Limited service systems. We now consider a variation of the multiuser system
whereby, in each user's data interval, only the first packet of the user waiting in queue
(if any) is transmitted (rather than all waiting packets). We concentrate on the gated and
partially gated versions of this system, since an exhaustive version does not make sense.
As before, we have

E{N}
E{W;} = E{R;} + --' + E{Yi }

11

and by taking the limit as i -+ x, we obtain

W=R+pW+Y (3.75)

Here R is given by Eq. (3.64) as before. To calculate the new formula for Y for the
partially gated system, we argue as follows. A packet arriving during user fi's data
or reservation interval will belong to anyone of the users with equal probability 1/m.
Therefore, in steady-state, the expected number of packets waiting in the queue of the user
that owns the arriving packet, averaged over all users, is limi_x E{Ni}/m = "'vV' /m.
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Each of these packets causes an extra cycle of reservations mV, so Y is increased by
an amount .A.WV. Using this fact in Eq. (3.75), we see that

R+Y
W=------=

1-p-AV

where Y is the value of Y obtained earlier for the partially gated system without the
single-packet-per-data-interval restriction. Equivalently, we see from Eq. (3.65) that the
single-packet-per-data-interval restriction results in an increase of the average waiting
time for the partially gated system by a factor

1-p
1 - P - AV

Using this fact in Eq. (3.70), we obtain

AX2 (m + p)V - p)
W= +

2(1-p-AV) 2(1-p-AV) 2V(1-p-.A.V)

(limited service, partially gated) (3.76)

Consider now the gated version. 1"; is the same as for the partially gated system
except for an additional cycle of reservation intervals of average length mV associated
with the event where packet i arrives during the reservation interval of its owner, and the
subsequent data interval is empty. It is easily verified (Problem 3.34) that the latter event
occurs with steady-state probability (1 - p - AV)/m. Therefore, for the gated system Y
equals the corresponding value for the partially gated system plus (1 - p - AV)V. This
adds V to the value of W for the partially gated system, and the average waiting time
now is

AX2 (m + 2 - p - 2AV)V - p)
W = + +

2(1-p-AV) 2(l-p-AV) 2V(1-p-AV)

(limited service, gated) (3.77)

Note that it is not enough that p = AIf1 < 1 for W to be bounded; rather,
p + AV < 1 is required or, equivalently,

.A. (* +V) < 1

This is due to the fact that each packet requires a separate reservation interval of average
length V, thereby effectively increasing the average transmission time from 1I f1 to 1I f1 +
V.

As a final remark, consider the case of a very large number of users m and a
very small average reservation interval V. An examination of the equation given for
the average waiting time W of every multiuser system considered so far shows that as
m --> 00, V --> 0, IV --> 0, and mV --> A, where A is a constant, we have

AX2 A
M-' --> + -,,-----

2(1 - p) 2(1 - p)
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It can be shown (see Example 3.6) that AI(l - p) is the average length of a cycle (m
successive reservation and data intervals). Thus, W approaches the AI10I I average
waiting time plus one half the average cycle length.

3.5.3 Priority Queueing

Consider the M 10I I system with the difference that arriving customers are divided
into n different priority classes. Class I has the highest priority, class 2 has the second
highest, and so on. The arrival rate and the first two moments of service time of each
class k are denoted Ak, X k = I II1k, and Xl.:, respectively. The arrival processes of all
classes are assumed independent, Poisson, and independent of the service times.

Nonpreemptive priority. We first consider the nonpreemptive priority rule
whereby a customer undergoing service is allowed to complete service without inter-
ruption even if a customer of higher priority arrives in the meantime. A separate queue
is maintained for each priority class. When the server becomes free, the first customer
of the highest nonempty priority queue enters service. This priority rule is one of the
most appropriate for modeling packet transmission systems.

We will develop an equation for average delay for each priority class, which is
similar to the P-K formula and admits a similar derivation. Denote

= Average number in queue for priority k

Wk = Average queueing time for priority k

Pk = Akll1k = System utilization for priority k

R = Mean residual service time
We assume that the overall system utilization is less than I, that is,

PI + P2 + ... + Pn < I

When this assumption is not satisfied, there will be some priority class k such that the
average delay of customers of priority k and lower will be infinite while the average
delay of customers of priority higher than k will be finite. Problem 3.39 takes a closer
look at this situation.

As in the derivation of the P-K formula given earlier, we have for the highest-
priority class,

WI
111

Eliminating N¢ from this equation using Little's Theorem,

Nb=AIW1

we obtain
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and finally,
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(3.79)

R
WI = -- (3.78)

1 - PI

For the second priority class, we have a similar expression for the queueing delay
W2 except that we have to count the additional queueing delay due to customers of
higher priority that arrive while a customer is waiting in queue. This is the meaning of
the last term in the formula

• 1 1 I 2 1= R+ -NQ + -NQ + -)qW2
fJl fJ2 fJl

Using Little's Theorem = AkWk), we obtain

W2 = R + PI WI + P2W2+ PI W2

which yields

W2 = R+PIW1

I - PI - P2

Using the expression WI = RI(1 - PI) obtained earlier, we finally have

TXT _ R
vV2 -

(1 - p])(1 - PI - P2)

The derivation is similar for all priority classes k > I. The formula for the waiting
time in queue is

W. _ R
k- (1 - PI - ... - Pk-l)(1 - PI - ... - P"J

The average delay per customer of class k is

Tk = +W k (3.80)
fJk

The mean residual service time R can be derived as for the P-K formula (compare with
Fig. 3.16). We have

In _
R = - '" AX2

2 L.. ' ,
i=1

(3.81 )

(3.82)

(3.83)

The average waiting time in queue and the average delay per customer for each class is
obtained by combining Eqs. (3.79) to (3.81):

2::n AX2
VVk = i=1 1 i

2(1 - PI - ... - Pk-I)(1- PI - ... - Pk)

Tk = +Wk
fJk

The analysis given above does not extend easily to the case of multiple servers,
primarily because there is no simple formula for the mean residual time R. If, however,
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the service times of all priority classes are identically and exponentially distributed,
there is a convenient characterization of R. Equation (3.79) then yields a closed-form
expression for the average waiting times Wk (see Problem 3.38).

Note that it is possible to affect the average delay per customer by choosing the
priority classes appropriately. It is generally true that average delay tends to be reduced
when customers with short service times are given higher priority. (For an example
from common experience, consider the supermarket practice of having special checkout
counters for customers with few items. A similar situation can be seen in copying
machine waiting lines, where people often give priority to others who need to make just
a few copies.) For an analytical substantiation, consider a nonpreemptive system and
two customer classes A and B, with respective arrival and service rates AA, {LA, and
AB, ILn. A straightforward calculation using the formulas above shows that if {LA > {LB,
then the average delay per customer (averaged over both classes)

T = AATA + AnTs
AA +AB

is smaller when A is given priority over B than when B is given priority over A. For
related results, see Problem 3.40.

Preemptive resume priority. One of the features of the nonpreemptive pri-
ority rule is that the average delay of a priority class depends on the arrival rate of
lower-priority classes. This is evident from Eq. (3.82), which gives the average waiting
times Wko and is due to the fact that a high-priority customer must wait for a lower-
priority customer already in service. This dependence is not present in the preemptive
resume priority discipline, whereby service of a customer is interrupted when a higher-
priority customer arrives and is resumed from the point of interruption once all customers
of higher priority have been served.

As an example of an (approximation to) such a system, consider a transmission line
serving several Poisson packet streams of different priorities. The packets of each stream
are subdivided into many small "subpackets" (e.g., ATM cells), which in the absence of
packets of higher priority, are contiguously transmitted on the line. The transmission of
the subpackets of a given packet is halted when a packet of higher priority arrives and
is resumed when no subpackets of higher priority packets are left in the system.

As we consider the calculation of Tko the average time in the system of priority
k customers, we should keep in mind that the presence of customers of priorities k + I
through n does not affect this calculation. Therefore, we can treat each priority class as
if it were the lowest in the system. The system time Ti.. consists of three terms:

1. The customer's average service time I/p.k'
2. The average time required, upon arrival of a priority k customer, to service cus-
tomers of priority I to k already in the system (i.e., the average unfinished work
corresponding to priorities I through k). It can be seen that this time is equal to
the average waiting time in the corresponding, ordinary Ai/G/ I system (without
priorities), where the customers of priorities k + I through n are neglected, that is
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[cf. Eq. (3.48)],
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(3.84)

I - PI - ... - Pk

where Rk is the mean residual time

""k \ X 2R - L..i=1 /Ii i
k - 2

The reason is that at all times, the unfinished work (sum of remaining service times
of all customers in the system) of an MIG1I-type system is independent of the
priority discipline of the system. This is true for any system where the server is
always busy while the system is nonempty, and customers leave the system only
after receiving their required service. (An example of a system that does not have
this property is the vacation system of Section 3.5.1.)

3. The average waiting time for customers of priorities I through k - I who arrive
while the customer of class k is in the system. This term is

for k > I, and is zero for k = 1.

Collecting the three terms above, we obtain the equation

I Rk (k-1 )Tk = - + + Pi TkJ.Lk I - PI - ... - Pk

The final result is, for k = I,

T] = (l/J.L1)(I - PI) + R 1

I - PI
and for k > I,

(3.85)

(3.86)

(3.87)

where R k is given by Eq. (3.84). As for the nonpreemptive system, there is no easy
extension of this formula to the case of multiple servers unless the service times of all
priority classes are identically and exponentially distributed (see Problem 3.38).

3.5.4 An Upper Bound for the GIG11 System

Consider the GIG1I system, which is the same as MIG1I except that the interarrival
times have a general rather than exponential distribution. We continue to assume that
the interarrival times and service times are all independent. We want to show that the
average waiting time in queue satisfies

+W ::; ---"'-----"--
2(1 - p) .

(3.88)
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(3.89)

0"; = Variance of the interarrival times

O"t = Variance of the service times
A = Average interarrival time

p = Utilization factor AIJi, where 1/Ji is the average service time
The upper bound (3.88) becomes exact asymptotically as p ----> 1, that is, as the system
becomes heavily loaded.

Let us denote

Wk = Waiting time of the k1h customer
X k = Service time of the k1h customer
Tk = Interarrival time between the k1h and (k + l)st customer

From Fig. 3.24 we see that

Wk+1 = max{O, Wk + X k - Td

To simplify the analysis, we will use the following notation for any random variable Y:

y+ = max{O, Y}, Y- = - min{O,Y}

Y = E{Y}, = E{y2 _ y 2
}

Arrival time of the kth Arrival time of the (k + 1)st
customer customer

l__ -0

F Xk4r-----l-----,l·-t
(a)

Arrival time of the kth Arrival time of the (k + 1)st
customer customer

t

(b)

Figure 3.24 Expressing the waiting time VVk+l of the (k + l)st customer in terms
of the waiting time vVko the service time X ko and the interarrival time Tk of the k!h
customer. If the k!h customer has departed before the (k + l)S! customer's arrival, which
is equivalent to W k + X k - Tk :s: 0, then Wk+l = 0 [case (a)]. Otherwise. we have
Wk+l = Wk + X k - Tk [case (b)].
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Note that we have

from which we see that

y = y+ - y-,
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y+. y- = 0
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Y = Y+ - Y-, 2 2 2 -----=-o-y=o-y++o-y_+2Y·Y (3.90)

Let us now write the expression (3.89) as

W k+ 1 = (Wk + Vk)+

where

Let us also denote

(3.91 )

(3.92)

(3.93)

From Fig. 3.24 we see that I k is the length of the idle period between the arrival of the
kth and the arrival of the (k + l)st customer.

We have, using Eq. (3.90),

o-{Wk+Vk) = o-{WdVk)+ + o-{WdVkl- + 2(Wk + Vk )+ . (Wk + Vk )-

Since Wk and Vk are independent, we also have

Combining Eqs. (3.91) to (3.95), we obtain
2222 2--

O-Wk + O-a + O-b = o-Wk-t-l + 0-1, + 2Wk+lh
We now take the limit as k ----7 oc, assuming that steady-state values exist, that is,

(3.94)

(3.95)

W k ----7W,

We obtain

(3.96)

(3.97)

The average idle time I between two successive arrivals is equal to (1 - p) (the fraction
of time the system is idle) multiplied by the average interarrival time 1/'\, that is,
I = (1 - p)/'\. Thus, we can write Eq. (3.96) as

'\(0-2 + 0-2 ) '\0-2W= a b _ 1
2(1 - p) 2(1 - p)

Since 0-7 2: 0, we obtain the inequality

W < +
- 2(1 - p)

(3.98)
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which is the desired result. Note that as the system becomes more heavily loaded, the
average idle time h tends to diminish and so does the variance 0-1, thereby making the
upper bound increasingly accurate.

As an example, consider the M / G / I queue. By the Pollatcheck-Khinchin formula
we have

..\X2

w=---2(1 - p)
+ I/I-i)

2(1 - p)
(3.99)

Since for the Poisson arrival process with rate ..\ we have = 1/..\2 , by comparing Eqs.
(3.97) and (3.99) we see that

J 1 I
0-1 = ..\2 - {12

Thus the term that was neglected to derive the upper bound (3.98) for W is equal to

..\0-1 ..\ ( I 1) 1(1 I)
2(1 - p) = 2(1 - ..\jl-L) ..\2 - {12 = 2 >:. + -;;

This term is always less than the average interarrival time 1/..\ when p < 1. As p ----+ I,
it approaches 1/ I-L and is negligible relative to the upper bound of Eq. (3.98).

We finally note that several other bounds and approximations for the G / G/ I queue
have been obtained. A particularly simple improvement to the one we have given here is

+ ..\(1 -W< -------"'-
- 2(1 - p) 2

Its derivation is outlined in Problem 3.48.

3.6 NETWORKS OF TRANSMISSION LINES

In a data network, there are many transmission queues that interact in the sense that
a traffic stream departing from one queue enters one or more other queues, perhaps
after merging with portions of other traffic streams departing from yet other queues.
Analytically, this has the unfortunate effect of complicating the character of the arrival
processes at downstream queues. The difficulty is that the packet interarrival times
become strongly correlated with packet lengths once packets have traveled beyond their
entry queue. As a result it is impossible to carry out a precise and effective analysis
comparable to the one for the M /M /1 and M / G/1 systems.

As an illustration of the phenomena that complicate the analysis, consider two
transmission lines of equal capacity in tandem, as shown in Fig. 3.25. Assume that
Poisson arrivals of rate ..\ packets/sec enter the first queue, and that all packets have
equal length. Therefore, the first queue is M / D /1 and the average packet delay there is
given by the Pollaczek-Khinchin formula. However, at the second queue the interarrival
times must be greater than or equal to 1/{1 (the packet transmission time). Furthermore,
because the packet transmission times are equal at both queues, each packet arriving at
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the second queue will complete transmission at or before the time the next packet arrives,
so there is no "'aiting at the second queue. Therefore, a delay model based on Poisson
assumptions is totally inappropriate for the second queue.

Consider next the case of the two tandem transmission lines where packet lengths
are exponentially distributed and are independent of each other as well as of the inter-
arrival times at the first queue. Then the first queue is J\[ / ,U/1. The second queue,
however, cannot be modeled as AI/AI/I. The reason is, again, that the interarrival
times at the second queue are strongly correlated with the packet lengths. In particular,
the interarrival time of two packets at the second queue is greater than or equal to the
transmission time of the second packet at the first queue (see Fig. 3.26). As a result, long
packets will typically wait less time at the second queue than short packets, since their
transmission at the first queue takes longer, thereby giving the second queue more time
to empty out. For a traffic analogy, consider a slow truck traveling on a busy narrow
street together with several faster cars. The truck will typically see empty space ahead
of it while being closely followed by the faster cars.

As an indication of the difficulty of analyzing queueing network problems involv-
ing dependent interarrival and service times, no analytical solution is known for even the
simple tandem queueing problem of Fig. 3.25 involving Poisson arrivals and exponen-
tially distributed service times. In the real situation where packet lengths and interarrival
times are correlated, a simulation has shown that under heavy traffic conditions, average
delay per packet is smaller than in the idealized situation where there is no such corre-
lation. The reverSe is true under light traffic conditions. It is not known whether and in
what form this result can be extended to more general networks.

;>., packets/sec

Long packet Short packet

Figure 3.25 Two equal-capacity
transmission lines in tandem. If all packets
have equal length. there is no queueing
delay in the second queue.

Preced ing packet Long packet Short packet

I \

Arrival times at 1st line

Departure times at 1st
line (or arrival times at
2nd line)

;;. Transmission time of
long packet

Transmission time of short
packet

Figure 3.26 Timing diagram of packet arrivals and departures completions in a system
of two transmission lines in tandem. The interarrival time of two packets at the second
queue is greater or equal to the transmission time of the second packet. (It is greater
if and only if the second packet finds the first queue empty upon arrival.) Hence the
interarrival times at the second queue are correlated with the packet lengths.
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3.6.1 The Kleinrock Independence Approximation

We now fonnulate a framework for approximation of average delay per packet in data
networks. Consider a network of communication links as shown in Fig. 3.27. Assume
that there are several packet streams, each following a unique path that consists of a
sequence of links through the network. Let x" in packets/sec, be the arrival rate of the
packet stream s. Then the total arrival rate at link (i.j) is

all packet streams ,';
crossing link ('i.j)

The preceding network model is well suited for virtual circuit networks, with each
packet stream modeling a separate virtual circuit. For datagram retworks, it is sometimes
necessary to use a more general model that allows bifurcation of the traffic of a packet
stream. Here there are again several packet streams, each having a unique origin and
destination. However, there may be several paths followed by the packets of a stream
(see Fig. 3.28). Assume that no packets travel in a loop, let x" denote the arrival rate
of packet stream 8, and let Ii] (8) denote the fraction of the packets of stream 8 that go
through link (I, j). Then the total arrival rate at link (i. j) is

AiJ =
all packet streams .'3

crossing link (i.J)

Iij(8)X"

We have seen from the special case of two tandem queues that even if the packet
streams are Poisson with independent packet lengths at their point of entry into the net-
work, this property is lost after the first transmission line. To resolve the dilemma, it
was suggested by Kleinrock [Kle64J that merging several packet streams on a trans-
mission line has an effect akin to restoring the independence of interarrival times and
packet lengths. For example, if the second transmission line in the preceding tandem
queue case were to receive a substantial amount of additional external Poisson traffic,

Figure 3.27 Model suitable for virtual
circuit networks. There are several packet
streams. each using a single path. The total
arrival rate Ai) at a link (i, j) is equal to
the sum of the arrival rates x" of all packet
streams s traversing the link.
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Xs,
Xs,

(3.100)

Figure 3.28 Model suitable for datagram networks. There are several packet streams.
each associated with a unique origin-destination pair. However. packets of the same
stream may follow one of several paths. The total arrival rate >"/1 at a link (/.j) is equal
to the sum of the fractions I,j (s ).1', of the arrival rates of all packet streams .5 traversing
the link.

the dependence of interarrival and service times displayed in Fig. 3.26 would be weak-
ened considerably. It was concluded that it is often appropriate to adopt an JU/ JI / I
queueing model for each communication link regardless of the interaction of traffic on
this link with traffic on other links. (See also the discussion preceding Jackson's theorem
in Section 3.8.) This is known as the Kleinrock independence approximation and seems
to be a reasonably good approximation for systems involving Poisson stream arrivals
at the entry points, packet lengths that are nearly exponentially distributed, a densely
connected network, and moderate-to-heavy traffic loads. Based on this AI / JU/ I model,
the average number of packets in queue or service at (i. j) is

7\T. _ A,}
"I} -

Pi} - Ai}

where 1/IIi} is the average packet transmission time on link (i, j). The average number
of packets summed over all queues is

(3.101)

so by Little's Theorem, the average delay per packet (neglecting processing and propa-
gation delays) is

(3.102)
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Figure 3.29 Poisson process with rate .\
divided among two links. If division is
done by randomization, each link behaves
like an M I JIII queue. If division is done
by metering, the whole system behaves Iike
an 1\111'v112 queue.

(3.103)

(3.104)

where! = L8.rS is the total arrival rate in the system. If the average processing and
propagation delay el ij at link (i. j) is not negligible, this formula should be adjusted to

I L ( Ai) )T = - . + Aij elij11" - A"r (i.j) I) 1)

Finally, the average delay per packet of a traffic stream traversing a path p is given by

'"' (Ai) 1 )Tp = L . . . . _ .. + -. + eli)'. ILI)(p,) AI)) 11i)all (I,))
on path p

where the three terms in the sum above represent average waiting time in queue, average
transmission time, and processing and propagation delay, respectively.

In many networks, the assumption of exponentially distributed packet lengths is not
appropriate. Given a different type of probability distribution of the packet lengths, one
may keep the approximation of independence between queues but use the P-K formula for
average number in the system in place of the AI/M /1 formula (3.100). Equations (3.101)
to (3.104) for average delay would then be modified in an obvious way.

For virtual circuit networks (cf. Fig. 3.27), the main approximation involved in the
I\I /M /1 formula (3.101) is due to the correlation of the packet lengths and the packet
interarrival times at the various queues in the network. If somehow this correlation was
not present (e.g., if a packet upon departure from a transmission line was assigned a new
length drawn from an exponential distribution), then the average number of packets in
the system would be given indeed by the formula

This fact (by no means obvious) is a consequence of Jackson's Theorem, which will be
discussed in Section 3.8.

In datagram networks that involve multiple path routing for some origin-destination
pairs (cf. Fig. 3.28), the accuracy of the M / M /1 approximation deteriorates for another
reason, which is best illustrated by an example.

Example 3.17

Suppose that node A sends traffic to node B along two links with service rate 11 in the
network of Fig. 3.29. Packets arrive at A according to a Poisson process with rate .\
packets/sec. Packet transmission times are exponentially distributed and independent of
interarrival times as in the AI/M / I system. Assume that the arriving traffic is to be
divided equally among the two links. However, how should this division be implemented?
Consider the following possibilities.
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1. Randomization. Here each packet is assigned upon arrival at A to one of the two links
based on the outcome of a fair coin flip. It is then possible to show that the arrival
process on each of the two queues is Poisson and independent of the packet lengths
(see Problem 3.11). Therefore, each of the two queues behaves like an Al/Al/l
queue with arrival rate A/2 and average delay per packet

I
TR = -/1---A-/-'---2

2
21L - A

(3.105)

(3.106)

which is consistent with the Kleinrock independence approximation.
2. Metering. Here each arriving packet is assigned to a queue that currently has the
smallest total backlog in bits and will therefore empty out first. An equivalent system
maintains a common queue for the two links and routes the packet at the head of the
queue to the link that becomes idle first. This works like an 11.1/1\;1/2 system with
arrival rate A and with each link playing the role of a server. Using the result of
Section 3.4.1, the average delay per packet can be calculated to be

2TAI = --:------:-c--,----
(2/1. - A)(I + p)

where p = A/2IL.

Comparing the average delay expressions (3.105) and (3.106), we see that metering
performs better than randomization in terms of delay by a factor 1/(1 + p). This is basically
the same advantage that statistical multiplexing with multiple channels holds over time-
division multiplexing as discussed in Example 3.10. Generally, it is preferable to use
some form of metering rather than randomization when dividing traffic among alternative
routes. However, in contrast with randomization, metering destroys the Poisson character
of the arrival process at the point of division. In our example, when metering is used,
the interarrival times at each link are neither exponentially distributed nor independent
of preceding packet lengths. Therefore, the use of metering (which is recommended for
performance reasons) tends to degrade the accuracy of the 1'vl/1v1 / I approximation.

We finally mention an alternative approach for approximating average delay in a
network of transmission lines. This approach uses G/ G/ I approximations in place of
M /M / I or M / G/ I approximations. The key idea is that given the first two moments
of the interarrival and service times of each of the external packet streams, one may
approximate reasonably well the first two moments of the interarrival and service times of
the total packet arrival stream at each queue (see [Whi83a], [Whi83b], and the references
quoted there). Then the average delay at each queue can be estimated using G/ G /1
bounds and approximations of the type discussed in Section 3.5.4.

3.7 TIME REVERSIBILITY-BURKE'S THEOREM

The analysis of the M/M/l, M/M/Tn, M/M/oo, and M/M/m/Tn systems was
based on the equality of the steady-state frequency of transitions from j to j + I, that
is, PjPj(j+l), with the steady-state frequency of transitions from j + I to j, that is,
Pj+ 1P(j+1)j' These relations, called detailed balance equations, are valid for any Markov
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chain with integer states in which transitions can occur only between neighboring states
(i.e., from j to j - 1, j, or j + 1); these Markov chains are called hirth-death processes.
The detailed balance equations lead to an important property called time reversibility, as
we now explain.

Consider an irreducible, aperiodic, discrete-time Markov chain X n , X n+1, ••• hav-
ing transition probabilities Pi.; and stationary distribution {p] I j ;:::: O} with Pj > 0 for
all j. Suppose that the chain is in steady-state, that is,

P{Xn = j} = Pj , for all n

(This occurs if the initial state is chosen according to the stationary distribution, and is
equivalent to imagining that the process began at time -00.)

Suppose that we trace the sequence of states going backward in time. That is,
starting at some n, consider the sequence of states X n, X n - 1, ••• • This sequence is
itself a Markov chain, as seen by the following calculation:

P{Xm = j I X m +1 = i, X m +2 = i2 , ... , X m +k = i k }

P{Xm = j, X m +1 = i, X m +2 = i2 , .•. , X m +k =ik }
P{Xm + 1 = i, X m +2 = 12, ... , X m +k = Ik}

P{Xm = j, X m +1 =i} P{Xm +2 = 12, ... , X m +k = i k I X m = j, X m +1 = i}
P{Xm +1 = i}P{Xm +2 = i2 , ••. , X m +k = ik I X m +1 = i}

P{Xm = j, X m +1 = I}
P{Xm +1 = i}

P{Xm = j} P{Xm +1 =i I X m = j}
P{Xm +1 = i}

PjPji
Pi

where the third equality follows from the Markov property of the chain X n , X n+1, •••

Thus, conditional on the state at timem + I, the state at timem is independent of that
at times m + 2, Tn + 3, .... The backward transition probabilities are given by

Pt] = P{Xm = j I X m +1 = i} = pjPji , i,j ;:::: 0 (3.107)
Pi

If Pti = Pi] for all i, j (i.e., the transition probabilities of the forward and reversed chain
are identical), we say that the chain is time reversible.

We list some properties of the reversed chain:

1. The reversed chain is irreducible, aperiodic, and has the same stationary distri-
bution as the forward chain. [This property can be shown either by elementary
reasoning using the definition of the reversed chain, or by verifying the equality
Pj = using Eq. (3.107).J The intuitive idea here is that the reversed
chain corresponds to the same process, looked at in the reversed time direction.
Thus, if the steady-state probabilities are viewed as proportions of time the process



216 Delay Models in Data Networks Chap. 3

visits the states, then the steady-state occupancy distributions of the forward and
the reverse chains are equal. Note that in view of this equality, the fonn of the
transition probabilities of the reversed chain P;'j = PjPj,jPi [cf. Eq. (3.107)J can
be intuitively explained. It expresses the fact that (with probability I) the propor-
tion of transitions from j to i out of all transitions in the forward chain (which is
pjPji ) equals the proportion of transitions fromi to j out of all transitions in the
reversed chain (which is PiP;';).

2. If we can find positive numbers Pi,i 2 0, summing to unity and such that the
scalars

P* = PjPji
7J Pi

form a transition probability matrix, that is,
:x:

i, j 20 (3.108)

i = O. I....LPtj = l,
j=O

then {Pi I i 2 O} is the stationary distribution and Pt7 are the transition probabilities
of the reversed chain. [To see this, note that by multiplying with Pi Eq. (3.108)
and adding over j, we obtain

:x:

LpjPji = Pi L Pij = Pi
j=O J=O

which is the global balance equation and implies that {Pi I i 2 O} is the stationary
distribution.] This property, which holds regardless of whether the chain is time
reversible, is useful if through an intelligent guess, we can verify Eq. (3.108),
thereby obtaining both the Pj and Pi}; for examples of such applications, see
Section 3.8.

3. A chain is time reversible if and only if the detailed balance equations hold:

i, j 20
This follows from the equality PiP;'j = PjPji [cf. Eq. (3.107)] and the definition of
time reversibility. In other words, a system is time reversible if in a typical system
history, transitions fromi to j occur with the same frequency as transitions from
j to i (and therefore also with the same frequency as transitions from i to j when
this system history is reversed in time). In particular, the chains corresponding
to the queueing systems MIM/I, MIMlrn, MIMlx, and MIMlrn/rn dis-
cussed in Sections 3.3 and 3.4 are time reversible (in the limit as 6 -+ 0). More
generally, chains corresponding to birth-death processes (Pij = 0 if Ii - jl > I)
are time reversible. Figure 3.30 gives some additional examples of reversible and
nonreversible systems.

The idea of time reversibility extends in a straightforward manner to irreducible
continuous-time Markov chains. The corresponding analysis can be carried out either
directly or by discretizing time in intervals of length 6, considering the corresponding
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(a)

vv
Forward chain

(b)

Reversed chai n

Figure 3.30 (a) Example of a time
reversible chain. To see this. note that by
splitting the state space in two subsets as
shown we obtain global balance equations
which are identical with the detailed
balance equations. (b) Example of a chain
which is not time reversible. The states in
the forward and the reversed systems move
in the clockwise and counterclockwise
directions, respectively.

discrete-time chain, and passing back to the continuous chain by taking the limit as
b ---.f O. All results regarding the reversed chain carryover almost verbatim from their
discrete-time counterparts by replacing transition probabilities with transition rates. In
particular, if the continuous-time chain has transition rates qi.1 and a stationary distribution
{P.1 I j 2: O} with Pj > 0 for all j, then:

1. The reversed chain is a continuous-time Markov chain with the same stationary
distribution as the forward chain and with transition rates

(3.109)i,j 2: 0* PJqjiqij = --,
Pi

2. If we can find positive numbers P" i > 0, summing to unity and such that the
scalars

i,j 2: 0 (3.110)

satisfy for alii 2: 0

2: qij = 2: q:j
.1=0 .1=0

(3. I 11)

then {Pi I i 2: O} is the stationary distribution of both the forward and the reversed
chain, and qtJ are the transition rates of the reversed chain. The relation qi.j =

q:j equates, for every state i, the total rate out of i in the forward and the
reversed chains, and by taking into account also the relation qtj = Pjqj;jPi, it can
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be seen to be equivalent to the global balance equation

PiL% = LPjqji
j=O j=O

Chap. 3

[ef. Eq. (3A.IO) of Appendix A].
3. The forward chain is time reversible if and only if its stationary distribution and
transition rates satisfy the detailed balanced equations

i,j 20

Consider now the M /M / I, M /M / m, and M /M / ex queueing systems. We
assume that the initial state is chosen according to the stationary distribution so that the
queueing systems are in steady-state at all times. The reversed process can be represented
by another queueing system where departures correspond to arrivals of the original system
and arrivals correspond to departures of the original system (see Fig. 3.31). Because time
reversibility holds for all these systems as discussed above, the forward and reversed
systems are statistically indistinguishable in steady-state. In particular by using the fact
that the departure process of the forward system corresponds to the arrival process of the
reversed system, we obtain the following result:

Burke's Theorem. Consider an M /M / I, M /M / m, or M /M / ex system with
arrival rate A. Suppose that the system starts in steady-state. Then the following hold
true:

(a) The departure process is Poisson with rate A.
(b) At each time t, the number of customers in the system is independent of the

sequence of departure times prior to t.

Proof: (a) This follows from the fact that the forward and reversed systems are
statistically indistinguishable in steady-state, and the departure process in the forward
system is the arrival process in the reversed system.

(b) As shown in Fig. 3.32, for a fixed time t, the departures prior to t in the
forward process are also the arrivals after t in the reversed process. The arrival process
in the reversed system is independent Poisson, so the future arrival process does not
depend on the current number in the system, which in forward system terms means that
the past departure process does not depend on the current number in the system. Q.E.D.

Note that part (b) of Burke's Theorem is quite counterintuitive. One would expect
that a recent stream of closely spaced departures suggests a busy system with an atypically
large number of customers in queue. Yet Burke's Theorem shows that this is not so.
Note, however, that Burke's Theorem says nothing about the state of the system before
a stream of closely spaced departures. Such a state would tend to have abnormally many
customers in queue, in accordance with intuition.
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Figure 3.31 (a) Forward system number of arrivals, number of departures, and occu-
pancy during [0, T]. (b) Reversed system number of arrivals, number of departures, and
occupancy during [0, T].
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Departures prior to t
in the forward process
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Arrivals after t in
the reversed process

Time direction in the
forward process

-
Time direction in
the reverse process

Figure 3.32 Customer dcpartures prior to time t in the forward systcm become cus-
tomer arrivals alia time t in the reversed system.

__o_u_el'_u_e_, "_..._1 oue:e 2

Figure 3.33 Two queues in tandem. The
service times at the two queues arc
exponentially distributed and mutually
independent. Using Burkc's Theorem. we
can show that thc numbcr of customers in
queues I and 2 are indepcndent at a given
time and

P{ n at queuc I. m at queue 2}
= p;'(l - PI)p2"(1 - P2)

that is. the two queues behave as if they are
indcpendent AI/AI/I queues in isolation.

Example 3.18 Two M IM II Queues in Tandem
Consider a queueing network involving Poisson arrivals and two queues in tandem with
exponential service times (see Fig. 3.33). There is a major difference between this system
and the one discussed in Section 3.6 in that here we assume that the service times of a
customer at the first and second queues are mutually independent as well as independent of
the arrival process. As a result of this assumption. we will see that the occupancy distribution
in the two queues is the same as if they were independent 1\1I 1\1I I queues in isolation.
This fact will also be shown in a more general context in the next section.

Let the rate of the Poisson arrival process be A, and let the mean service times at
queues I and 2 be I/!LI and Ilp2. respectively. Let PI = ,\fPI and P2 = Alp2 be the
corresponding utilization factors. and assume that PI < I and P2 < I. We will show that
under steady-state conditions the number of customers at queue I and at queue 2 at any
given time are independent. Furthermore.

P{n at queue I. rn at queue 2} = p;'(l - PI)p2"(l - P2) (3.112)

To prove this we first note that queue I is an M /-11I I queue. so by part (a) of
Burke's Theorem. the departure process from queue I is Poisson. By assumption. it is also
independent of the service times at queue 2. Therefore. queue 2. viewed in isolation. is an
Ai I 1\1I I queue. Thus. from the results of Section 3.1.

P{n at queue I} = p;'(l - PI)
(3.113)

P{m at queue 2} = p2"(1 - P2)

From part (b) of Burke's Theorem it follows that the number of customers presently in
queue I is independent of the sequence of earlier arrivals at queue 2 and therefore also of
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the number of customers presently in queue 2. This implies that

P{n at queue I. m at queue 2} = P{n at queue I}· P{m at queue 2}

and using Eq. (3.113) we obtain the desired product form (3.112).

We note that, by part (a) of Burke's Theorem, the arrival and the departure processes
at both queues of the preceding example are Poisson. This fact can be similarly shown
for a much broader class of queueing networks with Poisson arrivals and independent,
exponentially distributed service times. We call such networks acyclic and define them
as follows. We say that queue j is a downstream neighhor of queue i if there is a positive
probability that a departing customer from queue i will next enter queue j. We say that
queue j lies downstream of queue i if there is a sequence of queues starting from i and
ending at j such that each queue after i in the sequence is a downstream neighbor of its
predecessor. A queueing network is called acyclic if it is impossible to find two queues
i and j such that j lies downstream of i. and i lies downstream of j. Having an acyclic
network is essential for the Poisson character of the arrival and departure processes at
each queue to be maintained (see Section 3.8). However, the product form (3.112) of
the occupancy distribution generalizes in a natural way to networks that are not acyclic,
as we show in the next section.

3.8 NETWORKS OF QUEUES-JACKSON'S THEOREM

As discussed in Section 3.6, the main difficulty with analysis of networks of transmission
lines is that the packet interarrival times after traversing the first queue are correlated
with their lengths. It turns out that if somehow this correlation were eliminated (which is
the premise of the Kleinrock independence approximation) and randomization is used to
divide traffic among different routes, then the average number of packets in the system
can be derived as if each queue in the network were M /M / I. This is an important
result known as Jackson's Theorem. In this section we derive a simple version of this
theorem and some of its extensions.

Consider a network of K first-come first-serve, single-server queues in which
customers arrive from outside the network at each queue i in accordance with independent
Poisson processes at rate ri. We allow the possibility that ri = O. in which case there
are no external arrivals at queue i, but we require that ri > 0 for at least onei. Once a
customer is served at queue i. it proceeds to join each queue j with probability Pi] or
to exit the network with probability I - L:f= 1Pi].

The routing probabilities Pi) together with the external input rates r J can be used
to determine the total arrival rate of customers A) at each queue j. that is. the sum of r)
and the arrival rate of customers coming from other queues. Calculating Aj is fairly easy
when the network is of the acyclic type discussed at the end of Section 3.7. If there is
a positive probability that a customer may visit the same queue twice, a more complex
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computation is necessary, based on the equations

K

Aj = T") + LAiPi) '
i=l

j = I, ... ,K (3.114)

(3.115)j=l, ... ,K

These equations represent a linear system in which the rates Aj, j = 1, ... ,K, constitute
a set of K unknowns. To guarantee that they can be solved uniquely to yield Aj,
j = I, ... ,K in terms of T" j, Pij , i, j = I, ... ,K, we make a fairly natural assumption
that essentially asserts that each customer will eventually exit the system with probability
1, This assumption is that for every queue i l , there is a queue i with I - L.f=l Pi) > °
and a sequence i l , i2, ... , ik, i such that Pili, > 0, ... , Pi"i > 0.*

The service times of customers at the ph queue are assumed exponentially dis-
tributed with mean 1/M) and are assumed mutually independent and independent of the
arrival process at the queue. The utilization factor of each queue is denoted

Pj = Aj ,
Mj

and we assume that Pj < I for all j.
In order to model a packet network such as the one considered in Section 3.6 within

the framework described above, it is necessary to accept several simplifying conditions in
addition to assuming Poisson arrivals and exponentially distributed packet lengths. The
first is the independence of packet lengths and interarrival times discussed earlier. The
second is relevant to datagram networks, and has to do with the assumption that bifur-
cation of traffic at a network node can be modeled reasonably well by a randomization
process whereby each departing packet from queue i joins queue j with probability Pij -
this need not be true, as discussed in Section 3.6. Still a packet network differs from the
model of this section because it involves several traffic streams which may have different
routing probabilities at each node, and which maintain their identity as they travel along
different routes (see the virtual circuit and datagram network models of Figs. 3.27 and
3.28). This difficulty can be partially addressed by using an extension of Jackson's Theo-
rem that applies to a network with multiple classes of customers. Within this more general
framework, we can model traffic streams corresponding to different origin-destination
pairs as different classes of customers. If all traffic streams have the same average
packet length, it turns out that Jackson's Theorem as stated below is valid assuming the
simplifying conditions mentioned earlier; see the analysis in the next subsection.

* For a brief explanation aimed at the advanced reader. consider the Markov chain with states 0, I, ... , K
and transition probabilities from states i 'I 0 to states j 'I 0 equal to Pij, and transition probabilities to state
oequal to Poo = I. P,O = 1 - p') for i '10. (Thus state 0 is an absorbing state that corresponds to
exit of a customer from the system.) Let P be the K x K matrix with elements Pij. The sum of the i th row
elements of the matrix pm (P to the m th power) is the probability that the Markov chain has not arrived at
state 0 after m transitions starting from state i. Our hypothesis on p') implies that the chain will eventually
(with probability I) arrive at state 0 regardless of the initial state. It follows that pm = 0, so unity
is not an eigenvalue of P. Therefore. I - P is nonsingular. where I is the identity matrix. from which it can
be seen that the system of equations (3.114) has a unique solution.
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For an analysis, we view the system as a continuous-time Markov chain in which
the state n is the vector (nl, n2, ... , nK), where ni denotes the number of customers at
queue i. At a given state

the possible successor states correspond to a single customer arrival and/or departure. In
particular, the transition from n to state

n(j+) = (nl, ... ,nj-l,nj + I,nj+l, ... ,nK)

corresponding to an external arrival at queue j, has transition rate

The transition from n to state

n(j -) = (n I, ... , n j _ I , n j - 1, n j+ I , ... , nK )

corresponding to a departure from queue j to the outside, has transition rate

The transition from n to state

n(i+,j-) = (nl .... ,TLi-l,ni + I,TLi+I, ... ,nj_l,nj -1,nj+l, ... ,nK)

corresponding to a customer moving from queue j to queue oi, has transition rate

Let P(nl, .... nK) denote the stationary distribution of the chain. We have:

Jackson's Theorem. Assuming that Pj < 1, j = 1, ... ,K, we have for all
nl,··· ,nK 2: 0,

(3.116)

where n = (nl, ... ,nK) and

Pj(nj) = p7 j (l - PJ)' nJ 2: 0 (3.117)

Proof In our proof we will assume that Aj > 0 for all j. There is no loss of
generality in doing so because every queue j with AJ = 0 is empty in steady-state, so we
have PJ(O) = I and Pj(nj) = 0 for nj > 0, and queue j can be ignored in deriving the
stationary distribution of Eqs. (3.116) and (3.117). It can be verified that the condition
Aj > 0 for all j together with the assumption made earlier to guarantee the uniqueness
of solution of Eq. (3.114) imply that the Markov chain with states n = (nl,oo.,nK)
describing the system is irreducible; we leave the proof of this for the reader. We will
use a technique outlined in Section 3.7 whereby we guess at the transition rates of the
reversed process and verify that, together with the probability distribution of Eqs. (3.116)
and (3.117), they satisfy the total departure rate equation (3.111). (The Markov chain is
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not time reversible here. Nonetheless, the use of the reversed process is both analytically
convenient and conceptually useful.)

For any two state vectors nand n ' , let qnn' be the corresponding transition rate.
Jackson's Theorem will be proved if the rates q;'n' defined for all n, n ' by the equation

* P(n')qn'n
qnn' = pen)

satisfy, for all n, the total rate equation

Lqnm = Lq;'m
Tn rn

(3.118)

(3.119)

which as mentioned in Section 3.7, is equivalent to the global balance equations.
For transitions between states n, n(j+), and n(j-), we have

(3.120)

(3.121)

(3.123)

qnn(j-) = Poi (I - Pji)

The rates q* ( +) and q* ( _) are defined by Eqs. (3.118), (3.120), and (3.121). Usingnn] nn J
the fact P(n(Y+») = pjP(n) = AjP(n)/pj [cf. Eqs. (3.115)-(3.117)], we obtain

q;m(j+) = A] (I - LiPji) (3.122)

* iljTj
qnn(j-) = T

]

Next consider transitions between states nand n( i+ , j -) corresponding to a cus-
tomer moving from queue j to queue i. We have

and using the fact that P (n(i+ ,r))
from Eq. (3.118) as

PiP(n)/ p]

(3.124)

Aiilj P(n)/(Aj!li), we obtain

* iliAjP]i
qn(i+ ,j- )n - Ai

Since for all other types of pairs of state vectors n, n' , we have

it follows from Eq. (3.118) that

q;"n = 0

(3.125)

(3.126)

(3.127)

There remains to verify that the rates qnm and q;'/m satisfy the total rate equation
L m qnm = Lm q;'m' We have for the forward system, using Eqs. (3.120), (3.121), and
(3.124),

K

Lqnm = Lqnnu+) + L qnn(i+,j-) + L qnn(j-)
m j=1 {(j,i)lnj>O} {jlnj>O}
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K

= Lrj + L Pj
j=! Liln}>O}

225

(3.128)

Similarly, using Eqs. (3.122), (3.123), (3.125), and (3.114), we obtain for the reversed
system

I,'

Lq;'1II = Lq;'nU+I +
m j=!

L I];'n(i+j-I +
{U.illn,>O}

L l];'nU-I
Liln) >O}

(3.129)

By writing Eq. (3.114) as r} = Aj - AiP;j and adding over j
obtain

I ..... K, we

(3.130)

By combining the last three equations, we see that the total rate equation LIII I]mn =
Lm I];,m is satisfied. Q.E.D.

Note that the transition rates q;'nl defined by Eqs. (3.122), (3.123), (3.125), and
(3.127) are those of the reversed process. It can be seen that the reversed process
corresponds to a network of queues where traffic arrives at queue i from outside the
network according to a Poisson process with rate '\ (1- LjPij) [cf. Eq. (3.122)].
The routing probability from queue i to queue j in the reversed process is

AjPj }

r, + Lk AkPki
[cf. Eqs. (3.123) and (3.125) I. This is also the probability that an arriving customer at
queue i just departed from queue j in the forward process. Note that the processes of
departure out of the forward system are the exogenous arrival processes of the reversed
system, which suggests that the processes of departure out of the system are independent
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Poisson. Indeed, this can be proved by observing that the interarrival times in the reversed
system are independent and exponentially distributed.

Example 3.19 Computer System with Feedback Loop for I/O
Consider a model of a computer CPU connected to an I/O device as shown in Fig. 3.34(a).
Jobs enter the system according to a Poisson process with rate A, and use the CPU for an
exponentially distributed time interval with mean 1/til. Upon exiting the CPU, a job with
probability PI exits the system, and with probability P2 (= 1 - PI) uses the I/O device for
a time which is exponentially distributed with mean 1/ti2. Upon exit from the I/O device,
a job again joins the CPU queue. We assume that all service times, including successive
service times of the same job at the CPU or the I/O device, are independent.

We first calculate the arrival rates AI and A2 at the CPU and I/O device queues,
respectively. We have (cf. Fig. 3.34)

[These are Eqs. (3.114) specialized to this example.] By solving for Al and A2 we obtain

(3.131)

Let

(3.132)

The steady-state probability distribution of the system is given by Jackson's Theorem

P(nl,n2) = - PI)P;'(l- P2)

The average number of jobs N i in the ith queue is the same as for an AI/AI/1 system with
utilization factor Pi, that is,

N, = _P_I-
I - PI'

The total number in the system is

N = N I + N2 = _P_I- +
1 - PI 1 - P2

+

(a)

-IA "CPU" -I "I/O"
liS, l/S2

(b)

Figure 3.34 (a) Feedback model of a
CPU and an I/O device (cf. Example 3.19).
(b) "Equivalent" tandem model of a CPU
and an I/O queue which has the same
occupancy distribution as the feedback
model.
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and the average time in the system is

T N PI + P2
= T = A(I - pd A(I - P2)

Using Eqs. (3.131) and (3.132) we can write this relation as

Aj(J.LIPI) + AP2/(J.L2PI)
A (1 - A/(/lIPI)) A (1 - AP2I(JL2PI))

(3.133)

where

51 = _1_, f:h = (3.134)
PIPI J.L2PI

Since the utilization factor of the CPU queue is PI = Ad/ll = Aj(PIPI), while the arrival
rate of new job arrivals at the CPU (as opposed to feedback arrivals) is A, we see from
Little's Theorem that 51 is the total CPU time ajob requires on the average (this includes all
visits of the job to the CPU). Similarly, 52 is the total I/O time a job requires on the average.

An interesting interpretation of Eqs. (3.133) and (3.134) is that the average number
of jobs and time in the system are the same as in an "equivalent" tandem model of CPU
and I/O queues with service rates 1/51 and 1/52, respectively, as shown in Fig. 3.34(b).
However, the probability density function of the time in the system is not the same in the
feedback and tandem systems. To get some idea of this fact, suppose that PI = P2 = 1/2
and that the CPU service rate is much faster than the I/O service rate (J.L 1 >> J.L2)' Then
half the jobs in the feedback system do not require any I/O service and their average time
in the system is much smaller than the average time of the other half. This is not so in
the tandem system where the average job time in the "CPU" queue is very small and the
system time is distributed approximately as in the "I/O" queue, that is, as in an 11,1/11,1/ I
queue with Poisson rate A and service rate 1/5I.

Jackson's Theorem says in effect that the numbers of customers in the system's
queues are distributed as if each queue is !v! /!v! /1 and is independent of the other
queues [compare Eq. (3.117) and the corresponding equations in Section 3.3]. Despite
this fact, the total arrival process at each queue need not be Poisson. As an example
(see Fig. 3.35), suppose that there is a single queue with a service rate which is very
large relative to the arrival rate from the outside. Suppose also that with probability p
near unity, a customer upon completion of service is fed back into the queue. Hence,
when an arrival occurs at the queue, there is a large probability of another arrival at the
queue in a short time (namely, the feedback arrivaI), whereas at an arbitrary time point,
there will be only a very slight chance of an arrivd occurring shortly since A is small.
In other words, queue arrivals tend to occur in bursts triggered by the arrival of a single
customer from the outside. Hence, the queue arrival process does not have independent
interarrival times and cannot be Poisson.

Heuristic explanation of Jackson's Theorem. Our proof of Jackson's the-
orem is based on algebraic manipulation and gives little insight as to why this remarkable
result holds. For this reason we provide a heuristic explanation for the case of the feed-
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Customer exits
the system with
probability 1 - p

AI(l - p)
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pA/(1 - p)
Customer returns to
the queue with high
probability p (successive
services of the same
customer are assumed
independent)

Figure 3.35 Example of a queue within a network where the external arrival process
is Poisson but the total arrival process at the queue is not Poisson. An external arrival is
typically processed fast (since /l is much larger than ).) and with high probability returns
to the queue through the feedback loop. As a result, the total queue arrival process
typically consists of bursts of arrivals, with each burst triggered by the arrival of a single
customer from the outside.

back network of Fig. 3.35. This explanation can be generalized and made rigorous albeit
at the expense of a great deal of technical complications (see [WaI83]).

Suppose that we introduce a delay ,0. in the feedback loop of the single-queue
network discussed above (see Fig. 3.36). Let us denote by n(t) the number in the queue
at time t, and by .h (t) the content of the delay line at time t. The interpretation here is
that f Do (t) is a function of time that specifies the customer output of the delay line in the
subsequent ,0. interval (t, t + D.]. Suppose that the initial distribution n(O) of the queue
state at time 0, is equal to the steady-state distribution of an !v! / M / I queue, that is,

P{n(O) = n} = pn(l - p) (3.135)

where p = A/ (IL(1 - p») is the utilization factor. Suppose also that f Do (0) is a portion
of a Poisson arrival process with rate A. The customers in .h (0) have service times
that are independent, exponentially distributed with parameter p.. We assume that n(O)
and f Do (0) are independent. Then, the input to the queue over the interval [0, D.) will

Poisson A + AI(l -pI A

pAl(l -pI

Figure 3.36 Heuristic explanation
of Jackson's Theorem. Consider the
introduction of an arbitrarily small positive
delay 6 in the feedback loop of the
network of Fig. 3.35. An occupancy
distribution of the queue that equals the
M 1MI I equilibrium, and a content of
the delay line that is an independent 6
segment of a Poisson process form an
equilibrium distribution of the overall
system. Therefore, the M I;\fI I
equilibrium distribution is an equilibrium
for the queue as suggested by Jackson's
Theorem even though the total arrival
process to the queue is not Poisson.
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be the sum of two independent Poisson streams which are independent of the number
in queue at time O. It follows that the queue will behave in the interval [0,6) like an
M 1MI I queue in equilibrium. Therefore, n(6) will be distributed according to the
MIMII steady-state distribution of Eq. (3.135), and by part (b) of Burke's theorem,
n(6) will be independent of the departure process from the queue in the interval [0,6),
or, equivalently, of -the delay line content at time 6. Furthennore, by part (a)
of Burke's Theorem, 12,(6) will be Poisson. Thus, to summarize, we started out with
independent initial conditions nCO) and f D. (0) which had the equilibrium distribution of
an M IMil queue and the statistics of a Poisson process, respectively, and 6 seconds
later we obtained corresponding quantities n(6) and f D. (6) with the same properties.
Using the same reasoning, we can show that for all t which are multiples of 6, net) and
h (t) have the same properties. It follows that the M IMil steady-state distribution of
Eq. (3.135) is an equilibrium distribution for the queueing system for an arbitrary positive
value of the feedback delay 6, and this strongly suggests the validity of Jackson's
Theorem. Note that this argument does not suggest that the feedback process, and
therefore also the total arrival process to the queue, are Poisson. Indeed, it can be
seen that successive 6 portions of the feedback arrival stream are correlated since, with
probability p, a departing customer from the queue appears as an arrival 6 seconds
later. Therefore, over the interval [0, x), the feedback process is not Poisson. This is
consistent with our earlier observations regarding the example of Fig. 3.35.

3.8.1 Extensions of Jackson's Theorem

There are a number of interesting extensions and variations of Jackson's Theorem, and
in this and the next subsections we will describe a few of them.

State-dependent service rates. The model for Jackson's Theorem assumed
so far requires that all queues have a single server. An extension to the multi server case
can be obtained by allowing the service rate at each queue to depend on the number
of customers at that queue. Thus the model is the same as before but the service
time at the j'h queue is exponentially distributed with mean I/pJ(m), where m is the
number of customers in the j'h queue just before the customer's departure (m includes
the customer). The single-queue version of this model includes as special cases the
M I M 1m and ]\l I Mix queues, and can be analyzed by means of a Markov chain
(see Problem 3.16). The corresponding network of queues model can also be analyzed
by means of a Markov chain, and is characterized by a product form structure for the
stationary distribution.

Let us define
AJ(Jj(m) = --. j = 1, ....K.m = 1,2.... (3.136)

. p)(m)

where A) is the total arrival rate at the /h queue detennined by Eq. (3.114). Let us also
define

if Tl J = 0
if TI) > 0 (3.137)
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We have:

Jackson's Theorem for State-Dependent Service Rates. We have for all states
n=(nl,··.,nK)

Fj(nd···FK(nK)
pen) = G (3.138)

assuming that 0 < G < 00, where the normalizing constant G is given by
::x x

G = L'" L Fj(nj)" ·FK(nK)
n\=(J ng=(J

(3.139)

Proof: Note that the formula for G guarantees that pen) is a probability distri-
bution, that is, the sum of all pen) is unity. Using this fact, the proof is obtained
by repeating the steps of the earlier proof of Jackson's Theorem, substituting the state-
dependent service rates flj(m) in place of the rates flj at the appropriate points, and is
left for the reader. Q.E.D.

(3.140)j = I, ... ,K, C = 1,2, ... , C

MUltiple classes of customers. In many interesting networks of queues the
routing probabilities Pij are not the same for all customers. Typical examples arise in
data networks where the transmission queue joined by a packet at each intermediate node
depends on the packet's destination and possibly its origin. It is therefore necessary to
distinguish between customers of different types or classes. We will show that the product
form expressions derived so far remain valid provided that the service time distribution
at each queue is the same for all customer classes.

Let the customer classes be C = 1,2, ... , C, let Tj(C) be the rate of the external
Poisson arrival process of class C at queue j, and let Pij(c) be the routing probabilities
of class c. The assumptions made for an open Jackson network with a single customer
class are replicated for each customer class, so that the equations

K

Aj(c) = Tj(C) +L Ai(c)Pij(c),
i=l

can be solved uniquely to give the total arrival rate AJ(c) at each queue j and for
each customer class c. We assume that the service times at queue j are exponentially
distributed with a common mean 1/flJ(m) for all customer classes, which depends on
m, the total number of customers in the queue. As earlier, customers are served on a
first-come first-serve basis.

The state of each queue is characterized not just by the total number of customers
present in the queue, but also by the class of the customers and the relative order of
arrival of the customers of different classes. Thus, we define the composition of the jlh
queue at a given time as

Zj = (CI,C2"",C/l.J)

where nj is the total number of customers in the queue and Ci is the class of the customer
in the i th queue position.
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The state of the queueing network at a given time is

Z = (Zl,Z2, ... ,ZK)

where Zj is the composition of the ph queue at that time. It can be viewed as the state
of a Markov chain the transition probabilities of which can be described in terms of the
given quantities Aj(c), ILj(rn), and Pij(c). To state the appropriate form of Jackson's
Theorem, define

A Aj(C)
pj(c,m) = -(-)'

ILj m
j = 1, ... ,K, C = 1,2, ... ,C (3.141)

K

G = L II Pj(Zj)
(ZI, ... ,ZK)j=1

if nj = 0
if nj > 0 (3.142)

(3.143)

(3.144)

The proof of the following theorem follows the same pattern as the corresponding proof
for the single customer class case, and is left for the reader.

Jackson's Theorem for Multiple Classes of Customers. Assuming that 0 <
G < 00, the steady-state probability p(z) of state Z = (Zl, Z2, ... , ZK) is given by

A P1(Zl)",PK(ZK)
P(z) = G

The steady-state probability pen) = P(nl,"" nK) of having a total of nj cus-
tomers at queue j = 1, ... ,K (irrespective of class) is given by

pen) = L p(z)
zEZ(n)

where Zen) is the set of states for which there is a total of nj customers in queue j. By
adding the expression (3.144) over Z E Zen), it is straighforward to verify that when the
service rate at each queue is the same for all customer classes and is independent of the
queue size, we have

where

K

Pen) = II p7j (l - Pj)
j=1

(3.145)

Pj = Aj(c) (3.146)
ILj

and ILj is the service rate at queue j. In other words, the expression for Pen) is the same
as when there is a single customer class with total arrival rate at each queue j equal to
the sum of the arrival rates of all customer classes Aj(c).
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We note that when the service rates at the queues are state dependent (but identical
for all classes) the steady-state probabilities P(n) can be shown to be given by the (single
class) fonnulas (3.136) to (3.139). (See the references cited at the end of the chapter.)

The following example addresses the first data network model discussed in Section
3.6 (cf. Fig. 3.27). A similar analysis can be used for the datagram network model of
Fig. 3.28.

Example 3.20 Virtual Circuit Network
Consider the network of communication links discussed in Section 3.5 (cf. Fig. 3.27). There
are several traffic streams (or virtual circuits) denoted c = I. 2..... C. Virtual circuit c uses
a path pc and has a Poisson arrival rate :rc. The total arrival rate of each link (i. j) is

Aij =
{cIU,)1 lies on the path P.}

Assume that the transmission times of all packets at link (i.j) are exponentially distributed
with mean 1/Ili.). which is the same for all virtual circuits. Assume also that the transmission
times of all packets are independent. including the transmission times of the same packet at
two different links (this is the essence of the Kleinrock independence approximation). Then
the multiple-class model of this subsection applies and based on Eq. (3.145), the average
number of packets in the system, .Y. is the same as if each link were an jI/.u /1 queue in
isolation, that is,

A.Y = L I)
.. Ill) - Ai)
(1,)1

Example 3.20 shows how multiple customer classes can be used to model data
network situations where the route used by a packet depends on its origin and destination.
There is still an unrealistic assumption in this example, namely that the transmission times
of the same packet at two different links are independent. Furthennore, the assumption
that all packet transmission times are exponentially distributed with common mean is
often violated in practice. For a more realistic model, we would like to be able to
assume more general transmission time distributions (e.g., detenninistic transmission
times). It turns out that the product fonn of Eqs. (3.141) to (3.144) holds even when the
service time distributions belong to a broad class of "phase-type" distributions, which can
approximate arbitrarily closely detenninistic service times (see [GeP871 and [WaI88]).
For this, however, we need to assume that the service discipline at each queue is either
processor sharing or last-come first-serve instead of first-come first-serve. Processor
sharing refers to a situation where all customers in the queue are simultaneously served
at the same rate (which is p / n when p is the total service rate and n is the number of
customers). Last-come first-serve refers to the situation where upon arrival at a queue,
a customer goes immediately into service, replacing the customer who is in service at
the time (if any) on a preemptive-resume basis. While processor sharing or last-come
first-serve may not be reasonable models for most data networks, the validity of the
product fonn expression (3.141) to (3.144) under a variety of different assumptions is
reassuring. It suggests that product fonns provide a good first approximation in many
practical situations where their use cannot be rigorously justified. Current practice and
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experience seems to be supporting this view. We note, however, that for special types of
priority disciplines, there are queueing networks that are unstable (some queue lengths
grow indefinitely) even though the arrival rate is smaller than the service rate at each
queue [KuS89]. We refer to the sources given at the end of the chapter for more details
and discussion on the subject.

3.8.2 Closed Queueing Networks

Many interesting queueing problems involve a network of queues where the total number
of customers is fixed because no customers are allowed to arrive or depart. Networks
of this type are called closed, emphasizing the distinction from the earlier networks in
this section which are called open. Examples 3.5 and 3.7 illustrate applications of closed
networks. In both examples the fixed number of customers in the network depends
on some limited resource, and the main purpose of analysis is to understand how the
availability of this resource affects performance characteristics such as system throughput.

Closed networks can also be analyzed using Markov chains and it can be shown
that the steady-state occupancy distribution has a product form under assumptions similar
to those used earlier for open networks. For simplicity, we assume a single customer
class, but extensions involving multiple customer classes are possible. Let AI be the
fixed number of customers in the system and let Pij be the routing probability that a
customer that departs from queue i will next visit queue j. Note that because no customer
can exit the system, we have

K

2..: Pi) = 1. i = 1..... K
j=l

(3.147)j=I. ... ,K
K

A) = 2..: AiPij,
i=l

Let also JiJ(m) be the service rate at the ph queue when the number of customers at that
queue is m.

An important difference from the open network case is that the total arrival rates,
denoted Aj (,\1), at the queues j = I. ... K are not easily determined. We still have the
equations

obtained by setting to zero the external arrival rates rJ in Eq. (3.114). These equations
do not have a unique solution anymore, but under some fairly natural assumptions, they
determine the arrival rates Aj(M) up to a multiplicative constant. In particular, let us
assume that the Markov chain with states I.... ,K and transition probabilities Pij is
irreducible (see Appendix A). Then it can be shown that all solutions Aj, j = I, ... ,K,
of Eq. (3.147) are of the form*

*For a brief explanation. fh )'1 at some positive value a and consider the system of equations Aj

a?lj + A,?,), j = 2..... 1\'. Because of Ihe irreducibility assumption. this system has a unique
solution. [See the explanation given in connection with the uniqueness of solution of the corresponding open
network equation (3.114).J This unique solution is proportional to (l and it can be shown to have positive
elements.
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j = 1, ... ,K

where a is a scalar and "Xj , j = 1, ... ,K is a particular solution with "Xj > 0 for all j.
Thus the true arrival rates are given by

j = 1, ... ,K (3.148)

where a(M) is the constant of proportionality corresponding to M. Note that while "Xj
can be chosen to be independent of M, both a(M) and the true total arrival rates Aj(M)
increase with M. In the case where the queue service rates ILj are independent of the
number of customers, a(M) tends asymptotically to the value that makes the maximum
utilization factor max{>q (M)/ ILl, ... ,AK(M)/ILK} equal to one.

We now describe the form of Jackson's Theorem for closed networks. Let

(3.149)j = I, ... , K, m = I, 2, ...
A

pj(m) = _(1)'
ILj m

where {"X j I j = 1, ... ,K} is some positive solution of the system of equations (3.147).
Denote

(3.150)

G(M) = (3.151)

We have:

(3.152)

Jackson's Theorem for Closed Networks. Under the preceding assumptions,
we have for all states n = (nl, ... , nK) with nl + ... + nK = M

P ) _ FI(nl)'" FK(nK)
(n - G(M)

[Note that because all solutions of Eq. (3.147) are scalar multiples of each other, the
expression (3.152) for the probabilities pen) is not affected by the choice of the solution
as long as this solution is nonzero. Note also that G(M) is a normalization constant that
ensures that pen) is a probability distribution.]

Proof: The proof is similar to the proof of Jackson's Theorem for open networks.
We consider state vectors nand n/ of the form

n = (nl, ,ni, ... , n j , ... , n K )

n/ = (nl, ,ni-l,ni + I,ni+l, ... ,nj_l,nj -l,nj+I, ... ,nK)

(3.153)

Let qnn' be the corresponding transition rate. Jackson's Theorem will be proved if the
rates defined for all n, n' by the equation

* P(n/)qn1n
qnn' = pen)
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satisfy, for all states n, the total rate equation

Lqnm =
'In m

(3.154)

Indeed, let us assume for the purpose of the proof that the particular solutions Aj are
taken to be equal to the true arrival rates Aj(A1), and for convenience let us denote both
"X j and Aj(M) as AJ . Then we have lcf. Eqs. (3.124) and (3.125)]

* jLj(nj)AiPijqnn' = A.
]

and the total rate equation (3.154) is written as

L fLj(nj)Pji = L
{(j,iJln) >O} {(j,illnJ >O}

We have

fLj(nj)AiPij
Aj

K K

L fLj(nj)Pji = L L fLj(nj)Pji = L fLj(nj)L Pji
{(j,illn]>O} i=l {jlnJ>O} UlnJ>O} i=]

L fLj(nj)
Uln]>O}

We also have

(3.155)

L
{(j,iljn,>O}

fLj(nj)AiPi]
Aj

fL](nj)AiPij
Aj

L fLj(nj)
{jln) >O}

(3.156)

From Eqs. (3.155) and (3.156) we see that the total rate equation (3.154) holds. Q.E.D.

Example 3.21 Closed Computer System with Feedback Loop for I/O
Consider a model of a computer CPU connected to an I/O device as shown in Fig. 3.37.
This is a similar model to the one discussed in Example 3.19. The difference is that here

p,

I CPU I
+ I III I+

P2 = 1 -PI

I I/O I Figure 3.37 Closed network model of a

I 112 I feedback system of a CPU and an I/O
device.
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we have a closed network with each job reentering the CPU directly (with probability PI) or
after using the I/O device (with probability P2 = I - PI). There are 1\11 jobs in the system.
We select

as the particular solution of the system Aj = I AiP,j, j = L 2. With this choice we
have

PI = I, P2 = P2/Lj
/12

and the steady-state distribution of the system is given by [cf. Eqs. (3.149) to (3.151) J

P(AI - n n) = ---- n = 0 .. I. .. " AI,. G(lv1)'

where the normalizing constant G(A1) is given by
M

G(1\II) = L P;'
n=O

The CPU utilization factor is given by
M

U(AI) = I - P(O,]V1) = 1 _ = G(lvI - 1)
G(AI) G(Iv1)

and from Little's Theorem we obtain the arrival rate at the CPU as AI(lH) = U(M)/1I.
The expression above for the utilization factor U(M) is a special case of a more general
formula (see Problem 3.65).

Example 3.22 Throughput of a Time-Sharing System

Consider the time-sharing computer system with N terminals discussed in Example 3.7 [cf.
Fig. 3.38(a)]. We will make detailed statistical assumptions on the times spent by jobs at
the terminals and the CPU. We will consequently be able to obtain a closed-form expression
for the throughput of the system in place of the upper and lower bounds obtained in Section
3.2.

In particular, let us assume that the reflection time of a job at a terminal is exponen-
tially distributed with mean R and the processing time of a job at the CPU is exponentially
distributed with mean P. All reflection and processing times are assumed independent.
Then the terminal and CPU queues, viewed in isolation, can be modeled as an AlIAlI ex
and an AIINI/l queue, respectively [see Fig. 3.38(b)]. Let); = liP be the particular
solution of the arrival rate equation for the system [ef. Eq. (3.147)]. With this choice we
have

R
PI = p' P2 = I

The steady-state probability distribution is given by [cf. Eqs. (3.149) to (3.151)]

(RIP)H
P(n, N - n) = -.-G--n! (N)

where the normalizing constant G(N) is given by

G(N) = I + (RI P) + + ... +
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(a)

(b)
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"A(N) Upper bound

(e)
N

Figure 3.38 (a) Closed network model of a time-sharing system consisting of N ter-
minals and a CPU. (b) Network of queues model of the system. There are at N jobs in
the system at all times. (c) Throughput A(N) as a function of the number of terminals
compared with the upper and lower boundsIV {I N}__J__ < A(N) < min _. __

R+NP- - P·R+P

derived in Example 3.7.

The CPU utilization factor is
NTV __ P(N,O) _ (RIP)

U(" ) - 1 G(N) - N!G(N)
G(N-I)
G(N)

and by Little's Theorem, it is also equal to )"(N)P, where )"(N) is the system throughput.
Therefore, we have )"(N) = U(N)IP, or

, I G(N - 1)
).,(Jv) = P G(N)
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This expression for >-'(IV) is shown in Fig. 3.38(c) and is contrasted with the upper and
lower bounds

1V \M .{I IV}
R + IVP S ,,(lY) S mm p' R + P

obtained in Section 3.2.

(3.157)

3.8.3 Computational Aspects-Mean Value Analysis

Given a closed queueing network with Al customers, One is typically interested in cal-
culating

Nj(lv!) = Average number of customers in the ph queue
T](lv!) = Average customer time spent per visit in the ph queue

From these one can obtain the arrival rate at the ph queue given by Little's Theorem as

(3.158)
N(M)

A(M)= -]-
] TJClV!)

One possibility is to calculate first the normalizing constant G(M) of Eq. (3.151) and
then to use the steady-state distribution Pen) of Eq. (3.152) to obtain all quantities of
interest. Several different algorithms can be used for this computation, which is often
nontrivial when lvl is large. We will describe an alternative approach, known as mean
value analysis, which calculates Nj(M) and Tj(M) directly. The normalizing constant
G(M) can then be obtained from these quantities and the arrival rates of Eq. (3.158).
[See Problem 3.65 for the case where the service rates J.Lj(m) do not depend on the
number of customers m.]

Let us assume for simplicity that the service rate at the ph queue is J.Lj and does
not depend on the number of customers in the queue. The main idea in mean value
analysis is to start with the known quantities

Tj (0). = N] (0) = 0, j = 1, ... ,K (3.159)

(corresponding to an empty system) and then calculate Tj (l) and N j (l) (corresponding to
one customer in the system), then calculate Tj (2) and N j (2), and so on until the desired
quantities Tj(M) and Nj(M) are obtained. This calculation is based on the equation (to
be justified shortly)

(3.160)j=l, ... ,K, o5=l, ... ,Al
1

Tj(s) = -(1 + N](o5 - I)),
J.LJ

which obtains Tj(s) from Nj(05 - 1) for all j. Then Nj(05) is calculated from Tj(05) for
all j, using the equation (which is in effect Little's Theorem, as will be seen shortly)

AjTj(05)
Nj(05) = 05 K ' j=l, ... ,K, o5=l, ... ,M (3.161):L:i=l AiTi(05)

where>'j, j = 1, ... , K is a positive solution of the system of equations Aj = 1AiPij ,
j = 1, ... ,K [ef. Eq. (3.147)].
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We proceed to derive Eqs. (3.160) and (3.161). Since we have for all j, Aj(s) =
for some scalar (l(s) > 0, Eq. (3.161) can be written as

Nj(s) = S ;]CS)Tj(s)
Li=1 Ai(s)Ti(s)

and becomes evident once we observe that we have Ai(s)Ti(s) = Ni(s) for all i (by
Little's Theorem) and s = Ni(s) [by the definition of Ni(s)].

To derive Eq. (3.160), we need an important result known as the Arrival Theorem.
It states that the occupancy distribution found by a customer upon arrival at the lh queue
is the same as the steady-state distribution of the lh queue in a closed network with the
arriving customer removed. Thus, in an s-customer closed network, the average number
of customers found upon arrival by a customer at the lh queue is equal to Nj(s - 1),
the average number seen by a random observer in the (s - 1)-customer closed network.
This explains the form of Eq. (3.160).

An intuitive explanation of the Arrival Theorem is given in Problem 3.59. For an
analytical justification, assume that the s-customer closed network is in steady-state at
time t and let x(t) denote the state at that time. For each state n = (nj, ... ,nK) with
ni > 0, we want to calculate
(lij(n) = P{x(t) = n I a customer moved from queue i to queue j just after time t}

(3.162)
Let us denote by Mij(t) the event of a customer move from queue i to queue j just after
time t, and let us denote by .!'vli(t) the event of a customer move from queue i just after
time t. Then Eq. (3.162) can be written as

p{x(t) = n, Mij(t) IMi(t)}
(lij(n) = P{Mij(t) IMi(t)}

p{x(t) = n IMi(t) }p{Mij(t) I x(t) = n, Mi(t)}
P{Mij(t) IMi(t)}

P(n)Pij
L{n'=(n;, .. P(n')?ij

and finally, using Eqs. (3.149) to (3.152) for the steady-state probabilities pen),

F I (nl)' .. FK(nK)(lij(n) = A A (3.163)
L{(n;, ... .. n;>O} P1(n;)··· PK(n'r;)

The numerator and the denominator of this equation contain a common factor Pi because
ni > 0 in the numerator and > 0 in each term of the denominator. By dividing with
Pi, and by using the expression (3.150) for Fj(nj), we obtain

F j (nj)' .. F i - I (ni-I)Fi(ni - 1)Fi+1 (ni+l) ... FK(nK)
(lij(n) = A A

L{(n; .... PI(nD··· PK(n'r;)

Therefore, (lij(n) is equal to the steady-state probability of state (nl, ... ,ni-l,ni-
1, ni+l, ... , nK) in the (s-l )-customer closed network, as stated by the Arrival Theorem.
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We note that the Arrival Theorem holds also in some cases where there are multiple
classes of customers and where the queues have multiple servers. Mean value analysis
can also be used in these cases, with Eq. (3.160) replaced by the appropriate formula.

Finally, a number of approximate methods based on mean value analysis have been
proposed. As an example, suppose that an approximate relation of the form

is hypothesized; for large M, one reasonable possibility is

M -1
1VAM - 1) =

Then Eqs. (3.160) and (3.161) yield the system of nonlinear equations

TJ(M) = ;j (1 + !j (1VJ(M»)) , j = 1.. .. ,K

T _ .. AJTj (1\1)Iv J (AI) - M K j = 1.. .. ,K
L;=1 A;T;(M)

which can be solved by iterative methods to yield approximate values for Tj(M) and
Nj(M).

SUMMARY

Queueing models provide qualitative insights on the performance of data networks,
and quantitative predictions of average packet delay. An example of the former is the
comparison of time-division and statistical multiplexing, while an example of the latter
is the delay analysis of reservation systems.

To obtain tractable queueing models for data networks, it is frequently necessary
to make simplifying assumptions. A prime example is the Kleinrock independence ap-
proximation discussed in Section 3.6. Delay predictions based on this approximation are
adequate for many uses. A more accurate alternative is simulation, which, however, can
be slow, expensive, and lacking in insight.

Little's Theorem is a simple but extremely useful result since it holds under very
general conditions. To proceed beyond this theorem we assumed Poisson arrivals and
independent interarrival and service times. This led to the Al /G /1 system and its
extensions in reservation and priority queueing systems. We analyzed a surprisingly
large number of important delay models using simple graphical arguments. An alternative
analysis was based on the use of Markov chain models and led to the derivation of the
occupancy probability distribution of the I\! /M /1, M / iII /m, and related systems.

Reversibility is an important notion that helps to prove and understand Jackson's
Theorem and provides a taste of advanced queueing topics.
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Section 3.2. Little's Theorem was formalized in [Lit61]. Rigorous proofs under
various assumptions are given in [Sti72] and [Sti74]. Several applications in finding
performance bounds of computer systems are described in [StA85].

Section 3.3. For a general background on the Poisson process, Markov chains,
and related topics, see [Ros80], [Ros83], and [KaT75]. Standard texts on queueing theory
include [Co081], [GrH85], [HeS82], [Kle75], and [WoI89]. A reference for the fact that
Poisson arrivals see a typical occupancy distribution (Section 3.3.2) is [WoI82a].

Section 3.4. Queueing systems that admit analysis via Markov chain theory in-
clude those where the service times have an Erlang distribution; see [Kle76], Chap. 4.
For extensions to more general models and computational methods, see [Kei79], [Neu81],
[Haj82], and [Twe82]. For methods to calculate the blocking probability in circuit switch-
ing networks (Example 3.14), see [Kau81], [KeI86], [LeG89], [RoT90], and [TsR90].

Section 3.5. The P-K formula is often derived by using z-transforms; see [Kle75].
This derivation is not very insightful, but gives the probability distribution of the system
occupancy (not just the mean that we obtained via our much simpler analysis). For more
on delay analysis of ARQ systems, see [AnP86] and [ToW79].

The results on polling and reservation systems are fairly recent; see [Co070],
[Eis79], [FeA85], [FuC85], [IEE86], and [Kue79]. The original references that are
closest to our analysis are [Has72] for unlimited service systems, [NoT78] for limited
service systems, and [Hum78] for nonsymmetric polling systems. Reference [Tak86] is
a monograph devoted to polling. There are two main reservation and polling systems
considered in the literature: the symmetric case, where all users have identical arrival
and reservation interval statistics, and the nonsymmetric case, where these statistics are
user dependent. The former case admits simple expressions for the mean waiting times
while the latter does not. We have considered the partially symmetric case, where all
users have identical arrival statistics but different reservation interval statistics. The
fact that simple expressions hold for this case has not been known earlier, and in this
respect, our formulas are original. Our treatment in terms of simple graphical arguments
is also original. Approximate formulas for nonsymmetric polling systems are given in
[BoM86] and [IbC89]. The result of Problem 3.35 on limited service systems with shared
reservation and data intervals is new.

An extensive treatment of priority queueing systems is [Jai68]. A simpler, less
comprehensive exposition is given in [Kle75].

The material on the GIG/I queue is due to [Kin62]. For further material, see
Chapter 11 of [WoI89j, [Whi83a], [Whi83b], and the references quoted there.

Section 3.6. Delay analysis for data networks in terms of M I Iv!I I approxima-
tions was introduced in [Kle64]. References [WoI82b] and [PiW82] study via analysis
and simulation the behavior of two queues in tandem when the service times of a cus-
tomer at the two queues are dependent. The special issue [IEE86] provides a view of
recent work on the subject.
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Section 3.7. The notion of reversibility was used in Markov chain analysis by
Kolmogorov [KoI36], and was explored in depth in [KeI79] and [WaI88].

Section 3.8. There is an extensive literature on product form solutions of queue-
ing networks following Jackson's original paper [Jac57]. The survey [DiK85] lists 314
references. There are also several books on the subject: [KeI79], [BrB80], [GeP87J,
[WaI88], and [CoG89]. The heuristic explanation of Jackson's theorem is due to
[WaI83].

PROBLEMS

3.1 Customers arrive at a fast-food restaurant at a rate of five per minute and wait to receive
their order for an average of 5 minutes. Customers eat in the restaurant with probability 0.5
and carry out their order without eating with probability 0.5. A meal requires an average of
20 minutes. What is the average number of customers in the restaurant? (Answer: 75.)

3.2 Two communication nodes I and 2 send files to another node 3. Files from I and 2 require
on the average R] and R2 time units for transmission, respectively. Node 3 processes a
file of node i (i = 1,2) in an average of Pi time units and then requests another file from
either node I or node 2 (the rule of choice is left unspecified). If '\i is the throughput of
node i in files sent per unit time, what is the region of all feasible throughput pairs (,\ 1, '\2)
for this system?

3.3 A machine shop consists of N machines that occasionally fail and get repaired by one of
the shop's m repairpersons. A machine will fail after an average of R time units following
its previous repair and requires an average of P time units to get repaired. Obtain upper
and lower bounds (functions of R, N, P, and m) on the number of machine failures per
unit time and on the average time between repairs of the same machine.

3.4 The average time T a car spends in a certain traffic system is related to the average number
of cars N in the system by a relation of the form T = Q + ,3N2 , where Q > 0, /3 > 0 are
given scalars.
(a) What is the maximal car arrival rate ,\* that the system can sustain?
(b) When the car arrival rate is less than ,\*, what is the average time a car spends in the

system assuming that the system reaches a statistical steady state? Is there a unique
answer? Try to argue against the validity of the statistical steady-state assumption.

3.5 An absent-minded professor schedules two student appointments for the same time. The
appointment durations are independent and exponentially distributed with mean 30 minutes.
The first student arrives on time, but the second student arrives 5 minutes late. What is
the expected time between the arrival of the first student and the departure of the second
student? (Answer: 60.394 minutes.)

3.6 A person enters a bank and finds all of the four clerks busy serving customers. There are no
other customers in the bank, so the person will start service as soon as one of the customers
in service leaves. Customers have independent, identical, exponential distribution of service
time.
(a) What is the probability that the person will be the last to leave the bank assuming that

no other customers arrive?
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(b) If the average service time is I minute, what is the average time the person will spend
in the bank?

(c) Will the answer in part (a) change if there are some additional customers waiting in a
common queue and customers begin service in the order of their arrival?

3.7 A communication line is divided in two identical channels each of which will serve a
packet traffic stream where all packets have equal transmission time T and equal interarrival
time R > T. Consider, alternatively, statistical multiplexing of the two traffic streams
by combining the two channels into a single channel with transmission time T /2 for each
packet. Show that the average system time of a packet will be decreased from T to something
between T /2 and 3T/4, while the variance of waiting time in queue will be increased from
oto as much as T 2 /16.

3.8 Consider a packet stream whereby packets arrive according to a Poisson process with rate
10 packets/sec. If the interarrival time between any two packets is less than the transmission
time of the first to arrive, the two packets are said to collide. (This notion will be made
more meaningful in Chapter 4 when we discuss multiaccess schemes.) Find the probabilities
that a packet does not collide with either its predecessor or its successor, and that a packet
does not collide with another packet assuming:
(a) All packets have a transmission time of 20 msec. (Answer: Both probabilities are equal

to 0.67.)
(b) Packets have independent, exponentially distributed transmission times with mean 20

msec. (This part requires the 1\II/AI / CX) results.) (Answer: The probability of no
collision with predecessor or successor is 0.694. The probability of no collision is
0.682.)

3.9 A communication line capable of transmitting at a rate of 50 Kbits/sec will be used to
accommodate 10 sessions each generating Poisson traffic at a rate 150 packets/min. Packet
lengths are exponentially distributed with mean 1000 bits.
(a) For each session, find the average number of packets in queue, the average number in

the system, and the average delay per packet when the line is allocated to the sessions
by using:
(1) 10 equal-capacity time-division multiplexed channels. (Answer: NQ = 5, N = 10,

T = 0.4 sec.)
(2) Statistical multiplexing. (Answer: NQ = 0.5, N = I, T = 0.04 sec.)

(b) Repeat part (a) for the case where five of the sessions transmit at a rate of 250 pack-
ets/min while the other five transmit at a rate of 50 packets/min. (Answer: NQ = 21,
N = 26, T = 1.038 sec.)

3.10 This problem deals with some of the basic properties of the Poisson process.
(a) Derive Eqs. (3.11) to (3.14).
(b) Show that if the arrivals in two disjoint time intervals are independent and Poisson

distributed with parameters ATI' AT2, then the number of arrivals in the union of the
intervals is Poisson distributed with parameter A(T) + T2)' (This shows in particular
that the Poisson distribution of the number of arrivals in any interval [ef. Eq. (3.10)] is
consistent with the independence requirement in the definition of the Poisson process.)
Hint: Verify the correctness of the following calculation, where N) and N2 are the
number of arrivals in the two disjoint intervals:
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n

P{N[ + N2 = n} = LP{NI = k}P{N2 = n - k}
k=O

Chap. 3

(c) Show that if k independent Poisson processes AI .... ,A k are combined into a single
process A = A [ + A2 + + A b then A is Poisson with rate A equal to the sum of
the rates A" ... Ak of AI' A k. Show also that the probability that the first arrival
of the combined process comes from A, is A, / A independently of the time of arrival.
Hint: For k = 2 write

n

= L P{AI(t + T) - A,(t) = m}P{A2(t + T) - A2(t) = n - m}
rn=O

and continue as in the hint for part (b). Also write for any t

P{ I arrival from Al prior to t I I occurred}

P{l arrival from A, prior to t, 0 from A 2 }

P{loccurred}

A[te-Alte-A2t A,
Ate-At A

(d) Suppose we know that in an interval [tl, t2] only one arrival of a Poisson process
has occurred. Show that, conditional on this knowledge, the time of this arrival is
uniformly distributed in [t[, t21. Hint: Verify that if t is the time of arrival, we have
for all s E [tl, t2],

P{f < s II arrival occurred in [fl,f2l}
P{ I arrival occurred in [t[, s), 0 arrivals occurred in [s, f2l}

P{ I arrival occurred}
s - fl
f2 - t[

3.11 Packets arrive at a transmission facility according to a Poisson process with rate A. Each
packet is independently routed with probability p to one of two transmission lines and with
probability (I - p) to the other.
(a) Show that the arrival processes at the two transmission lines are Poisson with rates Ap

and A(I - p), respectively. Furthermore, the two processes are independent. Hint: Let
N I (t) and N 2(t) be the number of arrivals in [0, f] in lines I and 2, respectively. Verify
the correctness of the following calculation:
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P{NI(t) = n,Nz(t) = m}
, . . e->-.t(At)n+m

= P{NI(t) = n,Nz(t) = m I N(t) = n +m}-----
(n+m)!

e-Atp(Atp)n e->-.t(l-p)(At(l p»)Tn

n! m!
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(b) Use the result of part (a) to show that the probability distribution of the customer delay
in a (first-come first-serve) Al/Al/1 queue with arrival rate A and service rate p is
exponential, that is, in steady-state we have

where T i is the delay of the ith customer. Hint: Consider a Poisson process A with
arrival rate p, which is split into two processes, Al and Az, by randomization according
to a probability p = A/p.; that is, each arrival of A is an arrival of Al with probability
p and an arrival of Az with probability (l - p), independently of other arrivals. Show
that the interarrival times of Az have the same distribution as T,.

3.12 Let T] and TZ be two exponentially distributed, independent random variables with means
1/Al and 1/Az. Show that the random variable min{TI, TZ} is exponentially distributed with
mean I/(AI + A2) and that P{TI < TZ} = AI/(AI + AZ). Use these facts to show that the
Al/Al/ I queue can be described by a continuous-time Markov chain with transition rates
I1n(n+l) = A, q(n+lln = 11, n = 0, I, .... (See Appendix A for material on continuous-time
Markov chains.)

3.13 Persons arrive at a taxi stand with room for VV taxis according to a Poisson process with
rate A. A person boards a taxi upon arrival if one is available and otherwise waits in a line.
Taxis arrive at the stand according to a Poisson process with rate p. An arriving taxi that
finds the stand full departs immediately; otherwise, it picks up a customer if at least one is
waiting, or else joins the queue of waiting taxis.
(a) Use an 1'\11/AI/I queue formulation to obtain the steady-state distribution of the person's

queue. What is the steady-state probability distribution of the taxi queue size when
IV = 5 and A and p are equal to I and 2 per minute, respectively? (Answer: Let Pi =
Probability of i taxis waiting. Then Po = 1/32, PI = 1/32, P2 = 1/16, P3 = 1/8,
P4 = 1/4, PS = 1/2.)

(b) In the leaky bucket flow control scheme to be discussed in Chapter 6, packets arrive at
a network entry point and must wait in a queue to obtain a permit before entering the
network. Assume that pennits are generated by a Poisson process with given rate and
can be stored up to a given maximum number; permits generated while the maximum
number of permits is available are discarded. Assume also that packets arrive according
to a Poisson process with given rate. Show how to obtain the occupancy distribution of
the queue of packets waiting for permits. Hint: This is the same system as the one of
part (a).
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*'ftA-
3.14

(el Consider the flow control system of part (bl with the difference that pertnits are not
generated according to a Poisson process but are instead generated periodically at a
given rate. (This is a more realistic assumption.) Fortnulate the problem of finding the
occupancy distribution of the packet queue as an lvl / D / I roblem.

A communication node A receives Poisson packet traffic rom two other nodes, I and 2, at
rates AI and A2' respectively, and transmits it, on a first-come first-serve basis, using a link
with capacity C bits/sec. The two input streams are assumed independent and their packet
lengths are identically and exponentially distributed with mean L bits. A packet from node
I is always accepted by A. A packet from node 2 is accepted only if the number of packets
in A (in queue or under transmission) is less than a given number K > 0; otherwise, it is
assumed lost.
(al What is the range of values of Al and A2 for which the expected number of packets in

A will stay bounded as time increases?
(b) For Al and A2 in the range of part (a) find the steady-state probability of having n

packets in A (0 :s; n < (0). Find the average time needed by a packet from source I
to clear A once it enters A, and the average number of packets in A from source 1.
Repeat for packets from source 2.

3.15 Consider a system that is identical to AI / AI/I except that when the system empties out,
service does not begin again until k customers are present in the system (k is given).
Once service begins it proceeds nortnally until the system becomes empty again. Find the
steady-state probabilities of the number in the system, the average number in the system,
and the average delay per customer. [Answer: The average number in the system is N =
p/(1 - p) + (k - 1)/2.]

3.16 MIMI/-Like System with State-Dependent Arrival and Service Rate. Consider a system which
is the same as lvI/AI / I except that the rate An and service rate p,n when there are n
customers in the system depend on 11. Show that

Pn+1 = (po··· Pn)PO

Po = [I + f(Po ... Pk)] -I
k=O

3.17 Discrete-Time Version of the MIMIl System. Consider a queueing system where interarrival
and service times are integer valued, so customer arrivals and departures occur at integer
times. Let A be the probability that an arrival occurs at any time k, and assume that at most
one arrival can occur. Also let p, be the probability that a customer who was in service at
time k will complete service at time k + I. Find the occupancy distribution pn in tertns of
A and p,.

3.18 Empty taxis pass by a street comer at a Poisson rate of 2 per minute and pick up a passenger
if one is waiting there. Passengers arrive at the street comer at a Poisson rate of I per minute
and wait for a taxi only if there are fewer than four persons waiting; otherwise, they leave and
never return. Find the average waiting time of a passenger who joins the queue. (Answer:
13/15 min.)

3.19 A telephone company establishes a direct connection between two cities expecting Poisson
traffic with rate 30 calls/min. The durations of calls are independent and exponential1y
distributed with mean 3 min. Interarrival times are independent of cal1 durations. How many
circuits should the company provide to ensure that an attempted cal1 is blocked (because al1



Chap. 3 Problems 247

3.20

3.21

circuits are busy) with probability less than 0.01? It is assumed that blocked calls are lost
(i.e., a blocked call is not attempted again).
A mail-order company receives calls at a Poisson rate of one per 2 min and the duration
of the calls is exponentially distributed with mean 3 min. A caller who finds all telephone
operators busy patiently waits until one becomes available. Write a computer program to
determine how many operators the company should use so that the average waiting time of
a customer is half a minute or less?
Consider the Ai / lvl / I / m system which is the same as Ai / lvl/ I except that there can be
no more than m customers in the system and customers arriving when the system is full are
lost. Show that the steady-state occupancy probabilities are given by

pn(1 _ p)
pn = 1- pm+l '

3.22 An athletic facility has five tennis courts. Players arrive at the courts at a Poisson rate of
one pair per 10 min and use a court for an exponentially distributed time with mean 40 min.
(a) Suppose that a pair of players arrives and finds all courts busy and k other pairs waiting

in queue. How long will they have to wait to get a court on the average?
(b) What is the average waiting time in queue for players who find all courts busy on

arrival?
3.23 Consider an Ai / Al / x queue with servers numbered 1,2, ... There is an additional restric-

tion that upon arrival a customer will choose the lowest-numbered server that is idle at the
time. Find the fraction of time that each server is busy. Will the answer change if the num-
ber of servers is finite? Hint: Argue that in steady-state the probability that all of the first
m servers are busy is given by the Erlang B formula of the AI / 1'vl/m/m system. Find the
total arrival rate to servers (m + I) and higher, and from this, the arrival rate to each server.

3.24 lvl /1'vl /1 Shared Service System. Consider a system which is the same as lvI/AI/1
except that whenever there are n customers in the system they are all served simultane-
ously at an equal rate 1/n per unit time. Argue that the steady-state occupancy distribution
is the same as for the AI/AI /1 system. Note: It can be shown that the steady-state occu-
pancy distribution is the same as for 1'vl/Ai/I even if the service time distribution is not
exponential (i.e., for an AI/G/I type of system) ([Ros83], p. 171).

3.25 Blocking Probability for Single-Cell Radio Systems ([BaA81] and [BaA82j). A cellular radi-
otelephone system serves a given geographical area with Tn radiotelephone channels con-
nected to a single switching center. There are two types of calls: radio-to-radio calls, which
occur with a Poisson rate AI and require two radiochannels per call, and radio-to-nonradio
calls, which occur with a Poisson rate A2 and require one radiochannel per call. The duration
of all calls is exponentially distributed with mean 1//1. Calls that cannot be accommodated
by the system are blocked. Give formulas for the blocking probability of the two types of
calls.

3.26 A facility of m identical machines is sharing a single repairperson. The time to repair a
failed machine is exponentially distributed with mean 1/A. A machine, once operational,
fails after a time that is exponentially distributed with mean 1//1. All failure and repair times
are independent. What is the steady-state proportion of time where there is no operational
machine?

3.27 Ai/AI/2 System with Heterogeneous Servers. Derive the stationary distribution of an
lH/ lvl/2 system where the two servers have different service rates. A customer that arrives
when the system is empty is routed to the faster server.
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3.28 In Example 3.11, verify the formula IJf = ().. / /1)1/2 sr' Hint: Write

and use the fact that n is Poisson distributed.
3.29 Customers arrive at a grocery store's checkout counter according to a Poisson process with

rate I per minute. Each customer carries a number of items that is uniformly distibuted
between I and 40. The store has two checkout counters, each capable of processing items
at a rate of 15 per minute. To reduce the customer waiting time in queue, the store manager
considers dedicating one of the two counters to customers with x items or less and dedicating
the other counter to customers with more than x items. Write a small computer program to
find the value of :r that minimizes the average customer waiting time.

3.30 In the 1\[ / G / I system, show that

P {the system is empty} = I - AX

Average length of time between busy periods

. X
Average length of busy penod =------=

I-AX

I
A

Average number of customers served in a busy period
I

I-AX

3.31 Consider the following argument in the l'v1/G/ I system: When a customer arrives, the
probability that another customer is being served is AX. Since the served customer has
mean service time X, the average time to complete the service is X /2. Therefore, the mean
residual service time is AX2 /2. What is wrong with this argument?

3.32 1'1'1/G / I System with Arbitrary Order of Service. Consider the 1\;1/G / I system with the
difference that customers are not served in the order they arrive. Instead, upon completion
of a customer's service, one of the waiting customers in queue is chosen according to
some rule, and is served next. Show that the P-K formula for the average waiting time in
queue IV remains valid provided that the relative order of arrival of the customer chosen is
independent of the service times of the customers waiting in queue. Hint: Argue that the
independence hypothesis above implies that at any time t, the number NQ(t) of customers
waiting in queue is independent of the service times of these customers. Show that this in
tum implies that U = R + plV, where R is the mean residual time and U is the average
steady-state unfinished work in the system (total remaining service time of the customers in
the system). Argue that U and R are independent of the order of customer service.

3.33 Show that Eq. (3.59) for the average delay of time-division multiplexing on a slot basis can
be obtained as a special case of the results for the limited service reservation system. Hint:
Consider the gated system with zero packet length.

3.34 Consider the limited service reservation system. Show that for both the gated and the
partially gated versions:
(a) The steady-state probability of arrival of a packet during a reservation interval is I - p.
(b) The steady-state probability of a reservation interval being followed by an empty data

interval is (I - p - AV)/(l p). Hint: If p is the required probability, argue that the
ratio of the times used for data intervals and for reservation intervals is (I - p )XIV.
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3.35 Limited Service Reservation System with Shared Reservation and Data Intervals. Consider
the gated version of the limited service reservation system with the difference that the m
users share reservation and data intervals, (i.e., all users make reservations in the same
interval and transmit at most one packet each in the subsequent data interval). Show that

TV = A_X_2-=-_ + (I - p)V2 + (1- pa - AV/m)Y
2(1-p-AV/m) 2(1-p-AV/m)V I-p-AV/m

where V and V2 are the first two moments of the reservation interval, and a satisfies

K + (X - 1)(2K - X) 1 1 1
-------==------'- - - < a < - - -

2mK 2m - - 2 2m

where

K= AV
1 - P

is the average number of packets per data interval, and X is the smallest integer which is
larger than K. Verify that the formula for TV becomes exact as p -t 0 (light load) and as
p -t I - AV1m (heavy load). Hint: Verify that

-5)V
where 5 = E {5i} and 5i is the number (0 or 1) of packets of the owner of packet
i that will start transmission between the time of arrival of packet i and the end of the cycle
in which packet i arrives. Try to obtain bounds for 5 by considering separately the cases
where packeti arrives in a reservation and in a data interval.

3.36 Repeat part (a) of Problem 3.9 for the case where packet lengths are not exponentially
distributed, but 10% of the packets are 100 bits long and the rest are 1500 bits long. Repeat
the problem for the case where the short packets are given nonpreemptive priority over the
long packets. (Answer: NQ = 0.791, N = 1.47, T = 0.588 sec.)

3.37 Persons arrive at a Xerox machine according to a Poisson process with rate one per minute.
The number of copies to be made by each person is uniformly distributed between I and
10. Each copy requires 3 sec. Find the average waiting time in queue when:
(a) Each person uses the machine on a first-come first-serve basis. (Answer: TV = 3.98.)
(b) Persons with no more than 2 copies to make are given nonpreemptive priority over other

persons.
3.38 Priority Systems with Multiple Servers. Consider the priority systems of Section 3.5.3 as-

suming that there are m servers and that all priority classes have exponentially distributed
service times with common mean 1//1.
(a) Consider the nonpreemptive system. Show that Eq. (3.79) yields the average queueing

times with the mean residual time R given by

R= PQ
mp

where PQ is the steady-state probability of queueing given by the Erlang C formula of
Eq. (3.36). [Here Pi = Ai!(m/1) and p = 2:7=1 Pi.]

(b) Consider the preemptive resume system. Argue that VV(k)' defined as the average time in
queue averaged over the first k priority classes, is the same as for an lvI/AI1m system
with arrival rate Al + ... + Ak and mean service time 1//1. Use Little's Theorem to
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k = 2,3, ... , n

show that the average time in queue of a kth priority class customer can be obtained
recursively from

= Alk [W(k)t Ai - W(k-l) Ai]

3.39 Consider the nonpreemptive priority queueing system of Section 3.5.3 for the case where
the available capacity is sufficient to handle the highest-priority traffic but cannot handle the
traffic of all priorities, that is,

PI < I < PI + P2 + ... + pn

Find the average delay per customer of each priority class. Hint: Determine the departure
rate of the highest-priority class that will experience infinite average delay and the mean
residual service time.

3.40 Optimization of Class Ordering in a Nonpreemptive System. Consider an n-class, nonpre-
emptive priority system:
(a) Show that the sum PkWk is independent of the priority order of classes, and in

fact
n

L TIT RpPkvVk = --
I-p

k=l

where P = PI +P2+" ·+Pn. (This is known as the Ai IG/l conservation law [Kle64).)
Hint: Use Eq. (3.79). Alternatively, argue that U = R + PkWko where U is
the average steady-state unfinished work in the system (total remaining service time of
customers in the system), and U and R are independent of the priority order of the
classes.

(b) Suppose that there is a cost Ck per unit time for each class k customer that waits in
queue. Show that cost is minimized when classes are ordered so that

Xl < X 2 < ... < X n

CI C2 Cn

Hint: Express the cost as and use part (a). Also use the fact
that interchanging the order of any two adjacent classes leaves the waiting time of all
other classes unchanged.

3.41 Little's Theorem for Arbitrary Order of Service; Analytical Proof [Sti74]. Consider the
analysis of Little's Theorem in Section 3.2 and the notation introduced there. We allow the
possibility that the initial number in the system is positive [i.e., N(O) > 0). Assume that
the time-average arrival and departure rates exist and are equal:

A = lim aCt) = lim ;3(t)
t t

and that the following limit defining the time-average system time exists:

T = N(O) o(t) ( L T{+ L (t - t i ))
iED(t) iED(t)
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Ti

where D(t) is the set of customers departed by time t and D(t) is the set of customers that
are in the system at time t. (For all customers that are initially in the system, the time Ti
is counted starting at time 0.) Show that regardless of the order in which customers are
served, Little's Theorem (N = AT) holds with

N= tN(T)dT
t-x t io

Show also that

k

T = lim '"' Ti
k:-= k

;=1

Hint: Take t -" DC below:

I I rt It .L Ti <:: t io N(T) dT <:: t L
'ED(t) 0 iED(t)UD(t)

3.42 A Generalization ofLittle's Theorem. Consider an arrival-departure system with arrival rate
A, where entering customers are forced to pay money to the system according to some rule.
(a) Argue that the following identity holds:

Average rate at which the system earns = A . (Average amount a customer pays)

(b) Show that Little's Theorem is a special case.
(c) Consider the M / G / I system and the following cost rule: Each customer pays at a rate

of y per unit time when its remaining service time is y, whether in queue or in service.
Show that the formula in (a) can be written as

W = A (XW +

which is the Pollaczek-Khinchin formula.
3.43 AI/G/I Queue with Random-Sized Batch Arrivals. Consider the lvI/G/1 system with the

difference that customers are arriving in batches according to a Poisson process with rate
A. Each batch has n customers, where n has a given distribution and is independent of
customer service times. Adapt the proof of Section 3.5 to show that the waiting time in
queue is given by

XnX2 X(n2 - n)W = +
2(1 - p) 2n(l - p)

Hint: Use the equation W = R + plY +WE, where WE is the average waiting time of a
customer for other customers who arrived in the same batch.

3.44 lvI / G / I Queue with Overhead for Each Busy Period. Consider the J\J / G / I queue with the
difference that the service of the first customer in each busy period requires an increment .6-
over the ordinary service time of the customer. We assume that .6- has a given distribution
and is independent of all other random variables in the model. Let p = AX be the utilization
factor. Show that
(a) Po = P{the system is empty} = (1 - p)/O + A6).
(b) Average length of busy period = (X + 6)/0 - pl.
(c) The average waiting time in queue is
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w = AX2 + A[(X + 6)2 X2]
2(1 - p) 2(1 + A6)

(d) Parts (a), (b), and (c) also hold in the case where 6 may depend on the interarrival and
service time of the first customer in the corresponding busy period.

3.45 Consider a system that is identical to J'vl / G /1 except that when the system empties out,
service does not begin again until k customers are present in the system (k is given). Once
service begins, it proceeds normally until the system becomes empty again. Show that:
(a) In steady-state:

1-p
P { system empty} = -k-'-

{
.. } (k - 1)(1 - p)

P system nonempty and waltmg = k

P { system nonempty and serving} = p

(b) The average length of a busy period is

p+k-l
A(I - p)

Verify that this average length is equal to the average time between arrival and start of
service of the first customer in a busy period, plus k times the average length of a busy
period for the corresponding M / G / I system (k = 1).

(e) Suppose that we divide a busy period into a busy/waiting portion and a busy/serving
portion. Show that the average number in the system during a busy/waiting portion is
k/2 and the average number in the system during a busy/serving portion is

iVM / G / 1 k - I----'------'-- + --
p 2

where Nlvl/G/I is the average number in the system for the corresponding AI/G/I
system (k = I). Hint: Relate a busy/serving portion of a busy period with k independent
busy periods of the corresponding Al / G /1 system where k = 1.

(d) The average number in the system is

V k - I
"M/G/l + -2-

3.46 Single-Vacation Al / G /1 System. Consider the M / G /1 system with the difference that each
busy period is followed by a single vacation interval. Once this vacation is over, an arriving
customer to an empty system starts service immediately. Assume that vacation intervals
are independent, identically distributed, and independent of the customer interarrival and
service times. Prove that the average waiting time in queue is

AX2 V 2
2( I - p) 21

where 1 is the average length of an idle period, and show how to calculate 1.
3.47 The 1\;I/G/= System. Consider a queueing system with Poisson arrivals at rate A. There are

an infinite number of servers, so that each arrival starts service at an idle server immediately
on arrival. Each server has a general service time distribution and Fx(x) = P{X s: :r}
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denotes the probability that a service starting at any given time T is completed by time
T + x [Fx(x) = °for:r -:; 0]. The servers have independent and identical service time
distributions.
(a) For x and b (0 < b < x) very small, find the probability that there was an arrival in

the interval IT - X, T - X + b] and that this arrival is still being served at time T.

(b) Show that the mean service time for any arrival is given by

X = (= [I - Fx(.r)] d.r
,10

HiIII: Use a graphical argument.
(c) Use parts (a) and (b) to verify that the number in the system is Poisson distributed with

mean ..\X.
3.48 An Improved Bound/or the GIGII Queue.

(a) Let l' be a nonnegative random variable and let .r be a nonnegative scalar. Show that

?
(max{O,r-x}f

2
(max{O,l' - x})

where overbar denotes expected value. Hint: Prove that the left-hand expression IS

monotonically nondecreasing as a function of J:.
(b) Using the notation of Section 3.5.4, show that

and that

w < + iTT,)
- 2(1 - p)

..\(1 -
2

Hilll: Use part (a) with,. being the customer interarrival time and .1' equal to the time
in the system Icf. Eq. (3.93)].

3.49 Last-Come First-Serve AI IGII System. Consider an AI IGII system with the difference
that upon arrival at the queue, a customer goes immediately into service, replacing the
customer who is in service at the time (if any) on a preemptive-resume basis. When a
customer completes service, the customer most recently preempted resumes service. Show
that:
(a) The expected length of a busy period, denoted E{B}, is the same as in the ordinary

AI IGII queue.
(b) Show that the expected time in the system of a customer is equal to E {B}. Hint: Argue

that a customer who starts a busy period stays in the system for the entire duration of
the busy period.

(c) Let C be the average time in the system of a customer requiring one unit of service
time. Argue that the average time in the system of a customer requiring X units of
service time is XC. Hint: Argue that a customer requiring two units of service time
is "equivalent" to two customers with one unit service time each. and with the second
customer arriving at the time that the first departs.

(d) Show that

C= E{B} =
E{X} I - p
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3.50 Truncation of Queues. This problem illustrates one way to use simple queues to obtain
results about more complicated queues.
(a) Consider a continuous-time Markov chain with state space 5, stationary distribution

{Pj}, and transition rates qij. Suppose that we have a truncated version of this chain,
that is, a new chain with space S, which is a subset of 5 and has the same transition
rates qij between states i and j of S. Assume that for all j E S, we have

Pj L qji = LPiqij
ir{S ir{s

Show that if the truncated chain is irreducible, then its stationary distribution {Pj}

satisfies Pj = Pj / "LiES Pi for all j E S. (Note that Pj is the conditional probability
for the state of the original chain to be j conditioned on the fact that it lies within S.)

(b) Show that the condition of part (a) on the stationary distribution {Pj} and the transition
rates {qij} is satisfied if the original chain is time reversible, and that in this case, the
truncated chain is also time reversible.

(c) Consider two queues with independent Poisson arrivals and independent exponentially
distributed service times. The arrival and service rates are denoted Ai, P.i, fori = 1,2,
respectively. The two queues share a waiting room with finite capacity E (including
customers in service). Arriving customers that find the waiting room full are lost. Use
part (b) to show that the system is reversible and that for m + n :s; E, the steady-state
probabilities are

m n
P{m in queue 1, n in queue 2} = Pl!:2

where Pi = AdPi, i = 1,2, and G is a normalizing constant.
3.51 Decomposition/Aggregation of Reversible Chains. Consider a time reversible continuous-

time Markov chain in equilibrium, with state space 5, transition rates qij, and stationary
probabilities Pj. Let 5 = uf:= I 5 k be a partition of S in mutually disjoint sets, and denote
for all k and j E 5 k :
Uk =Probability of the state being in 5k (i.e., Uk = "LjES

k
PJ)

7fj =Probability of the state being equal to j conditioned on the fact that the state belongs
to 5k (i.e., 7fj = P{Xn = j IX n E 5d = Pj/Uk)

Assume that all states in Sk communicate with all other states in 5k.
(a) Show that {7fj I j E Sd is the stationary distribution of the truncated chain with state

space 5k (cf. Problem 3.50).
(b) Show that {Uk I k = I, ... , K} is the stationary distribution of the so-called aggregate

chain, which is the Markov chain with states k = I, ... , K and transition rates

iikm = L 7fjqji,
jESk. iESm

k,m=I, ... ,K

Show also that the aggregate chain is reversible. (Note that the aggregate chain corre-
sponds to a fictitious process; the actual process, corresponding to transitions between
sets of states, need not be Markov.)

(c) Outline a divide-and-conquer solution method that first solves for the distributions of
the truncated chains and then solves for the distribution of the aggregate chain. Apply
this method to Examples 3.12 and 3.13.
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(d) Suppose that the truncated chains are reversible but the original chain is not. Show
that the results of parts (a) and (b) hold except that the aggregate chain need not be
reversible.

3.52 An Extension of Burke's Theorem. Consider an !vI/M /1 system in steady state where
customers are served in the order that they arrive. Show that given that a customer departs
at time t, the arrival time of that customer is independent of the departure process prior
to t. Hint: Consider a customer arriving at time tl and departing at time tz. In reversed
system terms, the arrival process is independent Poisson, so the arrival process to the left
of tz is independent of the times spent in the system of customers that arrived at or to the
right of tz.

3.53 Consider the model of two queues in tandem of Section 3.7 and assume that customers are
served at each queue in the order they arrive.
(a) Show that the times (including service) spent by a customer in queue 1 and in queue

2 are mutually independent, and independent of the departure process from queue 2
prior to the customer's departure from the system. Hint: By Burke's Theorem, the
time spent by a customer in queue 1 is independent of the sequence of arrival times at
queue 2 prior to the customer's arrival at queue 2. These arrival times (together with
the corresponding independent service times) determine the time the customer spends at
queue 2 as well as the departure process from queue 2 prior to the customer's departure
from the system.

(b) Argue by example that the times a customer spends waiting before entering service at
the two queues are not independent.

3.54 Use reversibility to characterize the departure process of the M / AI/1/m queue.
3.55 Consider the feedback model of a CPU and I/O device of Example 3.19 with the difference

that the CPU consists of m identical parallel processors. The service time of a job at
each parallel processor is exponentially distributed with mean 1/MI. Derive the stationary
distribution of the system.

3.56 Consider the discrete-time approximation to the AI/lvI/l queue of Fig. 3.6. Let X n be
the state of the system at time nfl and let Dn be a random variable taking on the value 1
if a departure occurs between nfl and (n + 1)fl, and the value °if no departure occurs.
Assume that the system is in steady-state at time nfl. Answer the following without using
reversibility.
(a) Find P{Xn = i, Dn = j} for i 2: 0, j = 0, I.
(b) Find P{Dn = I}.
(e) Find P{Xn = i,Dn = I} for i 2: 0.
(d) Find P{Xn+1 = i, Dn = I} and show that X n+1 is statistically independent of Dn .

Hint: Use part (c); also show that P{Xn+1 = i} = P{Xn+1 = i I Dn = I} for all
i 2: °is sufficient to show independence.

(e) Find P{Xn+k = i, D n+ l = j I Dn } and show that the pair of variables (Xn+1, Dn+l)
is statistically independent of D n .

(f) For each k > I, find P{Xn+k = i,Dn+k = j I Dn+k-l,Dn+k-Z,· .. ,Dn} and
show that the pair (Xn+ko Dn+k ) is statistically independent of (Dn+k- 1, Dn+k- Z,
... ,D n ). Hint: Use induction on k.

(g) Deduce a discrete-time analog to Burke's Theorem.
3.57 Consider the network in Fig. 3.39. There are four sessions: ACE, ADE, BCEF, and BDEF

sending Poisson traffic at rates 100, 200, 500, and 600 packets/min, respectively. Packet
lengths are exponentially distributed with mean 1000 bits. All transmission lines have capac-
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ity 50 kbits/sec, and there is a propagation delay of 2 msec on each line. Using the Kleinrock
independence approximation, find the average number of packets in the system, the average
delay per packet (regardless of session), and the average delay per packet of each session.

3.58 Jackson Networks with a Limit on the Total Number ofCustomers. Consider an open Jackson
network as described in the beginning of Section 3.8, with the difference that all customers
who arrive when there are a total of JvI customers in the network are blocked from entering
and are lost for the system. Derive the stationary distribution. Hint: Convert the system into
a closed network with 1''11 customers by introducing an additional queue K + I with service
rate equal to L:= I Tj. A customer exiting queue i E {I, ... , K} enters queue K + I with
probability I Lj Pij , and a customer exiting queue K + I enters queuei E {I, ... ,K}

with probability Til L:=1 Tj.

3.59 Justify the Arrival Theorem for closed networks by inserting a very fast AI / !vI / I queue
between every pair of queues. Argue that conditioning on a customer moving from one
queue to another is essentially equivalent to conditioning on a single customer being in the
fast !vI / 1'vI / I queue that lies between the two queues.

3.60 Consider a closed Jackson network where the service time at each queue is independent of
the number of customers at the queue. Suppose that for a given number of customers, the
utilization factor of one of the queues, say queue I, is strictly larger than the utilization
factors of the other queues. Show that as the number of customers increases, the proportion
of time that a customer spends in queue I approaches unity.

3.61 Consider a model of a computer CPU connected to In I/O devices as shown in Fig. 3.40.
Jobs enter the system according to a Poisson process with rate .\, use the CPU and with

A

B
Figure 3.39 Network of transmission
lines for Problem 3.57.

Po X

Figure 3.40 Model of a computer CPU
connected to m I/O devices for Problem
3.61.
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probability Pi,i = I, ... , m, are routed to thei th I/O device, while with probability Po they
exit the system. The service time of a job at the CPU (or the i th I/O device) is exponentially
distributed with mean 1/110 (or lilli, respectively). We assume that all job service times
at all queues are independent (including the times of successive visits to the CPU and I/O
devices of the same job). Find the occupancy distribution of the system and construct an
"equivalent" system with rn+ I queues in tandem that has the same occupancy distribution.

3.62 Consider a closed version of the queueing system of Problem 3.61, shown in Fig. 3.41.
There are l'vl jobs in the system at all times. A job uses the CPU and with probability Pi,
i = I, ... ,m, is routed to the i th I/O device. The service time of a job at the CPU (or the i th

I/O device) is exponentially distributed with mean II flo (or IIfli, respectively). We assume
that all job service times at all queues are independent (including the times of successive
visits to the CPU and I/O devices of the same job). Find the arrival rate of jobs at the CPU
and the occupancy distribution of the system.

3.63 Bounds on the Throughput of a Closed Queueing Network. Packets enter the network of
transmission lines shown in Fig. 3.42 at point A and exit at point B. A packet is first
transmitted on one of the lines L I, ... , L K, where it requires on the average a transmission
time X, and is then transmitted in line L K +1, where it requires on the average a transmission
time Y. To effect flow control, a maximum of N 2> K packets are admitted into the system.

Po

Figure 3.41 Closed queueing system for
Problem 3.62.

ACK after fixed time Z

Transmission time X

Maximum of N
packets allowed

Transmission time Y

Figure 3.42 Closed queueing network for
Problem 3.63.
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G(1vI- I)
Uj (Al) = Pj G(1\:1)

3.64

3.65

3.66

Each time a packet exits the system at point B, an acknowledgment is sent back and reaches
point A after a fixed time Z. At that time, a new packet is allowed to enter the system.
Use Little's Theorem to find upper and lower bounds for the system throughput under two
circumstances:
(a) The method of routing a packet to one of the lines L I, ... , L K is unspecified.
(b) The routing method is such that whenever one of the lines L I , ... , L K is idle, there is

no packet waiting at any of the other lines.
Consider the closed queueing network in Fig. 3.43. There are three customers who are
doomed forever to cycle between queue I and queue 2. The service times at the queues are
independent and exponentially distributed with mean /11 and /12. Assume that /12 < /11·
(a) The system can be represented by a four-state Markov chain. Find the transition rates

of the chain.
(b) Find the steady-state probabilities of the states.
(c) Find the customer arrival rate at queue I.
(d) Find the rate at which a customer cycles through the system.
(e) Show that the Markov chain is reversible. What does a departure from queue I in the

forward process correspond to in the reversed process? Can the transitions of a single
customer in the forward proces be associated with transitions of a single customer in
the reverse process?

Consider the closed queueing network of Section 3.8.2 and assume that the service rate
/1j(m) at the /h queue is independent of the number of customers m in the queue [/1j(m) =
/lj for all mJ. Show that the utilization factor Uj(Al) = Aj(1I;1)//1j of the /h queue is
given by

where Pj = Aj / /1] (compare with Examples 3.21 and 3.22).
AI / lvI / I System with Multiple Classes ofCustomers. Consider an Al/Al / I-like system with
first-come first-serve service and multiple classes of customers denoted c = 1,2.... , C. Let
Ai and /1; be the arrival and service rate of class i.
(a) Model this system by a Markov chain and show that unless /11 = /12 = ... = /le,

its steady-state distribution does not have a product form. Hint: Consider a state
Z = (cl, C2, ... ,en) such that /1CI # /1c n . Write the global balance equations for state

(b) Suppose instead that the service discipline is last-come first-serve (as defined in Problem
3.49). Model the system by a Markov chain and show that the steady-state distribution
has the product form

P() P( ) PCI pc, ... PCn
Z = CI , C2, ... , Cn = G

where pc = Ac/ /1c and G is a normalizing constant.

Queue 1

Figure 3.43 Closed queueing network for
Problem 3.64.
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APPENDIX A: REVIEW OF MARKOV CHAIN THEORY

The purpose of this appendix is to provide a brief summary of the results we need from
discrete- and continuous-time Markov chain theory. We refer the reader to books on
stochastic processes for detailed accounts.

3A.1 Discrete-Time Markov Chains

Consider a discrete-time stochastic process {Xn In = 0, 1,2, ...} that takes values from
the set of nonnegative integers, so the states that the process can be in are i = 0, 1 ....
The process is said to be a Markov chain if whenever it is in state i, there is a fixed
probability Pij that it will next be in state j regardless of the process history prior to
arriving at i. That is, for all n > 0, in-I, ... ,io, i, j.

Pij = P{Xn+1 = j IX n = i, X n- I = in-I, ... ,Xo = io}

=P{Xn+l=jIXn=i}

We refer to Plj as the transition probabilities. They must satisfy
ex

Pij :::: 0, L Pij = 1 ,
j=O

i=O,I,oo.

The corresponding transition probability matrix is denoted

Poo POI P02

PIO P I1 PI2

P=

PiO Pi! Pi2

We will concentrate on the case where the number of states is infinite. There are analo-
gous notions and results for the case where the number of states is finite.

Consider the n-step transition probabilities

P[j = P{Xn+rn = j I Xm = i}, n:::: O,i,j :::: 0.

n,m:::: O,i,j:::: °
The Chapman-Kolmogorov equations provide a method for calculating Pt;. They are
given by

x
pn+rn = '""" pn.. pm
IJ Ik kJ'

k=O

From these equations, we see that Pij are the elements of the matrix p" (the transition
probability matrix P raised to the nth power).

We say that two states i and j communicate if for some nand n', we have Pt; > °
and > 0. If all states communicate, we say that the Markov chain is irreducible.
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We say that a state i of a Markov chain is periodic if there exists some integer Tn 2: I
such that PI!' > °and some integer d> I such that Pti > °only if n is a multiple of
d. A Markov chain is said to be aperiodic if none of its states is periodic. A probability
distribution {Pi I ,j 2: o} is said to be a stationary distribution for the Markov chain if

%

Pj = LPiPij
i=O

,j =0, I, ... (3A.I)

We will restrict attention to irreducible and aperiodic Markov chains, since this is
the only type we will encounter. For such a chain, it can be shown that the limit

]JJ = lim P {X" = ,j I X o = i}, i = 0, L ...

exists and is independent of the starting state X o = i. Furthermore, we have (with
probability I)

. Number of visits to state ,j up to time k
Pj = hm k

which leads to the interpretation that Pj is the proportion of time or the frequency with
which the process visits ,j, a time average interpretation. Note again that this frequency
does not depend on the starting state. The following result will be of primary interest:

Theorem. In an irreducible, aperiodic Markov chain, there are two possibilities
for the scalars Pj = P{X" =,j I X o = i}:

1. PJ = 0 for all ,j 2: 0, in which case the chain has no stationary distribution.
2. Pj > 0 for all j 2: 0, in which case {PJ l,j 2: o} is the unique stationary distribution
of the chain [i.e., it is the only probability distribution satisfying Eq. (3A.I )].

A typical example of case I is a queueing system where the arrival rate exceeds
the service rate, and the number of customers in the system increases to ex, so the
steady-state probability PJ of having any finite number of customers ,j in the system is
zero. Note that case I never arises when the number of states is finite. In particular, for
every irreducible and aperiodic Markov chain with states j = 0, I, ... , Tn, there exists a
unique probability distribution {Pj I j = 0, I, ... , m} satisfying Pj = "£::0 PiPij and
Pl > °for all ,j-

In case 2, there arises the issue of characterizing the stationary distribution {Pj I
j 2: O}. For queueing systems, the following equations are often useful. Multiplying the
equation Pii = I by PJ and using Eq. (3A.I), we have

(3A.2)j = 0, L ...
,x x

Pj L P J ; = LP;Pi},
;=0 1=0

These equations are known as the global balance equations. Note that PiPij may be
viewed as the long-term frequency of transitions from i to j. Thus the global balance
equations state that at equilibrium, the frequency of transitions out of ,j [left side of
Eq. (3A.2)] equals the frequency of transitions into j [right side of Eq. (3A.2)].
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A typical approach for finding the stationary distribution of an irreducible, aperiodic
Markov chain is to try to solve the global balance equations. If a distribution satisfy-
ing these equations is found, then by the preceding theorem, it must be the stationary
distribution.

The global balance equations can be generalized to apply to an entire set of states.
Consider a subset of states S. By adding Eq. (3A.2) over all j E S, we obtain

LP} LPj; = LPiLPi}
JES if/cSif/cS JES

(3A.3)

An intuitive explanation of these equations is based on the fact that when the Markov
chain is irreducible, the state (with probability I) will return to the set S infinitely many
times. Therefore, for each transition out of S there must be (with probability 1) a reverse
transition into S at some later time. As a result, the frequency of transitions out of S
equals the frequency of transitions into S. This is precisely the meaning of the global
balance equations (3A.3).

3A.2 Detailed Balance Equations

As an application of the global balance equations, consider a Markov chain typical of
queueing systems and, more generally, birth-death systems where two successive states
can only differ by unity, that is, Pi.} = 0 if Ii - jl > I, cf. Fig. 3A.1. We assume that
Pi.i+l > 0 and Pi+1•i > 0 for all i. This is a necessary and sufficient condition for the
chain to be irreducible. Consider the sets of states

S = {D. L .... n}

Application of Eq. (3A.3) yields

n = 0.1 .... (3A.4)

(i.e .• in steady-state), the frequency of transitions from n to n + I equals the frequency
of transitions from n + 1 to n. These equations can be very useful in computing the
stationary distribution {Pj I j O} (see Sections 3.3 and 3.4).

Equation (3A.4) is a special case of the equations

i.j D (3A.5)

known as the detailed balance equations. These equations imply the global balance
equations (3A.2) but need not hold in any given Markov chain. However. in many
important special cases. they do hold and greatly simplify the calculation of the stationary

Figure 3A.l Transition probability diagram for a birth-death process.
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distribution. A common approach is to hypothesize the validity of the detailed balance
equations and to try to solve them for the steady-state probabilities Pj, j O. There are
two possibilities; either the system (3A.5) together with Lj Pj = 1 is inconsistent or
else a distribution {Pj I j O} satisfying Eq. (3A.5) will be found. In the latter case,
this distribution will also satisfy the global balance equations (3A.2), so by the theorem
given earlier, it is the unique stationary distribution.

3A.3 Partial Balance Equations

Some Markov chains have the property that their stationary distribution {Pj I j O} sat-
isfies a set of equations which is intermediate between the global and the detailed balance
equations. For every node j, consider a partition 5J, .... 5j of the complementary set
of nodes {i Ii O. i f ,j} and the equations

Pj L Pji = L PiPij • m = 1.2•... ,k (3A.6)

Equations of the form above are known as a set of partial balance equations. If a
distribution {Pj I j O} solves a set of partial balance equations, it will also solve the
global balance equations, so it will be the unique stationary distribution of the chain. A
technique that often proves useful is to guess the right set of partial balance equations
satisfied by the stationary distribution and then proceed to solve them.

3A.4 Continuous-Time Markov Chains

A continuous-time Markov chain is a process {X(t) I t O} taking values from the set
of states i = 0, 1, ... that has the property that each time it enters state i:
1. The time it spends in state i is exponentially distributed with parameter Vi. We
may view Vi as the rate (in transitions/sec) at which the process makes a transition
when at state i.

2. When the process leaves state 'i, it will enter state j with probability Pij , where
Lj Pij = 1.

We may view
qiJ = l/iPij

as the rate (in transitions/sec) at which the process makes a transition to j when at state
i. Consequently, we call qiJ the transition rate fromi to j.

We will be interested in chains for which the discrete-time Markov chain with
transition probabilities Pij (called the embedded chain) is irreducible. We also require a
technical condition, namely that the number of transitions in any finite length of time is
finite with probability 1; chains with this property are called regular. (Nonregular chains
almost never arise in queueing systems of interest. For an example, see [Ros83), p. 142.)

Under the preceding conditions, it can be shown that the limit

Pj = lim P{X(t) = j I X(O) = i}
t-----x

(3A.7)
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exists and is independent of the initial state i. We refer to Pj as the steady-state occupancy
probability of state j. It can be shown that ifT/t) is the time spent in state j up to time
t, then, regardless of the initial state, we have with probability 1,

p. = lim Tj(t) (3A.8)
J t

that is, Pj can be viewed as the long-term proportion of time the process spends in state
j. It can be shown also that either the occupancy probabilities are all zero or else they
are all positive and they sum to unity. Queueing systems where the arrival rate is larger
than the service rate provide examples where all occupancy probabilities are zero.

The global balance equations for a continuous-time Markov chain take the form
x x

Pj L qji = LPi%,
i=O i=O

j = 0, 1, ... (3A.9)

It can be shown that if a probability distribution {Pj 1 j 2: O} satisfies these equations,
then each Pj is the steady-state occupancy probability of state j.

To interpret the global balance equations, we note that since Pi is the proportion
of time the process spends in state i, it follows that Piqij is the frequency of transitions
from i to j (average number of transitions from i to j per unit time). It is seen therefore
that the global balance equations (3A.9) express the natural fact that the frequency of
transitions out of state j (the left-side term Pj qji) is equal to the frequency of
transitions into state j (the right-side term Piqij).

The continuous-time analog of the detailed balance equations for discrete-time
chains is

i, j = 0, 1, ...

These equations hold in birth-death systems where % = 0 for Ii - jl > 1, but need
not hold in other types of Markov chains. They express the fact that the frequencies of
transitions from i to j and from j to i are equal. One can also write a set of partial
balance equations and attempt to solve them for the distribution {Pj I j 2: O}. If a
solution can be found, it provides the stationary distribution of the continuous chain.

To understand the relationship between the global balance equations (3A.9) for
continuous-time chains and the global balance equations (3A.2) for discrete-time chains,
consider any 8 > 0, and the discrete-time Markov chain {Xn I n 2: O}, where

X n = X(n8), n = 0, 1, ...
The stationary distribution of {Xn } is clearly {Pj I j 2: O}, the occupancy distribution of
the continuous chain [ef. Eq. (3A.7)]. The transition probabilities of {Xn I n 2: O} can
be derived by using the properties of the exponential distribution and a derivation which
is very similar to the one used in Section 3.3.1 for the Markov chain of the M / M /1
queue. We obtain

x

P jj = 1 - 8L qji + 0(8)
i=O
i¥-]
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Using these expressions and Eq. (3A.1), which is equivalent to the global balance equa-
tions for the discrete chain, we obtain

::x; ::x;

Pj = LPiPij = Pj (1 - 8 L qji + 0(8») + LPi(8qij + 0(8»)
i=O i=O i=Oi#j i#j

and dividing by 8 and letting 8 ---> 0, we obtain the global balance equations (3A.9) for
the continuous chain.

3A.5 Drift and Stability

Suppose that we are given an irreducible, aperiodic, discrete-time Markov chain. In many
situations one is particularly interested in whether the chain has a stationary distribution
{p]}. In this case, Pj > 0 for all j and the chain is "stable" in the sense that all states
are visited infinitely often with probability 1. The notion of drift, defined as

'x

Di = E{Xn+1- X n I X n = i} = L kPi(i+k) ,
k=-i

i = 0, 1, ...

is particularly useful in this respect. Roughly speaking, the sign of Di indicates whether,
starting at i, the state tends to increase (Di > 0) or decrease (Di < 0). Intuitively, the
chain will be stable if the drift is negative for all large enough states. This is established
in the following lemma:

Stability Lemma [Pak69]. Suppose that D i < ex: for alli, and that for some
scalar 8 > 0 and integer l ;::: 0 we have

Di <::: -8, for all i > l
Then the Markov chain has a stationary distribution.

Proof: Let 6 = maxi::;:; D i . We have for each state i

n

E{Xn IXo = i} - i = L E{Xk - X k- 1 I Xo = i}
k=1
n x'

= L L E{Xk - X k- I I X k- 1 = j}P{Xk- 1= j I X o = i}
k=1 j=O

n [ i
<::: {; tJ];P{Xk-1 = j IXo = i}
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n '[

= (0 + 8)L L P{Xk-l = j I Xo = i} - n8
k=] j=O

265

from which we obtain

0<; E(Xn IX" i} <;n[Uil 8) (n-' - j IXo i l ) - 8] +,

Dividing by n and taking the limit as n -+ Xi, we obtain

0:::; ({J + 8) LPj - 8
j=O

which implies that Pj > °for some j E {O, ... ,z}. Since the chain is assumed irreducible
and aperiodic, it follows from the theorem of Section 3A.l that there exists a stationary
distribution. Q.E.D.

We also give without proof a converse to the preceding lemma:

Instability Lemma [Kap79]. Suppose that there exist integers z::::: 0 and k such
that

and

Di > 0, for all i > z

for all i and j such that 0 :::; j :::; i - k

Then the Markov chain does not have a stationary distribution; that is, Pj = 0 for all j.

APPENDIX B: SUMMARY OF RESULTS

Notation
Pn = Steady-state probability of having n customers in the system

A =Arrival rate (inverse of average interarrival time)
JI =Service rate (inverse of average service time)
N = Average number of customers in the system

NQ =Average number of customers waiting in queue
T =Average customer time in the system
VV =Average customer waiting time in queue (does not include service time)
X =Average service time
X2 =Second moment of service time
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Little's Theorem
N=AT

NQ=AW

Poisson distribution with parameter m

Chap. 3

Pn = ---n! n = O. 1, ...

Mean = Variance = m

Exponential distribution with parameter ,\

P{T ::; s} = I - e-)..S, s 0

Density: peT) = Ae-)..T

Mean

Variance

Summary of M /M /1 system results
1. Utilization factor (proportion of time the server is busy)

P - .6-Jl
2. Probability of n customers in the system

Pn = pn(l - p). n = O. 1.. ..
3. Average number of customers in the system

N ---E--I-p
4. Average customer time in the system

T- p __1_
- A(l - p) - Jl - A

5. Average number of customers in queue
2

NQ=L-I-p
6. Average waiting time in queue of a customer

W =-f!.-
Jl-A

Summary of M /M/m system results
1. Ratio of arrival rate to maximal system service rate

_ A
p - mJl
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2. Probability of n customers in the system

Po = [

",-I k ] -I(mp) + (rnp)'"I: k! rn!(1 p)
k=O

n=O

n > Tn

Pn = { Po .
mmpn

Po--,-,
m.

3. Probability that an arriving customer has to wait in queue (rn customers or more
in the system)

_ po(rnp)'"
Q - m!(1 - p)

4. Average waiting time in queue of a customer

w= p?Q
A(1 - p)

s. Average number of customers in queue
N - p?Q
Q - 1- P

6. Average customer time in the system

J.1
7. Average number of customers in the system

N = mp+ p?Q
I-p

Summary of M IM Im Im system results
1. Probability of m customers in the system

_ [m (A) n I ]-1
po-I: p ;T

n=O

(Erlang C Formula)

Pn = Po n A' n = 1.2..... Tn
/1 n.

2. Probability that an arriving customer is lost
(AlJi)m 1m!

Pm = ",m ('I )nl' (Erlang 8 Formula)
L.n=O /\ /1 n.

Summary of MIG11 system results
1. Utilization factor

A
p= -

/1
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2. Mean residual service time
AX2

R= -2-
3. Pollaczek-Khinchin formula

Delay Models in Data Networks Chap. 3

R AX2
W = -- = c:------,-

I - p 2(1 - p)

P
A2X2

[ITQ = -2(-1---/-))

A2X2
N=p+---

2(1 - p)
4. Pollaczek-Khinchin formula for ]\1/G / I queue with vacations

AX2 V2
HT = +--=2(1 - p) 2V

IT=-+W
11

where V and V2 are the first two moments of the vacation interval.

Summary of reservation/polling results

I. Average waiting time (rn-user system, unlimited service)

w AX2 (m - p)V O"?-
H= + +--=2(1-p) 2(1-p) 2V

\X2 ( )V 21:1' = /\ + TIl + P + O"v
2( 1 - p) 2(1 - p) 2V

AX2 (m + 2 - p)V (J2,"
W= + +--=2(1 - p) 2(1 - p) 2V

(exhaustive)

(partially gated)

(gated)

where p = A/I', and V and are the mean and variance of the reservation
intervals. respectively. averaged over all users
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2. Average waiting time (m-user system, limited service)

'X 2 ()IT 0 (I )w= /\ + m+pv + aT -p
2( 1 p - AV) 2(1 - P - AV) 2V(I - p - AV)

(partially gated)

w= AX2 + (m+2-p-2AV)V +
2( 1 - p - AV) 2(1 - P - AV) 2V(I - p - AV)

3. Average time in the system

1 .
Ji

Summary of priority queueing results

(gated)

1. Nonpreemptive priority. Average waiting time in queue for class k customers

L TI AX2
= {=I I I

2(1-PI-"'-Pk-I)(I-PI-"'-p!J

2. Nonpreemptive priority. Average time in the system for class k customers

1 •
Tic = - +

Jilc
3. Preemptive resume priority. Average time in the system for class k customers

(llliAl(l - PI - .. , - pkl + Ric
(I - PI - ... - Plc-I)(I - PI - ... - pAl

where
"\"'Ic -0

L....i=1 A,Xi
2

Heavy traffic approximation for the GIG11 system
Average waiting time in queue satisfies

W :s: A( +
2(1 - p)

where

= Variance of the interarrival times

= Variance of the service times

A= Average interarrival time

P = Utilization factor AIIi, where 11 /l is the average service time


